

International Journal on Cloud Computing: Services and Architecture (IJCCSA) ,Vol. 4, No. 5, October 2014

DOI : 10.5121/ijccsa.2014.4501 1

Hadoop Scheduler w i t h Deadline Constraint

Geetha J

1
, N UdayBhaskar

2
, P ChennaReddy

3
 ,Neha Sniha

4

1,4

 Department of Computer Science and Engineering, M S Ramaiah Institute of

Technology, Bangalore, Karnataka 560054.
2
Department of Computer Science, Government College (UG & PG) Anantapur, A.P.,

India.
3
Department of Computer Science and Engineering, JNTU College of Engineering,

Pulivendula, kadapa dist AP.

Abstract

A popular programming model for running data intensive applications on the cloud is map reduce. In

the Hadoop usually, jobs are scheduled in FIFO order by default. There are many map reduce

applications which require strict deadline. In Hadoop framework, scheduler w i t h deadline

con s t ra in t s has not been implemented. Existing schedulers d o not guarantee that the job will be

completed by a specific deadline. Some schedulers address the issue of deadlines but focus more on

improving s y s t e m utilization. We have proposed an algorithm which facilitates the user to

specify a jobs deadline and evaluates whether the job can be finished before the deadline.

Scheduler with deadlines for Hadoop, which ensures that only jobs, whose deadlines can be met are

scheduled fo r execution. If the job submitted does not satisfy the specified deadline, physical or

virtual nodes can be added dynamically to complete the job within deadline[8].

Keywords

Hadoop, Mapreduce, Hadoop Schedulers, HDFS, Namenode, Datanode, Jobtracker, Tasktracker, Deadline

1. INTRODUCTION

Apache Hadoop is an open source implementation of the Google’s MapReduce [1] parallel

processing framework. The details of parallel processing, including distribution of data to

processing nodes, restart failed subtasks, and consolidation of results after computation is hidden

by Hadoop framework. This framework allows developers to write parallel processing programs

which focus on computation. Hadoop includes: 1) Hadoop Distributed File System (HDFS) [2], a

distributed file system that store large amount of data with high throughput access to data on

clusters. 2) Hadoop MapReduce: a software framework for processing of distributed data on

clusters.

These problems are well-dealt by Hadoop; a reliable, scalable, distributed computing platform

developed by Apache [5].It is an open source implementation of Google’s MapReduce framework

that allows for the distributed processing of huge data sets transversely clusters of computers

using simple programming models. It is designed to level up from single datacenter to thousands

of machines, each offering local computation and storage. At the application layer the library is

International Journal on Cloud Computing: Services and Architecture (IJCCSA) ,Vol. 4, No. 5, October 2014

2

designed to detect and handle failures, Instead of relying on hardware to deliver high-availability,

so a highly-available service on top of a cluster of computers can be delivered each of which may

be prone to failures.

Hadoop has an underlying storage system called HDFS-Hadoop Distributed file system. To

process the data in HDFS, Hadoop provides a MapReduce engine that runs on top of HDFS. This

engine has master-slave architecture. The master node is called the JobTracker and the slaves are

called TaskTrackers. MapReduce jobs are automatically parallelized across a large set of

TaskTrackers. The JobTracker splits the job into several maps and reduce tasks. Hadoop divides

the input to the job into fixed size pieces called input splits. The outputs of the map tasks are

stored in the local disk. This intermediate output serves as input to the reduce tasks. The

consolidated output of the reduce task is the output of the MapReduce job and is stored in HDFS.

As Hadoop jobs have to share the cluster resources, a scheduling strategy is used to determine

when a job can execute its tasks. As the pluggable scheduler was implemented, several scheduler

algorithms have been developed for it like FIFO Scheduler, Fair Scheduler [3], and Capacity

Scheduler [4].

