LogAnswer - A Deduction-Based Question Answering System

Ulrich Furbach1, Ingo Glöckner2, Hermann Helbig2, and Björn Pelzer1

1 Department of Computer Science, Artificial Intelligence Research Group
University of Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz
\{uli,bpelzer\}@uni-koblenz.de

2 Intelligent Information and Communication Systems Group (IICS),
University of Hagen, 59084 Hagen, Germany
\{ingo.gloeckner,hermann.helbig\}@fernuni-hagen.de

Abstract. LogAnswer is an open domain question answering system which employs an automated theorem prover to infer correct replies to natural language questions. For this purpose LogAnswer operates on a large axiom set in first-order logic, representing a formalized semantic network acquired from extensive textual knowledge bases. While other work in the field of question answering focuses on shallow linguistic methods, LogAnswer emphasizes the use of automatic reasoning. The logic-based approach allows the formalization of semantics and background knowledge, which play a vital role in deriving answers. Our approach seeks to combine logical inference with less precise but robust methods from machine learning. We present the functional LogAnswer prototype, which consists of automated theorem provers for logical answer derivation as well as an environment for deep linguistic processing.3

1 Introduction

Question answering (QA) systems generate natural language (NL) answers in response to NL questions, using a large collection of textual documents. Simple factual questions can be answered using only information retrieval and shallow linguistic methods like named entity recognition. More advanced cases, like questions involving a temporal description, call for deduction based question answering which can provide support for temporal reasoning and other natural language related inferences. There are several examples of logic-based QA systems (like PowerAnswer \cite{1} and Senso \cite{2}), and also dedicated components for logical answer validation like COGEX \cite{3} or MAVE \cite{4}. However, most of these solutions are research prototypes developed for the TREC or CLEF evaluation campaigns, which ignore the issue of processing time.4 For actual users, getting the answer in a few seconds is critical to the usefulness of a QA system, though.

3 Funding of this work by the DFG (Deutsche Forschungsgemeinschaft) under contracts FU 263/12-1 and HE 2847/10-1 (LogAnswer) is gratefully acknowledged.

A QA system must achieve these response times with a knowledge base generated from tens of millions of sentences. A second challenge for logic-based QA is robustness. The processing chain of a logic-based QA system involves many stages (from NL via syntactic-semantic parsing to logical forms and knowledge processing and back to NL answers). Therefore fallback solutions like the usage of shallow features are needed to ensure baseline performance when one of the deep NLP modules fails, and gaps in the background knowledge must be bridged by robustness-enhancing techniques like relaxation.

2 Description of the LogAnswer System

The system architecture of the LogAnswer QA system is shown in Fig. 1. In the following we describe the processing stages of the system.

User interface The natural language question is entered into the LogAnswer web search box, see Fig. 2. Depending on user preferences, the system answers the question by presenting supporting text passages only or alternatively, by presenting exact answers together with the supporting passage (as shown in the figure).

Deep Question Parsing The question is analyzed by the WOCADI parser [5], which generates a semantic representation of the question in the MultiNet formalism [6]. A question classification is also done in this phase, which currently...
discerns only definition questions (What is a neutrino?) and factual questions (Who discovered the neutrino?). While factual questions can be answered by logical means alone, definition questions need additional filtering in order to identify descriptions that are not only true but also represent defining knowledge.

Passage Retrieval The document collection of LogAnswer comprises the CLEF news collection and a snapshot of the German Wikipedia (17 million sentences total). In order to avoid parsing of documents at query time, all documents are pre-analyzed by the WOCADI parser. The resulting MultiNet representations are segmented into passages and stored in the IRSAW retrieval module, which uses the terms in the passage for indexing. Given the query terms, IRSAW typically retrieves 200 (or more) passages as the basis for logical answer finding.

Shallow Feature Extraction and Reranking In order to avoid logical processing of all retrieved passages, LogAnswer tries to identify the most promising cases by reranking passages using shallow features (like overlap of lexical concepts, proper names and numerals of the question with those found in the passage). It is important that these features can be computed very quickly without the help of the prover. The machine learning approach is detailed in [7,8].

Logical Query Construction The semantic network for the question is turned into a conjunctive list of query literals. Synonyms are normalized by replacing all

5 The current version of LogAnswer uses a segmentation into single sentences, but we will also experiment with different passage sizes (paragraphs and full documents).
lexical concepts with canonical synset representatives. For example, *Wie viele Menschen starben beim Untergang der Estonia?* translates into the following logical query (with the FOCUS variable representing the queried information):

\[
\begin{align*}
\text{sub}(X_1, \text{estonia.1.1}), \text{attch}(X_1, X_2), \text{subs}(X_2, \text{untergang.1.1}), \text{subs}(X_3, \text{sterben.1.1}), \\
\text{circ}(X_3, X_2), \text{aff}(X_3, \text{FOCUS}), \text{pred}(\text{FOCUS, mensch.1.1}).
\end{align*}
\]

Robust Logic-Based Processing As the basis for answer extraction and for improving the passage ranking, LogAnswer tries to prove the logical representation of the question from the representation of the passage and the background knowledge. Robustness is gained by using relaxation: if a proof is not found within a time limit, then query literals are skipped until a proof of the remaining query succeeds, and the skip count indicates (non-)entailment [4,8]. For efficiency reasons, relaxation is stopped before all literals are proved or skipped. One can then state upper/lower bounds on the provable literal count, assuming that all (or none) of the remaining literals are provable.

