
Alireza Fasih, Umair Ali Khan, Jean Chedjou, Kyandoghere Kyamakya
Transportation Informatics Group, Alpen Adria University, Klagenfurt, Austria.

Traffic Light Controller by Reinforcement Learning Method with Local
States

Abstract – In this paper we describe an efficient method for traffic light controllers. This method is based on enhanced reinforcement learning with
local states around each traffic light on crossings. It uses many independent controllers depending upon the number of crossings. Each controller
can learn the best actions by a supervised method that is based on reward and punishment policy. The supervisor system monitors the outcome of
actions on the specific state. The reward policy is based on this monitoring and tries to minimize the traffic on crossings. Each node or agent tries to
self-organize for getting the best decisions (actions) for each state. It is possible to implement this project by the minimum infrastructure and
accessories. At the end some result and benchmarking with classical method has shown.

Key words Traffic simulator, reinforcement learning, multi agent systems.

Introduction

Traffic control in urban areas that have a very
complicated dynamic vehicles flow is one of the important
issues. Transportation research has the target to optimize
transportation flow of vehicles. As the number of roads and
infrastructures are limited, the intelligent traffic controllers
and crossing junctions will become a very important issue
for the future. In the same context, we have designed an
intelligent controller based on reinforcement learning for
controlling crossing junctions like a multi agent system,
separately.

Reinforcement Learning

Machine learning algorithm falls into three main
categories. Supervised Learning in which an agent (learner)
gets a goal or target from the environment for every input
which specifies what relevant response the agent should
generate for this input. The agent then adjusts its actual
response according to the specified response so that it is
more likely to produce an output closer to or equal to the
specified response the next time it receives the same input.
Unsupervised Learning in which an agent can learn to
represent particular input patterns in a way that reflects the
statistical structure of the overall collection of input patterns.
By contrast with supervised learning, there are no explicit
target outputs or environmental evaluations associated with
each input [1].
The third category is Reinforcement Learning which is
closer to supervised learning in the sense that the agent
receives feedback about the appropriateness of its output.
However, as far as the errors are concerned, the two
approaches differ remarkably. On the basis of agent’s
response, the supervised learning needs a teacher which
tells the agent what it should have done. Whereas, the
reinforcement learning only tells how appropriate or
inappropriate the response is by assigning a certain scalar
value to the response. The scalar value is higher (or
positive) for an appropriate response; and lower (or
negative) for an in appropriate response. In this sense,
reinforcement learning is more independent and mimics
natural learning by trial-and-error.

Reinforcement learning dates back to the early days of
cybernetics and work in statistics, psychology,
neuroscience, and computer science. In the last five to ten
years, it has attracted rapidly increasing interest in machine
learning and artificial intelligence communities.
Reinforcement learning is a way of programming agents by
reward and punishment without needing to specify how the
task is to be achieved [2].

In reinforcement learning, each agent has a set S of
states and a set A of appropriate actions. For each state Si,

the agent can choose any of the appropriate actions Ai
based on a control policy. The response generated by the
agent by taking an action can then be rewarded or punished
by a reward-punish function. The most fundamental
elements of reinforcement learning systems are a policy, a
reward-punish function and a value function.

A policy determines the mapping of a state to an
appropriate action. The policy varies from being simple to
very computation expensive and remains stochastic
throughout the learning process. An agent keeps changing
its mapping policy based on the reward/punishment.

A reward-punish function determines the quality of
agent’s response to a given input in terms of its being
appropriate or inappropriate and assigns a scalar value to
the response. The scalar value, being very low indicates the
inappropriateness of the output and is called punishment.
Whereas a higher scalar value reflects a good response
and is called a reward. Like policy, the punish-reward
function may be stochastic.

Goal: Learn to choose actions that maximize

...,2
2

10 +++ rrr γγ Where 10 <≤ γ

Fig-1 An agent interacting with its environment

The value of a state is the total amount of reward an
agent can expect to accumulate over the future, starting
from that state. Whereas rewards determine the immediate,
intrinsic desirability of environmental states, values indicate
the long-term desirability of states after taking into account
the states that are likely to follow, and the rewards available
in those states [3]. Value is the most important element of
reinforcement learning which needs to be appropriately
judged, as all the actions are taken according to t he
values judgment. This is the element which the agent is
interested to maximize in order to achieve a specific target.

a1
s1

a0s0
r0 r1

a2
s2 r2

Action Reward State

Agent

Environment

ISTET'09

195

An agent interacting with an environment with a
possible set of states S and a possible set of actions A is
shown in Fig- 1 [4]. As shown in Fig-1, in each stae Si, the
agent performs an action ai and gets a reward ri. The aim is
to learn a control policy that maximizes the expected sum of
these rewards.

Reinforcement Learning based Traffic light controller

One of the main problem areas in traffic light controllers
is non-stationary vehicle flow patterns. Our designed
controller is based on some assumptions that are in
accordance with the real world situations. The assumptions
are:

1- Cars move on a specific path during the simulation
phase. On the other hand the start and end
position is predefine in simulation.