2. FOUNDATION

A. Problem Definition

Can a given task that translates to a MapReduce job J and has to process data of size N be

completed within a deadline D, when run in a MapReduce cluster having M nodes with map

task slots, reduce task slots and possibly k jobs executing at the time[8].

B. Deadline Estimation Model

We develop an initial estimation model based a set of assumptions

The cluster consists of heterenegous nodes, so that the processing of unit cost for each map or

reduce node is equal; Key distribution of the input data is uniform, so that each reduce node gets

equal amount of reduce data to process; Reduce tasks starts after all map tasks have completed;

The input data is already available in HDFS. To derive the expressions for the minimum number

of map tasks and reduce tasks, we extend the model used in for Equal Load Partitioning

technique[8]. To estimate the duration of the job we consider map completion time, reduce

completion time and data transfer during reduce copy phase. Hadoop supports pluggable

schedulers and we have implemented Constraint Scheduler using the minimum task scheduling

criteria. It is developed as a contrib module using Hadoop version 1.1.2 source code. Hadoop

config file needs to be modified to use the scheduler. We have also implemented a web based

interface that allows the user to specify the deadline for a given job.

C. Working

The job submission process implemented by Job Submitter does the following: User submits

the job. (Step 1) .Scheduler will compute the minimum number of map and reduce slots

required for the job completion (step 2). If schedulability test fails user will be notified to

enter another deadline value. If passed, job will be scheduled .(Step 4).

International Journal on Cloud Computing: Services and Architecture (IJCCSA) ,Vol. 4, No. 5, October 2014

3

Fig. 1 Working of Deadline Scheduler

3. DESIGN AND IMPLEMENTATION

A. Design Goals

The design goals for Constraint Scheduler were:

1) To be able to give users immediate feedback on whether the job can be completed within

the given deadline or not and proceed with execution if deadline can be met. Otherwise, users

have the option to resubmit with modified deadline requirements.

 2) Maximize the number of jobs that can be run in the cluster while satisfying the time

requirements of all jobs.

B. Sequence Diagram

Fig. 2. Working of Deadline Scheduler

International Journal on Cloud Computing: Services and Architecture (IJCCSA) ,Vol. 4, No. 5, October 2014

4

.

C. Deadline Estimation Model

Constraint Fair Scheduler

ScheduleJob(Cluster c)

freemapslots <-c.freeMapSlots

freereduceslots <-c.freeReduceSlots

 REPEAT

 j <-nextJob(Pool)

arrivaltime <-getStartTime(j)

mapcostperunit <-getMapCostPerUnit()

reducecostperunit <-getReduceCostPerUnit()

shufflecostperunit <-getShuffleCostPerUnit()

mapinputoutputfraction <-getMapInputOutputCostPerUnit() reducestarttime <-

getReduceStartTime()

deadline <-getFloat()

inputsize <-0

REPEAT

inputsize<-inputsize+length(inputsplits) UNTIL(endOf(inputspilts))

Compute MaxReduceStartTime

IF MaxReduceStartTime < arrivaltime

THROW EXCEPTION Compute minMapSlots Compute

minReduceSlots

IF m i n M a p S l o t s > freemapslots

O R

 m i n R e d u c e S l o t s > freereduceslots

THROW ConstraintFailException

UNTIL (EndOf (jobs in Pool))

ConstraintFairSchedulerParamsEstimator (job word count)

Run the job randomgenerator Output <-”randomoutput” Repeat n

times

Run the job wordcount taking random generator output as input for this job

Compute the parameters total map cost, total reduce cost, total io fraction, total time to start

reduce, total time for job completion

Compute the average of each parameters.

A Set-up

Experiments were conducted in physical cluster. It consisted of 4 physical cluster with one

jobtracker and 3 tasktrackers. The machine had 4 GB memory with 64 bit Intel i5 processor and

Ubuntu server present in each node. We also had virtual node in the cluster which can be added to

the existing cluster dynamically installed in oracle virtualbox on one of the nodes. Both the

International Journal on Cloud Computing: Services and Architecture (IJCCSA) ,Vol. 4, No. 5, October 2014

5

environments had two map slots and two reduce slots on each machine.

