Ulf ZastrauEuropean XFEL · High Energy-Density (HED) Science
Ulf Zastrau
Dr. rer. nat. habil.
About
124
Publications
22,920
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,273
Citations
Introduction
Exploring Warm Dense Matter by time-resolved XUV and X-ray Methods at High-Intensity Laser facilities and XUV and X-ray Free-Electron Lasers.
Publications
Publications (124)
H2O transforms to two forms of superionic (SI) ice at high pressures and temperatures, which contain highly mobile protons within a solid oxygen sublattice. Yet the stability field of both phases remains debated. Here, we present the results of an ultrafast X-ray heating study utilizing MHz pulse trains produced by the European X-ray Free Electron...
X-ray self-heating is a common by-product of X-ray Free Electron Laser (XFEL) techniques that can affect targets, optics, and other irradiated materials. Diagnosis of heating and induced changes in samples may be performed using the x-ray beam itself as a probe. However, the relationship between conditions created by and inferred from x-ray irradia...
Dense plasma environment affects the electronic structure of ions via variations of the microscopic electrical fields, also known as plasma screening. This effect can be either estimated by simplified analytical models, or by computationally expensive and to date unverified numerical calculations. We have experimentally quantified plasma screening...
Quantum field theory predicts a nonlinear response of the vacuum to strong electromagnetic fields of macroscopic extent. This fundamental tenet has remained experimentally challenging and is yet to be tested in the laboratory. A particularly distinct signature of the resulting optical activity of the quantum vacuum is vacuum birefringence. This off...
We report on experiments where solid-density Mg plasmas are created by heating with the focused output of the Linac Coherent Light Source x-ray free-electron laser. We study the K-shell emission from the helium- and lithium-like ions using Bragg crystal spectroscopy. Observation of the dielectronic satellites in lithium-like ions confirms that the...
The insulator–metal transition in liquid hydrogen is an important phenomenon to understand the interiors of gas giants, such as Jupiter and Saturn, as well as the physical and chemical behavior of materials at high pressures and temperatures. Here, the path toward an experimental approach is detailed based on spectrally resolved x-ray scattering, t...
A multipurpose imaging x-ray crystal spectrometer is developed for the high energy density instrument of the European X-ray Free Electron Laser. The spectrometer is designed to measure x rays in the energy range of 4–10 keV, providing high-resolution, spatially resolved spectral measurements. A toroidally bent germanium (Ge) crystal is used, allowi...
We present recent results from an experiment carried out at the European X-ray free electron laser [1]. We harness the unique capabilities of the instrument to create solid density plasmas with tailored non-thermal electron distributions. By heating solids at photon energies above the k-edge, we create non-thermal photoelectrons that relax via coll...
Angularly resolved X-ray scattering measurements from fs-laser heated hydrogen have been used to determine the equilibration of electron and ion temperatures in the warm dense matter regime. The relaxation of rapidly heated cryogenic hydrogen is visualized using 5.5 keV X-ray pulses from the Linac Coherent Light (LCLS) source in a 1 Hz repetition r...
High-energy and high-intensity lasers are essential for pushing the boundaries of science. Their development has allowed leaps forward in basic research areas, including laser–plasma interaction, high-energy density science, metrology, biology and medical technology. The Helmholtz International Beamline for Extreme Fields user consortium contribute...
We present a proof-of-principle study demonstrating x-ray Raman Spectroscopy (XRS) from carbon samples at ambient conditions in conjunction with other common diagnostics to study warm dense matter, performed at the high energy density scientific instrument of the European x-ray Free Electron Laser (European XFEL). We obtain sufficient spectral reso...
The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump–probe X-...
We introduce a setup to measure high-resolution inelastic x-ray scattering at the High Energy Density scientific instrument at the European X-Ray Free-Electron Laser (XFEL). The setup uses the Si (533) reflection in a channel-cut monochromator and three spherical diced analyzer crystals in near-backscattering geometry to reach a high spectral resol...
For the High-Energy-Density (HED) beamline at the SASE2 undulator of the European XFEL, a hard X-ray split-and-delay unit (SDU) has been built enabling time-resolved pump/probe experiments with photon energies between 5 keV and 24 keV. The optical layout of the SDU is based on geometrical wavefront splitting and multilayer Bragg mirrors. Maximum de...
The von Hámos spectrometer setup at the HED instrument of the European XFEL is described in detail. The spectrometer is designed to be operated primarily between 5 and 15 keV to complement the operating photon energy range of the HED instrument. Four Highly Annealed Pyrolitic Graphite (HAPG) crystals are characterised with thicknesses of 40 μm or 1...
We present a method to determine the bulk temperature of a single crystal diamond sample at an X-Ray free electron laser using inelastic X-ray scattering. The experiment was performed at the high energy density instrument at the European XFEL GmbH, Germany. The technique, based on inelastic X-ray scattering and the principle of detailed balance, wa...