Answer Extraction If a proof of the question from a passage succeeds, then LogAnswer obtains an answer binding which represents the queried information. For finding more answers, the provers of LogAnswer can also return a substitution for a proven query fragment when a full proof fails. Given a binding for the queried variable, LogAnswer uses word alignment hints of WOCADI for finding the matching answer string, which is directly cut from the original text passage.

Logic-Based Feature Extraction For a logic-based refinement of relevance scores, LogAnswer extracts the following features, which depend on the limit on relaxation cycles and on the results of answer extraction:

- **skippedLitsLb** Number of literals skipped in the relaxation proof.
- **skippedLitsUb** Number of skipped literals, plus literals with unknown status.
- **litRatioLb** Relative proportion of actually proved literals compared to the total number of query literals, i.e. \(1 - \text{skippedLitsUb/allLits}\).
- **litRatioUb** Relative proportion of potentially provable literals (not yet skipped) vs. all query literals, i.e. \(1 - \text{skippedLitsLb/allLits}\).
- **boundFocus** Indicates that a binding for the queried variable was found.
- **npFocus** Indicates that the queried variable was bound to a constant which corresponds to a nominal phrase (NP) in the text.
- **phraseFocus** Signals that an answer string has been extracted.

6 The system uses 48,991 synsets (synonym sets) for 111,436 lexical constants.

7 *How many people died when the MS Estonia sank?*

8 The background knowledge of LogAnswer comprises 10,000 lexical-semantic facts (e.g. for nominalizations) and 109 logical rules, which define main characteristics of MultiNet relations and also handle meta verbs like ‘stattfinden’ (take place) [4].
Logic-Based Reranking The logic-based reranking of the passages uses the same ML approach as the shallow reranking, but the shallow and logic-based features are now combined for better precision. Rather than computing a full reranking, passages are considered in the order determined by the shallow feature-based ranking, and logical processing is stopped after a pre-defined time limit.

Support Passage Selection When using LogAnswer for retrieving text snippets which contain an answer, all passages are re-ranked using either the logic-based score (if available for the passage) or the shallow-feature score (if there is no logic-based result for the passage due to parsing failure or time restrictions). The top k passages are chosen for presentation ($k = 5$ for the web interface).

Sanity Checks When the user requests exact answers rather than snippets which contain the answer, additional processing is needed: a triviality check eliminates answers which only repeat contents of the question. For the question *Who is Virginia Kelley?*, this test rejects trivial answers like *Virginia* or *Virginia Kelley*. A special sanity check for definition questions also rejects the non-informative answer *the mother* (instead of the expected *the mother of Bill Clinton*), see [4].

Aggregation and Answer Selection The answer integration module computes a global score for each answer, based on the local score for each passage from which the answer was extracted. The aggregation method already proved effective in [4]. The $k = 5$ distinct answers with the highest aggregated scores are then selected for presentation. For each answer, the supporting passage with the highest score is also shown in order to provide a justification for the presented answer.

3 Theorem Provers of LogAnswer

The robust logic-based processing (see the previous section) has to merge contrasting goals: it is supposed to derive answers from a logical knowledge representation using precise inference methods, but it must also provide these answers within acceptable response times and account for imperfections of the textual knowledge sources and their formalization. Thus a theorem prover must meet several requirements if it is to serve as the deduction component in LogAnswer.

Handling of Large Knowledge Bases Of high importance is the ability to work on the large set of axioms and facts forming the knowledge base, which will continue to grow during the development. This includes the way these clauses are supplied to the prover: automated theorem provers usually operate on a single-problem basis, where the prover is started with all clauses required for the specific task and then terminates after a successful proof derivation. For LogAnswer this approach is impractical, as loading the large knowledge base is too time-consuming to be repeated for each query. Any two query tasks will use the same background knowledge and only differ in a few specific clauses representing the query and a text passage. Therefore a LogAnswer prover should be able to stay in operation to perform multiple query tasks, loading and retracting the query-specific clauses as required while keeping the general knowledge base in the system.
Relaxation Loop Support The prover must also support the robustness enhancing techniques, in particular by providing guidance to the relaxation loop. The large knowledge base with its imperfections often causes the prover to reach the acceptable time limit, where LogAnswer will interrupt the reasoning and relax the query. The prover must then report details about its failed proof attempt such that the relaxation loop can select the query literal most suited for skipping.

