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Traffic Light Controller by Reinforcement Learning Method with Local 
States 
 
 
Abstract – In this paper we describe an efficient method for traffic light controllers. This method is based on enhanced reinforcement learning with 
local states around each traffic light on crossings.  It uses many independent controllers depending upon the number of crossings. Each controller 
can learn the best actions by a supervised method that is based on reward and punishment policy. The supervisor system monitors the outcome of 
actions on the specific state. The reward policy is based on this monitoring and tries to minimize the traffic on crossings. Each node or agent tries to 
self-organize for getting the best decisions (actions) for each state. It is possible to implement this project by the minimum infrastructure and 
accessories. At the end some result and benchmarking with classical method has shown. 
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Introduction 

Traffic control in urban areas that have a very 
complicated dynamic vehicles flow is one of the important 
issues. Transportation research has the target to optimize 
transportation flow of vehicles. As the number of roads and 
infrastructures are limited, the intelligent traffic controllers 
and crossing junctions will become a very important issue 
for the future. In the same context, we have designed an 
intelligent controller based on reinforcement learning for 
controlling crossing junctions like a multi agent system, 
separately. 
 
Reinforcement Learning 

Machine learning algorithm falls into three main 
categories. Supervised Learning in which an agent (learner) 
gets a goal or target from the environment for every input 
which specifies what relevant response the agent should 
generate for this input. The agent then adjusts its actual 
response according to the specified response so that it is 
more likely to produce an output closer to or equal to the 
specified response the next time it receives the same input.  
Unsupervised Learning in which an agent can learn to 
represent particular input patterns in a way that reflects the 
statistical structure of the overall collection of input patterns. 
By contrast with supervised learning, there are no explicit 
target outputs or environmental evaluations associated with 
each input [1].  
The third category is Reinforcement Learning which is 
closer to supervised learning in the sense that the agent 
receives feedback about the appropriateness of its output. 
However, as far as the errors are concerned, the two 
approaches differ remarkably. On the basis of agent’s 
response, the supervised learning needs a teacher which 
tells the agent what it should have done. Whereas, the 
reinforcement learning only tells how appropriate or 
inappropriate the response is by assigning a certain scalar 
value to the response. The scalar value is higher (or 
positive) for an appropriate response; and lower (or 
negative) for an in appropriate response. In this sense, 
reinforcement learning is more independent and mimics 
natural learning by trial-and-error. 

Reinforcement learning dates back to the early days of 
cybernetics and work in statistics, psychology, 
neuroscience, and computer science. In the last five to ten 
years, it has attracted rapidly increasing interest in machine 
learning and artificial intelligence communities.  
Reinforcement learning is a way of programming agents by 
reward and punishment without needing to specify how the 
task is to be achieved [2].   

In reinforcement learning, each agent has a set S of 
states and a set A of appropriate actions. For each state Si, 

the agent can choose any of the appropriate actions Ai 
based on a control policy. The response generated by the 
agent by taking an action can then be rewarded or punished 
by a reward-punish function. The most fundamental 
elements of reinforcement learning systems are a policy, a 
reward-punish function and a value function.   

A policy determines the mapping of a state to an 
appropriate action. The policy varies from being simple to 
very computation expensive and remains stochastic 
throughout the learning process. An agent keeps changing 
its mapping policy based on the reward/punishment. 

A reward-punish function determines the quality of 
agent’s response to a given input in terms of its being 
appropriate or inappropriate and assigns a scalar value to 
the response. The scalar value, being very low indicates the 
inappropriateness of the output and is called punishment. 
Whereas a higher scalar value reflects a good response 
and is called a reward. Like policy, the punish-reward 
function may be stochastic.  
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Fig-1 An agent interacting with its environment 
 
 

The value of a state is the total amount of reward an 
agent can expect to accumulate over the future, starting 
from that state. Whereas rewards determine the immediate, 
intrinsic desirability of environmental states, values indicate 
the long-term desirability of states after taking into account 
the states that are likely to follow, and the rewards available 
in those states [3]. Value is the most important element of 
reinforcement learning which needs to be appropriately 
judged, as all the actions are taken according to t he 
values judgment. This is the element which the agent is 
interested to maximize in order to achieve a specific target.  
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An agent interacting with an environment with a 
possible set of states S and a possible set of actions A is 
shown in Fig- 1 [4]. As shown in Fig-1, in each stae Si, the 
agent performs an action ai and gets a reward ri. The aim is 
to learn a control policy that maximizes the expected sum of 
these rewards. 