Degenerate plasmas, in which quantum effects dictate the behavior of free electrons, are ubiquitous on earth and throughout space. Transitions between bound and free electron states determine basic plasma properties, yet the effects of degeneracy on these transitions have only been theorized. Here, we use an x-ray free electron laser to create and...
The rapid heating of a thin titanium foil by a high intensity, subpicosecond laser is studied by using a 2D narrow-band x-ray imaging and x-ray spectroscopy. A novel monochromatic imaging diagnostic tuned to 4.51 keV Ti Kα was used to successfully visualize a significantly ionized area (⟨Z⟩>17±1) of the solid density plasma to be within a ∼35 μm di...
Degenerate plasmas, in which quantum effects dictate the behavior of free electrons, are ubiquitous on earth and throughout space. Transitions between bound and free electron states determine basic plasma properties, yet degeneracy effects on these transitions have only been theorized. Here, we use an x-ray free electron laser to create and charact...
We present measurements of the plasmon shift in shock-compressed matter as a function of momentum transfer beyond the Fermi wavevector using an X-ray Free Electron Laser. We eliminate the elastically scattered signal retaining only the inelastic plasmon signal. Our plasmon dispersion agrees with both the random phase approximation (RPA) and static...
We describe a setup for performing inelastic X-ray scattering and X-ray diffraction measurements at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. This technique is capable of performing high-, meV-resolution measurements of dynamic ion features in both crystalline and non-crystalline materials. A four-bounce...
We describe a setup for performing inelastic X-ray scattering measurements at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source (LCLS). This technique is capable of performing high-, meV-resolution measurements of dynamic ion features in both crystalline and non-crystalline materials. A four-bounce silicon (533) m...
Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions m...
We present measurements of photon absorption by free electrons as a solid is transformed to plasma. A femtosecond x-ray free-electron laser is used to heat a solid, which separates the electron and ion heating time scales. The changes in absorption are measured with an independent probe pulse created through high-order-harmonic generation. We find...
Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultrafast electron impact collisional ionization d...
We present measurements of the spectrally resolved x rays emitted from solid-density magnesium targets of varying sub-μm thicknesses isochorically heated by an x-ray laser. The data exhibit a largely thickness-independent source function, allowing the extraction of a measure of the opacity to K-shell x rays within well-defined regimes of electron d...
A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption. It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast nonradiative core electron transitions typically dominate the po...
Simulations of experiments at modern light sources, such as optical laser laboratories, synchrotrons, and free electron lasers, become increasingly important for the successful preparation, execution, and analysis of these experiments investigating ever more complex physical systems, e.g. biomolecules, complex materials, and ultra–short lived state...
We present simulations using finite-temperature density-functional-theory molecular dynamics to calculate the dynamic electrical conductivity in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew-Burke-Enzerhof and Heyd-Scuseria-Enzerhof (HSE) approximation indicates evident differences in the density of stat...
Tuning the energy of an x-ray probe to an absorption line or edge can provide material-specific measurements that are particularly useful for interfaces. Simulated hard x-ray images above the Fe K-edge are presented to examine ion diffusion across an interface between Fe2O3 and SiO2 aerogel foam materials. The simulations demonstrate the feasibilit...
The combination of powerful optical lasers and an x-ray free-electron laser (XFEL) provides unique capabilities to study the transient behaviour of matter in extreme conditions. The high energy density science instrument (HED instrument) at the European XFEL will provide the experimental platform on which an unique x-ray source can be combined with...
We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such h...
We have proposed, designed and built a dual-channel x-ray imaging crystal spectrometer (XICS) for spectrally- and spatially-resolved x-ray Thomson scattering (XRTS) measurements in the Matter in Extreme Conditions (MEC) end station at the Linac Coherent Light Source (LCLS). This spectrometer employs two spherically-bent germanium (Ge) 220 crystals,...
The simple equation-of-state (EOS) of an ideal gas reveals that an energy density is pressure, and high-energy-density (HED) science is commonly investigating states with equivalent pressures exceeding 1 Mbar [1 R. P. Drake, High-Energy-Density Physics, Springer, Berlin (2006).]. Figure 1 shows a generalized phase diagram with temperature as functi...
We present results from time-resolved X-ray imaging and inelastic scattering on collective excitations. These data are then employed to infer the mass density evolution within laser-driven shock waves. In our experiments, thin carbon foils are first strongly compressed and then driven into a dense state by counter-propagating shock waves. The diffe...
The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the...
The matter in extreme conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump-probe measurements for studying the physical properties of matter in the high-energy density (HED) physics regime. This instrument combines the world's brightest x-ray source, the LCLS x-ray beam, with high-power lasers consis...
Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly...
Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities of 1015-1016 Wcm-2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about 25 and 40 eV for simula...
The advent of the first free-electron X-ray lasers (XFELs), FLASH in 2004 and LCLS in 2009, may prove to be the most profound development since the invention of the laser and, equally, the synchrotron. Sharp improvements in a number of laser parameters, most notably intensity and pulse duration, support this expectation. This brings scientific drea...