2- All states are local for controller (RL1-TLC). Also we
quantized the state of each road that leads to a
crossing to 4 levels.

3- For each traffic light, time interval is constant. This
reduces the number of actions to 6 for each traffic
light as shown in Fig-1.

One of the most important parts of our project is traffic
simulator. We developed a microscopic simulator for
training controller and analyzing situations. The simulator
allows us to change/tune some essential parameters; like
vehicles flow rate, control signals, acceleration and
deceleration of vehicles. These parameters need to be
correctly identified as they can add noise in the system.
Also they enable users to model the microscopic behavior
of drivers in a large area[5-7].

The simulator produces 2 feedbacks for controller and
it can receive actions from controller for applying on the
model. The first feedback is number of cars behind the red
light on the queue, and another feedback is waiting time for
each car that is stopped in the queue.

Fig-2 List of Actions for each Cross junction

As the traffic light controller deals with highly dynamic and
non-stationary flow patterns of traffic, it is very hard to
simulate. In this context, we designed a distributed
controller composed of various independent controllers
which deal with separate and individual working of each
traffic light like a multi-agent system. The main benefit of
this architecture is that when one of the traffic lights fails or
the system is saturated, other controllers lead the system to
a balanced situation.

After learning process, each controller monitors the
situation of the crossing, and selects the best action (action
with the best reward on that situation) according to the
action list. By this action list controller can select the best
action for that situation to handles the traffic.

The Reinforcement learning method is based on
reward-and-punish policy. Each agent or light controller on
crossing can improve itself by getting reward and punish
values. The main improvement in this controller is the
enhancement of reward policy method. Because of the
complex dynamics in traffic model, we are not able to
estimate the next state of crossing after doing an action.
Therefore, the monitor evaluates the situation of crossing

depending on the previous state. If the environment is better
than the previous state, the system rewards a positive
value. The value has a real domain and it rewards/punishes
depending on the situation. If the situation becomes better
(less cars on the queue for all roads that leads to the
crossing), the system will get a plus value as a reward and if
the situation becomes worse the system will get a negative
value as punishment. Controller has access to the number
of cars that are behind the red light on the queue and also
waiting time for cars [8-10].

Fig-3 shows the data structure of crossing as a SRi
variable. State is a combination of these 4 strings.
According to the table-1, each string can be low, medium,
high or very high.

Fig-3 Cross State

The main problem of controllers based on

reinforcement learning is initial states. In the phase of
training, controller doesn’t know which action is better.
Therefore, at the beginning, system cannot predict the next
situation. Hence, actions are selected randomly. The
supervisor program puts the reward and punishment values
in a table as shown in Fig-4. This table has 6 columns and
many rows depend to the number of actions and comination
of crossing state. Each column is created for saving a
specific action value.

In this case there are 6 possibilities for selecting
actions for any state. Controller should find the highest
value in any state for selecting the action. If still there are
some null value in columns it should be select randomly,
otherwise the best action according to the highest value will
select.

Another issue is number of states that are depending to
the number of cars in the queue and waiting time. We have
to discritize it to few limited domain.

Fig-4 Some Rows from State-Action Table

SR1
SR2

SR3
SR4

 Crossing State = {SR1, SR2, SR3, SR4}

A1 A2 A3 A4 A5 A6

196

For reducing the number of states, we must quantize the
state values. In this case, the rate of learning will improve
and the system will converge to a good situation rapidly.

In real world, quantizing of situations to few states it
creates problem. Because at the beginning of the learning
phase, the controller might fail and drivers will have to wait
behind the red light without any reason. The rate of learning
and size of state has a tradeoff; it means that by decreasing
the number of states we can speed up the learning rate.

If we simulate the traffic model exactly same as real
situation or close to it, we can train the controller in
computer. After that, for tuning the controller we can switch
to real world. We define the road states that lead to a
crossing, as in Table-1. Depending on the amount of traffic
in each road, we assign a Letter to that state. By this model,
we have 44 States for each cross.
During the training phase in each state, controller can get a
wrong decide at most n-1 time. That ‘n’ denotes the number
of actions for cross junction.

Table-1, Road State

Number of vehicles on ith
Road

SRi = Road State

< 5 L=Low

5~15 M=Medium

15~40 H=High

>40 VH=Very High

For the getting a optimum solution we have to quantize the
situation to many partially states. Therefore by increasing
the number of ‘n’, training phase also will be increase.

Reward Policy

The policy of reward in this controller is not completely
similar to the classical reinforcement learning method. In
reinforcement learning, prediction of next step is needed
and reward policy depends on the prediction result and next
state result. Due to the lack of a determinant traffic model,
we define our system to calculate current state reward after
end of the next state. Amount of rewards depend on the
waiting time of vehicles that are behind the red light and
also number of cars, before and after applying the new
action.

