Ujjwal Baid

Ujjwal Baid
Shri Guru Gobind Singhji Institute of Engineering and Technology · Department of Electronics and Telecommunication Engineering

PhD

About

81
Publications
34,083
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,149
Citations
Introduction
Additional affiliations
October 2020 - present
University of Pennsylvania
Position
  • PostDoc Position
September 2020 - September 2020
Shri Guru Gobind Singhji Institute of Engineering and Technology
Position
  • PhD Student
Description
  • Thesis: A Novel Approach for Brain Tumor Segmentation and Analysis
Education
August 2013 - July 2015
August 2007 - July 2012
Shri Sant Gajanan Maharaj College of Engineering
Field of study
  • Electronics and Telecommunication

Publications

Publications (81)
Article
AIM The goal of this study was to understand sex-specific differences in the molecular, clinical and radiological tumor parameters and survival outcomes of Glioblastoma (GBM) patients within the international GBM dataset, known as the ReSPOND (Radiomic Signatures for PrecisiON Diagnostics) consortium. METHODS Sex-based differences were retrospecti...
Article
PURPOSE Glioblastoma is the most prevalent primary malignant brain tumor in adults, with a median overall survival (OS) of approximately 15 months and only limited advancements in prognostication and survival prediction. This study aims to evaluate an AI-based prognostic stratification model for OS prediction trained on the ReSPOND consortium data...
Article
Resection and whole brain radiotherapy (WBRT) are the standards of care for the treatment of patients with brain metastases (BM) but are often associated with cognitive side effects. Stereotactic radiosurgery (SRS) involves a more targeted treatment approach and has been shown to avoid the side effects associated with WBRT. However, SRS requires pr...
Preprint
Full-text available
Resection and whole brain radiotherapy (WBRT) are the standards of care for the treatment of patients with brain metastases (BM) but are often associated with cognitive side effects. Stereotactic radiosurgery (SRS) involves a more targeted treatment approach and has been shown to avoid the side effects associated with WBRT. However, SRS requires pr...
Article
Full-text available
Aim The aim of this study was to investigate the feasibility of developing a deep learning (DL) algorithm for classifying brain metastases from non-small cell lung cancer (NSCLC) into epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement groups and to compare the accuracy with classification based on se...
Article
Full-text available
Skin cancer is a serious condition that requires accurate diagnosis and treatment. One way to assist clinicians in this task is using computer-aided diagnosis tools that automatically segment skin lesions from dermoscopic images. We propose a novel adversarial learning-based framework called Efficient-GAN (EGAN) that uses an unsupervised generative...
Article
Full-text available
Medical artificial intelligence (AI) has tremendous potential to advance healthcare by supporting and contributing to the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving both healthcare provider and patient experience. Unlocking this potential requires systematic, quantitative evaluation of the pe...
Book
This book constitutes the refereed proceedings of the 8th International MICCAI Brainlesion Workshop, BrainLes 2022, as well as the Brain Tumor Segmentation (BraTS) Challenge, the Brain Tumor Sequence Registration (BraTS-Reg) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the Federated Tumor Segmentation (FeTS) Challenge....
Article
Full-text available
Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are of...
Preprint
Full-text available
Clinical monitoring of metastatic disease to the brain can be a laborious and time-consuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in cli...
Article
Clinical monitoring of metastatic disease to the brain can be a laborious and time-consuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in cli...
Preprint
Full-text available
Gliomas are the most common type of primary brain tumors. Although gliomas are relatively rare, they are among the deadliest types of cancer, with a survival rate of less than 2 years after diagnosis. Gliomas are challenging to diagnose, hard to treat and inherently resistant to conventional therapy. Years of extensive research to improve diagnosis...
Article
Full-text available
Gliomas are the most common type of primary brain tumors. Although gliomas are relatively rare, they are among the deadliest types of cancer, with a survival rate of less than 2 years after diagnosis. Gliomas are challenging to diagnose, hard to treat and inherently resistant to conventional therapy. Years of extensive research to improve diagnosis...
Preprint
Full-text available
Skin cancer is a serious condition that requires accurate identification and treatment. One way to assist clinicians in this task is by using computer-aided diagnosis (CAD) tools that can automatically segment skin lesions from dermoscopic images. To this end, a new adversarial learning-based framework called EGAN has been developed. This framework...
Preprint
Full-text available
Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20\%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials req...
Article
Full-text available
Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20\%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials req...
Preprint
Full-text available
A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with a scan that is already pathological. This poses problems, as many algorithms are designed to analyze healthy brains and provide no guarant...
Preprint
Full-text available
Automated brain tumor segmentation methods are well established, reaching performance levels with clear clinical utility. Most algorithms require four input magnetic resonance imaging (MRI) modalities, typically T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some of these sequences are often...
Preprint