We present the first highly resolved measurements of the plasmon spectrum in an ultrafast heated solid. Multi-keV x-ray photons from the Linac Coherent Light Source have been focused to one micrometer diameter focal spots producing solid density aluminum plasmas with a known electron density of ne=1.8×1023cm-3. Detailed balance is observed through...
The High Energy Density Science (HED) instrument at the European X-ray Free-Electron Laser Facility in Hamburg, Germany, is dedicated to the investigation of a wide range of materials and systems at extreme conditions of pressure, temperature, ionization or electro-magnetic field. For sample excitation a variety of high energy drivers will be insta...
The High Energy Density Science (HED) instrument at the European X-ray Free-
Electron Laser Facility in Hamburg, Germany, is dedicated to the investigation of a
wide range of materials and systems at extreme conditions of pressure, temperature,
ionization or electro-magnetic field. For sample excitation a variety of high energy
drivers will be inst...
Taking advantage of the new opportunities provided by x-ray free electron laser (FEL) sources when coupled to a long laser pulse as available at the Linear Coherent Light Source (LCLS), we have performed x-ray absorption near-edge spectroscopy (XANES) of laser shock compressed iron up to 420 GPa (±50) and 10 800 K (±1390). Visible diagnostics coupl...
We have studied the light-matter interaction of ultra-short, intense optical laser fields with thin carbon foils via particle-in-cell simulations. Especially, the influence of additional impact ionization on the density and temperature of the generated plasma and on the corresponding Thomson scattering spectra was investigated. We predict a pump-pr...
We report on the shot-to-shot stability of intensity and spatial phase of high-harmonic generation (HHG). The intensity stability is measured for each high-harmonic (HH) order with a spectrometer. Additionally, the spatial phase is measured with an XUV wavefront sensor for a single HH order measured in a single shot, which according to our knowledg...
Strong plasmon resonances characteristics of electron density fluctuations have recently been observed in dynamically compressed diamond for the first time at the Linac Coherent Light Source. These experiments observe the forward scattering spectra from 8 keV x-ray pulses at record peak brightness to probe laser-compressed diamond foils at the Matt...
In megabar shock waves, materials compress and undergo a phase transition to a dense charged-particle system that is dominated by strong correlations and quantum effects. This complex state, known as warm dense matter, exists in planetary interiors and many laboratory experiments (for example, during high-power laser interactions with solids or the...
The rate at which atoms and ions within a plasma are further ionized by collisions with the free electrons is a fundamental parameter that dictates the dynamics of plasma systems at intermediate and high densities. While collision rates are well known experimentally in a few dilute systems, similar measurements for nonideal plasmas at densities app...
High-intensity x-ray pulses from an x-ray free-electron laser are used to heat and probe a solid-density aluminum sample. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, in good agree...
Several important geophysical features such as heat flux at the Core-Mantle
Boundary or geodynamo production are intimately related with the temperature
profile in the Earth's core. However, measuring the melting curve of iron at
conditions corresponding to the Earth inner core boundary under pressure of 330
GPa has eluded scientists for several de...
Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat...
The integrated x-ray reflectivity of Potassium Hydrogen Phthalate (KAP) and Rubidium Hydrogen Phthalate (RAP) crystals is studied at a photon energy of (1740±14) eV using a double-crystal setup. The absolute measured reflectivities are in < 5% agreement with the values predicted by the dynamic diffraction theory for perfect crystals when absorption...
A key feature of extreme ultraviolet (XUV) radiation from free-electron lasers (FELs) is its spatial and temporal coherence. We measured the spatio-temporal coherence properties of monochromatized FEL pulses at 13.5 nm using a Michelson interferometer. A temporal coherence time of (59±8) fs has been determined, which is in good agreement with the s...
We present a cylindrically curved GaAs x-ray spectrometer with energy
resolution $\Delta E/E = 1.1\cdot 10^{-4}$ and wave-number resolution of
$\Delta k/k = 3\cdot 10^{-3}$, allowing plasmon scattering at the resolution
limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It
spans scattering wavenumbers of 3.6 to $5.2/$\AA\ i...
We investigate subpicosecond dynamics of warm dense hydrogen at the XUV free-electron laser facility (FLASH) at DESY (Hamburg). Ultrafast impulsive electron heating is initiated by a ≤300-fs short x-ray burst of 92-eV photon energy. A second pulse probes the sample via x-ray scattering at jitter-free variable time delay. We show that the initial mo...
Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline...
The intensities within the focal spots of the output of recently developed X-ray sources based on free-electron-laser (FEL) technology are so great that atoms within the focal region can potentially absorb several photons during the few tens of femtosecond X-ray pulse. Furthermore, the duration of the FEL Xray pulse is comparable to the Auger decay...
Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measu...
Using rotationally parabolic refractive x-ray lenses made of beryllium, we focus hard x-ray free-electron laser pulses of the Linac Coherent Light Source (LCLS) down to a spot size in the 100 nm range. We demonstrated efficient nanofocusing and characterized the nanofocused wave field by ptychographic imaging [A. Schropp, et al., Sci. Rep. 3, 1633...