 
Reinforcement Learning based Traffic light controller 

One of the main problem areas in traffic light controllers 
is non-stationary vehicle flow patterns. Our designed 
controller is based on some assumptions that are in 
accordance with the real world situations. The assumptions 
are: 
 

1- Cars move on a specific path during the simulation 
phase. On the other hand the start and end 
position is predefine in simulation. 

2- All states are local for controller (RL1-TLC). Also we 
quantized the state of each road that leads to a 
crossing to 4 levels.  

3- For each traffic light, time interval is constant. This 
reduces the number of actions to 6 for each traffic 
light as shown in Fig-1.  

 
One of the most important parts of our project is traffic 
simulator. We developed a microscopic simulator for 
training controller and analyzing situations. The simulator 
allows us to change/tune some essential parameters; like 
vehicles flow rate, control signals, acceleration and 
deceleration of vehicles. These parameters need to be 
correctly identified as they can add noise in the system. 
Also they enable users to model the microscopic behavior 
of drivers in a large area[5-7]. 

The simulator produces 2 feedbacks for controller and 
it can receive actions from controller for applying on the 
model. The first feedback is number of cars behind the red 
light on the queue, and another feedback is waiting time for 
each car that is stopped in the queue. 
 

 
 

Fig-2 List of Actions for each Cross junction 
 

As the traffic light controller deals with highly dynamic and 
non-stationary flow patterns of traffic, it is very hard to 
simulate. In this context, we designed a distributed 
controller composed of various independent controllers 
which deal with separate and individual working of each 
traffic light like a multi-agent system. The main benefit of 
this architecture is that when one of the traffic lights fails or 
the system is saturated, other controllers lead the system to 
a balanced situation. 

After learning process, each controller monitors the 
situation of the crossing, and selects the best action (action 
with the best reward on that situation) according to the 
action list. By this action list controller can select the best 
action for that situation to handles the traffic. 

The Reinforcement learning method is based on 
reward-and-punish policy. Each agent or light controller on 
crossing can improve itself by getting reward and punish 
values. The main improvement in this controller is the 
enhancement of reward policy method. Because of the 
complex dynamics in traffic model, we are not able to 
estimate the next state of crossing after doing an action. 
Therefore, the monitor evaluates the situation of crossing 

depending on the previous state. If the environment is better 
than the previous state, the system rewards a positive 
value. The value has a real domain and it rewards/punishes 
depending on the situation. If the situation becomes better 
(less cars on the queue for all roads that leads to the 
crossing), the system will get a plus value as a reward and if 
the situation becomes worse the system will get a negative 
value as punishment. Controller has access to the number 
of cars that are behind the red light on the queue and also 
waiting time for cars [8-10].   

Fig-3 shows the data structure of crossing as a SRi 
variable. State is a combination of these 4 strings. 
According to the table-1, each string can be low, medium, 
high or very high. 

 
 
 
 
 
 
 
 
 
 
 
              
 
 
 

 
Fig-3 Cross State 

 
The main problem of controllers based on 

reinforcement learning is initial states. In the phase of 
training, controller doesn’t know which action is better. 
Therefore, at the beginning, system cannot predict the next 
situation. Hence, actions are selected randomly. The 
supervisor program puts the reward and punishment values 
in a table as shown in Fig-4. This table has 6 columns and 
many rows depend to the number of actions and comination 
of crossing state. Each column is created for saving a 
specific action value.  

In this case there are 6 possibilities for selecting 
actions for any state. Controller should find the highest 
value in any state for selecting the action. If still there are 
some null value in columns it should be select randomly, 
otherwise the best action according to the highest value will 
select. 

Another issue is number of states that are depending to 
the number of cars in the queue and waiting time. We have 
to discritize it to few limited domain. 

 
 

 
 

Fig-4 Some Rows from State-Action Table 
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For reducing the number of states, we must quantize the 
state values. In this case, the rate of learning will improve 
and the system will converge to a good situation rapidly. 