(1) rs

N

K
Krsrs NtW

i

,
0

,,, ⋅= ∑
=

In Eq-1, rsW , denotes summation of delay for all cars

behind the red light for road number r in state s that leads

to the crossing. krst ,, is amount of counter for the car

number k that is waiting on the queue of road number r and

rsN , shows the number of cars on the queue for road

number r on the crossing in the state of s. We have to
calculate this formula at the end of each state. We denoted
s as a number of states. In this model, each car has an
internal counter. It counts the time delay for stopped car
behind the red light. When the car starts to move, the
counter will reset to zero.

(2) ∑∑
=

−
=

−=
3

0
,1

3

0
,

r
rs

r
rs WWPR

Reward and punishment value will calculate by eq-2. In this
equation, PR is denotes the reward and punishment result.
In this form we have to subtract the result of current state to
previous state. After normalizing the value, we assign it as a
reward or punishment value for that specific action, in the
state-action table.

Results

Fig-5 shows a snapshot from the simulator during the
learning phase with a Google earth map in background.
Controller is robust and reliable; it cans tune the controller
for optimizing the traffic on crossing. A comparison of this
method with the classical controller is shown in Fig-6. The
figure shows that as compared to static timer controller and
crowd-road-green (First Crowded Lane) controller, this
method is much better and stable.

Fig-5 A snapshot from the simulator during learning phase

The comparison of RL Traffic Controller with First Crowded
Lane and static timer controller shows that this method can
manage the cars faster than static timer. And average of
cars that stopped on the crossing is less than static timer.
The average amount of stopped car behind the traffic light is
20~25.

A simple timer controller without any feedback that
switches the lights can not manage the dynamic situation of
crossing and by a simple shuck it fail and we have a jam on
the crossing. First Crowded Lane has the worst result that
always give a priority of passing to crowded road and blocks
the others roads.

Single and independent RL controller is robust and it
can control the traffic jam at the minimum time. It’s ideal for
microscopic traffic controller. For the macroscopic case we
are going to couple it locally to other crossing. Because is
not possible to controlling the traffic in macroscopic case by
independent traffic controller [11-12].

197

Number of Cars Behind the Red Light Traffic Signals

-50

0

50

100

150

200

250

1 113 225 337 449 561 673 785 897 1009 1121 1233 1345 1457

Time

N
um

be
r o

f C
ar

s

First Crowded Lane
Simple Timer
RL1-LTC

Fig-6 Comparison of Crowd-Road-green, Static Timer and RL
Traffic Light Controller

Conclusion and future work

Our research shows that a distributed system based on
RL is quite applicable as a compare to other classic method
such as first crowded and static timer. We aim to design
and implement some controller based on TD temporal
difference, Q-learning and also Evolutionary Method. And
also we are going to implement a FPGA based cellular
automata traffic simulator for our research.

REFERENCES

[1] P. Dayan, “Unsupervised learning,” The MIT Encyclopedia of the

Cognitive Sciences, 1999
[2] L.P. Kaelbling, et al., “Reinforcement learning: A survey,” Arxiv

preprint cs.AI/9605103, 1996
[3] R.S. Sutton and A.G. Barto, “Reinforcement learning,” Journal of

Cognitive Neuroscience, vol. 11, no. 1, 1999, pp. 126-134.
[4] T.M. Mitchell, “Machine Learning. WCB,” Mac Graw Hill, 1997,

chapter 13, pp. 368.
[5] John A. Shanks, University of Otago, “Probability in Action: the

Red Traffic Light” Journal of Statistics Education Volume 15,
Number 1 (2007).

[6] Hoyer, R. and U. Jumar, Fuzzy control of traffic lights. Fuzzy
Systems, 1994. IEEE World Congress on Computational
Intelligence. Proceedings of the Third IEEE Conference on,
1994: p. 1526-1531.

[7] Wiering, M., et al., Intelligent traffic light control. ERCIM News,
European Research Consortium for Informatics and
Mathematics, 2003. 53: p. 40–41.

[8] Wiering, M., Multi-Agent Reinforcement Leraning for Traffic Light
Control. Proceedings of the Seventeenth International
Conference on Machine Learning table of contents, 2000: p.
1151-1158.

[9] Thorpe, T.L. and C. Andersson, Traffic light control using sarsa
with three state representations.

[10] Bingham, E., Reinforcement learning in neurofuzzy traffic
signal control. European Journal of Operational Research,
2001. 131(2): p. 232-241.

[11] Abdulhai, B., R. Pringle, and G.J. Karakoulas, Reinforcement
Learning for True Adaptive Traffic Signal Control. Journal of
Transportation Engineering, 2003. 129: p. 278.

[12] Sekiyama, K., et al., Self-organizing control of urban traffic
signal network. Systems, Man, and Cybernetics, 2001 IEEE
International Conference on, 2001. 4.

Authors

Alireza Fasih1, Umair Ali Khan2, Dr. Chamberlian Chejou3, Prof. Dr.
Kyandoghere Kyamakya4 Research Assistant Transportation
Informatics Group, Alpen Adria University, Klagenfurt, Austria,
Emails: {alireza.fasih, jean.chedjou, kyandoghere.kyamakya @ uni-
klu.ac.at}, ukhan@edu.uni-klu.ac.at

198