B . R e s u l t

After the set up, we estimated the values of the parameters like map cost, reduce cost, shuffle

cost, filter ratio, we submitted the job with deadline and took observation for different deadline

values keeping input size constant, which shows the variation of required map and reduce

slots as shown in Fig. 3. We also submitted the job with different input sizes and took

observations. Our observation shows that for a particular data size with increasing deadlines,

resource demand will decrease.

Estimated parameter values for Wordcount

1) Deadline = 45 secs

2) Mapcost = 0.00018423391

3) Reduce cost = 0.000019585172

4)Shuffle cost = 0.00000186264

5)IO Fraction = 1.3711414

The fig 3 shows observation for input data size of 500 MB taking deadline values on x-axis and

minimum number of map reduce slots required on y-axis. In the setup we had 6 free map and 6

free reduce slots available. So, it is observed from figure that when deadline value of 20 seconds

or more is given, minimum requirement of map reduce slots is met and job is scheduled.

Fig. 3 Graph for 500 MB input data size

Fig. 4 Graph for 1.2GB input data size

International Journal on Cloud Computing: Services and Architecture (IJCCSA) ,Vol. 4, No. 5, October 2014

6

The fig 4 shows observation for input data size of 1.2 GB taking deadline values on x-axis and

minimum number of map reduce slots required on y-axis. In the setup we had 6 free map and 6

free reduce slots available. So, it is observed from figure that when deadline value of 48 seconds

or more is given, minimum requirement of map reduce slots is met and job is scheduled.

The fig 5 shows observation for input data size of 5 GB taking deadline values on x-axis and

minimum number of map reduce slots required on y-axis. In the setup we had 6 free map and 6

free reduce slots available. So, it is observed from figure that when deadline value of 190 seconds

or more is given, minimum requirement of map reduce slots is met and job is scheduled.

Fig. 5 Graph for 5GB input data size

4. CONCLUSION

We extended the approach of real time cluster scheduling to derive minimum map and reduce

task count criteria for performing task scheduling with deadline constraints in Hadoop. We

computed the amount of resource required to complete a job for a particular deadline. For this,

we proposed the idea of estimation of the values of parameters: filter ratio, cost of processing a

unit data in map task, cost of processing a unit data in reduce task, communication cost of

transferring unit data.

Our observation shows that for a particular data size with increasing deadlines, resource

demand will decrease. Also, if the data size increases and deadline is kept constant, resource

demand will increase. If resource demand increases, we can meet the demand by adding physical

or virtual node to the existing cluster dynamically or provide a feasible deadline. We have

implemented the same.

REFERENCES

[1] Ricky Ho, How MapReduce works Dzone publishing, retrieved from

http://architects.dzone.com/articles/how-hadoop- mapreduce-works

[2] Robert C,Hirang K and Sanjay R, Architecture of open source applica- tions HDFS.

[3] Apache Hadoop publishing, Hadoop MapReduce NextGeneration-Fair Scheduler, December 2013,

Version 2.0.4-alpha.

[4] Arun M,Understanding Capacity Scheduler,July 2012,unpublished.

[5] Shafer J,Rixner S, and Cox, Balancing portability and performance March 2010, Performance

Analysis of Systems and Software (ISPASS), 2010 IEEE International Symposium on publishing.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) ,Vol. 4, No. 5, October 2014

7

[6] Deadline: www4.ncsu.edu/∼kkc/papers/rev2.pdf.

[7] Multi Node Cluster: http://www.michael-noll.com/tutorials/ running-Hadoop- on-ubuntu- linux-

multi- node-cluster/.

[8] Scheduling Hadoop Jobs to Meet Deadline, Kamal Kc, Kemafor Anyanwu, IEEE CloudCom 2010.