Full-text available
Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and qua...
Article
Full-text available
Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and qua...
Chapter
Patients diagnosed with skin cancer like melanoma are prone to a high mortality rate. Automatic lesion analysis is critical in skin cancer diagnosis and ensures effective treatment. The computer-aided diagnosis of such skin cancer in dermoscopic images can significantly reduce the clinicians’ workload and help improve diagnostic accuracy. Although...
Preprint
Full-text available
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a...
Preprint
Full-text available
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in...
Article
Full-text available
Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by onl...
Article
Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by onl...
Article
Full-text available
PURPOSE Glioblastoma, IDH-wildtype, is the most common primary malignant adult brain tumor with median overall survival (OS) of ~14 months, with little improvement over the last 20 years. We hypothesize that AI-based integration of quantitative tumor characteristics, independent of acquisition protocol and equipment, can reveal accurate generalizab...
Article
Full-text available
PURPOSE Glioblastoma is extremely infiltrative with malignant cells extending beyond the enhancing rim where recurrence inevitably occurs, despite aggressive multimodal therapy. We hypothesize that important characteristics of peritumoral tissue heterogeneity captured and analyzed by multi-parametric MRI and artificial intelligence (AI) methods are...
Article
Supplemental material is available for this article. Keywords: Informatics, MR Diffusion Tensor Imaging, MR Perfusion, MR Imaging, Neuro-Oncology, CNS, Brain/Brain Stem, Oncology, Radiogenomics, Radiology-Pathology Integration © RSNA, 2022.
Article
Full-text available
Objective: De-centralized data analysis becomes an increasingly preferred option in the healthcare domain, as it alleviates the need for sharing primary patient data across collaborating institutions. This highlights the need for consistent harmonized data curation, pre-processing, and identification of regions of interest based on uniform criteri...
Chapter
Volumetric liver segmentation is a prerequisite for liver transplantation and radiation therapy planning. In this paper, dilated deep residual network (DDRN) has been proposed for automatic segmentation of liver from CT images. The combination of three parallel DDRN is cascaded with fourth DDRN in order to get final result. The volumetric CT data o...
Article
Full-text available
Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translat...
Article
Full-text available
Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demogra...
Article
Age-related macular degeneration (AMD) is the leading cause of visual impairment among elderly in the world. Early detection of AMD is of great importance, as the vision loss caused by this disease is irreversible and permanent. Color fundus photography is the most cost-effective imaging modality to screen for retinal disorders. Cutting edge deep l...
Preprint
Full-text available
Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Fede...
Preprint
Full-text available
We evaluate the performance of federated learning (FL) in developing deep learning models for analysis of digitized tissue sections. A classification application was considered as the example use case, on quantifiying the distribution of tumor infiltrating lymphocytes within whole slide images (WSIs). A deep learning classification model was traine...
Preprint
Full-text available
Glaucoma is the second leading cause of blindness and is the leading cause of irreversible blindness disease in the world. Early screening for glaucoma in the population is significant. Color fundus photography is the most cost effective imaging modality to screen for ocular diseases. Deep learning network is often used in color fundus image analys...
Preprint
Full-text available
Age-related macular degeneration (AMD) is the leading cause of visual impairment among elderly in the world. Early detection of AMD is of great importance as the vision loss caused by AMD is irreversible and permanent. Color fundus photography is the most cost-effective imaging modality to screen for retinal disorders. \textcolor{red}{Recently, som...
Chapter
Liver tumor segmentation is the first step to investigate severity of liver disorder. The conventional automatic segmentation methods highly depend on hand-crafted features and priori information, which are tedious and time consuming for medical images. Fully convolutional network (FCN) of the deep learning model can extract features automatically...
Preprint
Full-text available
Deep learning (DL) models have provided the state-of-the-art performance in a wide variety of medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors h...
Article
Lung cancer is one of the deadliest types of cancers. Computed Tomography (CT) is a widely used technique to detect tumors present inside the lungs. Delineation of such tumors is particularly essential for analysis and treatment purposes. With the advancement in hardware technologies, Machine Learning and Deep Learning methods are outperforming the...
Article
PURPOSE Multi-parametric MRI and artificial intelligence (AI) methods were previously used to predict peritumoral neoplastic cell infiltration and risk of future recurrence in glioblastoma, in single-institution studies. We hypothesize that important characteristics of peritumoral tissue heterogeneity captured, engineered/selected, and quantified b...
Article
PURPOSE Artificial intelligence (AI) is poised to improve diagnostic methods in neuro-oncologic imaging and contribute to patient management by analyzing pre-operative MRI scans. AI results are better interpreted by compartmentalizing glioblastoma into distinct sub-regions, i.e., necrotic core, enhancing tumor, peritumoral T2/FLAIR signal abnormali...
Article