Answer Extraction Support Finally, if a proof succeeds, then the prover must state any answer substitutions found for the FOCUS variable.

The current LogAnswer prototype includes two theorem provers.

The MultiNet Prover The prover of the MultiNet toolset9 is basically a regular prover based on SLD resolution, operating on range-restricted Horn formulas. While very limited in expressive power, it can prove a question from a passage in less than 20ms on average [7]. The prover was optimized by using term indexing, caching, lazy indexing, optimizing literal ordering, and by using profiling tools.

The E-KRHyper Prover The other system is E-KRHyper, a general theorem prover for full first order logic with equality, including non-Horn input and formulas which are not range restricted. Given our goal of using logic for question answering, E-KRHyper will eventually replace the dedicated MultiNet prover to become the sole reasoning component of LogAnswer once the translation of MultiNet representations into first-order logic has been completed. E-KRHyper implements the E-hyper tableau calculus [9]. Designed for use as an embedded knowledge processing engine, the system has been employed in a number of knowledge representation applications. E-KRHyper is capable of handling large sets of uniformly structured input facts. It can provide proof output for models and refutations. Input is accepted in TPTP syntax [10].

E-KRHyper features several extensions to first order logic, like arithmetic evaluation, negation as failure and builtin predicates adapted from Prolog. These will be helpful in the ongoing translation of the knowledge base into first order logic, allowing us to capture the full expressivity of the MultiNet formalism.

For pragmatic reasons in the development of LogAnswer E-KRHyper has the advantage of being an in-house system that can be easily tailored to any upcoming difficulties, rather than being treated as a black box which we must adapt to.

In the LogAnswer system E-KRHyper is embedded as a reasoning server, and as such the prover remains in constant operation. On its initial startup E-KRHyper is supplied with MultiNet background knowledge translated into first-order TPTP syntax. The prover further transforms this into clause normal form, a requirement for the tableaux-based reasoning algorithm of E-KRHyper. Currently this CNF-representation consists of approximately 10,200 clauses. Discrimination-tree indexing serves to maintain the large clause set efficiently.

9 See http://pi7.fernuni-hagen.de/research/mwrplus
Given that an answer to the query may be found in any of the filtered supporting passages (see Section 2), E-KRHyper runs an independent proof attempt for each passage. For such an attempt the query clause (consisting of the negated query literals) and the logical representation of the respective passage are added to E-KRHyper’s set of clauses. The average query clause for a question from the CLEF-07 contains eight literals, and the average translated passage is a set of 230 facts.

E-KRHyper then tries to find a refutation for the given input. The main LogAnswer system is notified if the prover succeeds. Furthermore, if specific information using a FOCUS variable is requested (as described before), then the binding of this variable is retrieved from the refutation and returned to the answer extractor. Finally, E-KRHyper drops all clauses apart from the background knowledge axioms and is ready for the next query or passage.

If on the other hand E-KRHyper fails to find a refutation within a specified time limit, then it halts the derivation process and provides relaxation loop support by delivering partial results, which represent the partly successful refutation attempts made so far: during the derivation E-KRHyper evaluates the query clause from left to right, trying to unify all literals with unit clauses from the current tableau branch and thereby yielding a refutation. If a literal cannot be unified, the remaining unevaluated query literals are not considered and this attempt stops. Each partial result represents such a failed evaluation; it includes the set of units which unified with a subset of the query literals, and it states the failed query literal which could not be unified. LogAnswer selects one of the ‘best’ partial results (i.e. where most query literals could be refuted) and removes the failed literal from the query. E-KRHyper rolls back its clause set to the background knowledge axioms, and the relaxation loop restarts the derivation with the shortened query. This process is repeated, with another query literal being skipped in each round, until E-KRHyper derives a refutation for the current query fragment or the bound for the number of skipped query literals is reached, see Section 2.

To meet the requirement of handling of large knowledge bases, the methods described above need to reset the clause input before every new query task. This is facilitated by E-KRHyper’s ability to save and restore states of its knowledge base. That way the prover can rapidly drop obsolete subsets of the clauses and their discrimination-tree indexes, with no need to rebuild the extensive index for the background axioms.

4 Conclusions and Future Work

We have presented a logic-based question answering system which combines an optimized deductive subsystem with shallow techniques by machine learning. Average processing times of 1.7 to 9.0 seconds were demonstrated for computing a full logic-based reranking after a strict shallow pre-filter [7]. The web version of LogAnswer uses a 5 seconds slot for the theorem proving stage. The quality of passage reranking has been measured for factual questions from CLEF-07:
On the retrieved passages, the ML classifier, which combines deep and shallow features, obtains a filtering precision of 54.8% and recall of 44.8% \[8\]. In the future, the potential of E-KRHyper will be exploited by formalizing more expressive axioms that utilize equality and non-Horn formulas. The capability of LogAnswer to find exact answers (rather than support passages) will be assessed in the CLEF-08 evaluation.

References