In real world, quantizing of situations to few states it 
creates problem. Because at the beginning of the learning 
phase, the controller might fail and drivers will have to wait 
behind the red light without any reason. The rate of learning 
and size of state has a tradeoff; it means that by decreasing 
the number of states we can speed up the learning rate. 

If we simulate the traffic model exactly same as real 
situation or close to it, we can train the controller in 
computer.  After that, for tuning the controller we can switch 
to real world. We define the road states that lead to a 
crossing, as in Table-1. Depending on the amount of traffic 
in each road, we assign a Letter to that state. By this model, 
we have 44 States for each cross. 
During the training phase in each state, controller can get a 
wrong decide at most n-1 time. That ‘n’ denotes the number 
of actions for cross junction.  
 
 

Table-1, Road State 
 

Number of vehicles on ith 
Road   

SRi = Road State 

< 5  L=Low 

5~15  M=Medium  

15~40  H=High  

>40  VH=Very High  
 
 
For the getting a optimum solution we have to quantize the 
situation to many partially states. Therefore by increasing 
the number of ‘n’, training phase also will be increase. 
 
Reward Policy 

The policy of reward in this controller is not completely 
similar to the classical reinforcement learning method. In 
reinforcement learning, prediction of next step is needed 
and reward policy depends on the prediction result and next 
state result. Due to the lack of a determinant traffic model, 
we define our system to calculate current state reward after 
end of the next state. Amount of rewards depend on the 
waiting time of vehicles that are behind the red light and 
also number of cars, before and after applying the new 
action. 
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In Eq-1, rsW , denotes summation of delay for all cars 

behind the red light for road number r in state s  that leads 

to the crossing. krst ,, is amount of counter for the car 

number k that is waiting on the queue of road number r and 

rsN , shows the number of cars on the queue for road 

number r  on the crossing in the state of s. We have to 
calculate this formula at the end of each state. We denoted 
s as a number of states. In this model, each car has an 
internal counter.  It counts the time delay for stopped car 
behind the red light. When the car starts to move, the 
counter will reset to zero. 
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Reward and punishment value will calculate by eq-2. In this 
equation, PR is denotes the reward and punishment result. 
In this form we have to subtract the result of current state to 
previous state. After normalizing the value, we assign it as a 
reward or punishment value for that specific action, in the 
state-action table. 
 
Results 

Fig-5 shows a snapshot from the simulator during the 
learning phase with a Google earth map in background. 
Controller is robust and reliable; it cans tune the controller 
for optimizing the traffic on crossing. A comparison of this 
method with the classical controller is shown in Fig-6. The 
figure shows that as compared to static timer controller and 
crowd-road-green (First Crowded Lane) controller, this 
method is much better and stable. 
 
 

 
 

Fig-5 A snapshot from the simulator during learning phase 
 
 
The comparison of RL Traffic Controller with First Crowded 
Lane and static timer controller shows that this method can 
manage the cars faster than static timer. And average of 
cars that stopped on the crossing is less than static timer.  
The average amount of stopped car behind the traffic light is 
20~25. 

A simple timer controller without any feedback that 
switches the lights can not manage the dynamic situation of 
crossing and by a simple shuck it fail and we have a jam on 
the crossing. First Crowded Lane has the worst result that 
always give a priority of passing to crowded road and blocks 
the others roads. 

Single and independent RL controller is robust and it 
can control the traffic jam at the minimum time. It’s ideal for 
microscopic traffic controller. For the macroscopic case we 
are going to couple it locally to other crossing. Because is 
not possible to controlling the traffic in macroscopic case by 
independent traffic controller [11-12]. 
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Number of Cars Behind the Red Light Traffic Signals
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Fig-6 Comparison of Crowd-Road-green, Static Timer and RL 
Traffic Light Controller 

 
 
Conclusion and future work 

Our research shows that a distributed system based on 
RL is quite applicable as a compare to other classic method 
such as first crowded and static timer. We aim to design 
and implement some controller based on TD temporal 
difference, Q-learning and also Evolutionary Method. And 
also we are going to implement a FPGA based cellular 
automata traffic simulator for our research. 
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