PURPOSE Robustness and generalizability of artificial intelligent (AI) methods is reliant on the training data size and diversity, which are currently hindered in multi-institutional healthcare collaborations by data ownership and legal concerns. To address these, we introduce the Federated Tumor Segmentation (FeTS) Initiative, as an international...
Article
PURPOSE Multi-parametric MRI based radiomic signatures have highlighted the promise of artificial intelligence (AI) in neuro-oncology. However, inter-institution heterogeneity hinders generalization to data from unseen clinical institutions. To this end, we formulated the ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium for gliob...
Article
Full-text available
Deep Learning (DL) has greatly highlighted the potential impact of optimized machine learning in both the scientific and clinical communities. The advent of open-source DL libraries from major industrial entities, such as TensorFlow (Google), PyTorch (Facebook), and MXNet (Apache), further contributes to DL promises on the democratization of comput...
Preprint
Full-text available
Here we present the University of California San Francisco Preoperative Diffuse Glioma MRI (UCSF-PDGM) dataset. The UCSF-PDGM dataset includes 500 subjects with histopathologically-proven diffuse gliomas who were imaged with a standardized 3 Tesla preoperative brain tumor MRI protocol featuring predominantly 3D imaging, as well as advanced diffusio...
Preprint
Full-text available
The BraTS 2021 challenge celebrates its 10th anniversary and is jointly organized by the Radiological Society of North America (RSNA), the American Society of Neuroradiology (ASNR), and the Medical Image Computing and Computer Assisted Interventions (MICCAI) society. Since its inception, BraTS has been focusing on being a common benchmarking venue...
Article
Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists’ time for higher value tasks and reduce errors due to fatigue and subje...
Preprint
Full-text available
This manuscript describes the first challenge on Federated Learning, namely the Federated Tumor Segmentation (FeTS) challenge 2021. International challenges have become the standard for validation of biomedical image analysis methods. However, the actual performance of participating (even the winning) algorithms on "real-world" clinical data often...
Article
The early detection of lung cancer is attained with the detection of initial stage nodules (3−30mm) which can exorbitantly increase the 5-year survival rate of lung cancer patients. Nodules are very small size circumscribed structures in the lungs and are difficult to detect due to their size. The identification of nodule is also more challenging d...
Chapter
Developing a robust bone fracture segmentation technique using deep learning is an important step in the medical imaging system. Bone fracture segmentation is the technique to separate out the various fracture and Non-fracture tissues. The fracture can occur in upper extremity parts of the human body like elbow, shoulder, finger, wrist, hand, humer...
Preprint
Full-text available
We propose a two-stage Convolutional Neural Network (CNN) based classification framework for detecting COVID-19 and Community-Acquired Pneumonia (CAP) using the chest Computed Tomography (CT) scan images. In the first stage, an infection - COVID-19 or CAP, is detected using a pre-trained DenseNet architecture. Then, in the second stage, a fine-grai...
Chapter
Colorectal cancer is a leading cause of death worldwide. However, early diagnosis dramatically increases the chances of survival, for which it is crucial to identify the tumor in the body. Since its imaging uses high-resolution techniques, annotating the tumor is time-consuming and requires particular expertise. Lately, methods built upon Convoluti...
Preprint
Colorectal cancer is a leading cause of death worldwide. However, early diagnosis dramatically increases the chances of survival, for which it is crucial to identify the tumor in the body. Since its imaging uses high-resolution techniques, annotating the tumor is time-consuming and requires particular expertise. Lately, methods built upon Convoluti...
Preprint
Full-text available
Deep Learning (DL) has greatly highlighted the potential impact of optimized machine learning in both the scientific and clinical communities. The advent of open-source DL libraries from major industrial entities, such as TensorFlow (Google), PyTorch (Facebook), and MXNet (Apache), further contributes to DL promises on the democratization of comput...
Article
Full-text available
Volumetric liver segmentation is a prerequisite for liver transplantation and radiation therapy planning. In this paper, dilated deep residual network (DDRN) has been proposed for automatic segmentation of liver from CT images. The combination of three parallel DDRN is cascaded with fourth DDRN in order to get final result. The volumetric CT data o...
Article
Full-text available
Glioblastoma is a WHO grade IV brain tumor, which leads to poor overall survival (OS) of patients. For precise surgical and treatment planning, OS prediction of glioblastoma (GBM) patients is highly desired by clinicians and oncologists. Radiomic research attempts at predicting disease prognosis, thus providing beneficial information for personaliz...
Chapter
Full-text available
Cancer is the second leading cause of death globally and is responsible for an estimated 9.6 million deaths in 2018. Approximately 70% of deaths from cancer occur in low and middle-income countries. One defining feature of cancer is the rapid creation of abnormal cells that grow uncontrollably causing tumor. Gliomas are brain tumors that arises fro...
Preprint
Full-text available
The first Agriculture-Vision Challenge aims to encourage research in developing novel and effective algorithms for agricultural pattern recognition from aerial images, especially for the semantic segmentation task associated with our challenge dataset. Around 57 participating teams from various countries compete to achieve state-of-the-art in aeria...