Tzyy-Ping Jung

Tzyy-Ping Jung
University of California, San Diego | UCSD · Institute for Neural Computation (INC) and Institute of Engineering in Medicine (IEM)

PhD

About

404
Publications
152,510
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
29,070
Citations
Additional affiliations
July 2016 - present
Tianjin University
Position
  • Professor (Associate)
October 2015 - present
National Chiao Tung University
Position
  • Professor (Associate)
July 2013 - present
University of California, San Diego
Position
  • Co-Director, Center for Advanced Neurological Engineering

Publications

Publications (404)
Article
Full-text available
Decades of heavy investment in laboratory-based brain imaging and neuroscience have led to foundational insights into how humans sense, perceive, and interact with the external world. However, it is argued that fundamental differences between laboratory-based and naturalistic human behavior may exist. Thus, it remains unclear how well the current k...
Article
Full-text available
It has been long debated whether averaged electrical responses recorded from the scalp result from stimulus-evoked brain events or stimulus-induced changes in ongoing brain dynamics. In a human visual selective attention task, we show that nontarget event-related potentials were mainly generated by partial stimulus-induced phase resetting of multip...
Article
Full-text available
Objective: This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller. Methods: Task-related component analysis (TRCA), which can enhance reproducibility of SSVEPs across multiple trials, was emp...
Article
Full-text available
Independent component analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and v...
Article
Research has indicated that fatigue is a critical factor in cognitive lapses because it negatively affects an individual’s internal state, which is then manifested physiologically. This study explores neurophysiological changes, measured by electroencephalogram (EEG), due to fatigue. This study further demonstrates the feasibility of an online clos...
Article
Brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) have become one of the major paradigms in BCI research due to their high signal-to-noise ratio and short training time required by users. Fast and accurate decoding of SSVEP features is a crucial step in SSVEP-BCI research. However, the current researches l...
Article
This study applies adaptive mixture independent component analysis (AMICA) to learn a set of ICA models, each optimized by fitting a distributional model for each identified component process while maximizing component process independence within some subsets of time points of a multi-channel EEG dataset. Here, we applied 20-model AMICA decompositi...
Article
Brain-computer interface (BCI) actively translates the brain signals into executable actions by establishing direct communication between the human brain and external devices. Recording brain activity through electroencephalography (EEG) is generally contaminated with both physiological and nonphysiological artifacts, which significantly hinders th...
Article
Full-text available
Most current research has focused on non-tonal languages such as English. However, more than 60world’s population speaks tonal languages. Mandarin is the most spoken tonal languages in the world. Interestingly, the use of tone in tonal languages may represent different meanings of words and reflect feelings, which is very different from non-tonal l...
Article
Full-text available
Objective: A user-friendly steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) prefers no calibration for its target recognition algorithm, however, the existing calibration-free schemes perform still far behind their calibration-based counterparts. To tackle this issue, learning online from the subject's unlabeled da...
Article
Full-text available
Major depressive disorder (MDD) is a global healthcare issue and one of the leading causes of disability. Machine learning combined with non-invasive electroencephalography (EEG) has recently been shown to have the potential to diagnose MDD. However, most of these studies analyzed small samples of participants recruited from a single source, raisin...
Preprint
Electroencephalography (EEG) signals are often contaminated with artifacts. It is imperative to develop a practical and reliable artifact removal method to prevent misinterpretations of neural signals and underperformance of brain-computer interfaces. This study developed a new artifact removal method, IC-U-Net, which is based on the U-Net architec...
Article
Artifact Subspace Reconstruction (ASR) is a machine learning technique widely used to remove non-brain signals (referred to as “artifacts”) from electroencephalograms (EEGs). The ASR algorithm can, however, be constrained by the limited memory available on portable devices. To address this challenge, we propose a Hardware-Oriented Memory-Limited On...
Article
Although recent brain-computer interface (BCI) studies have achieved tremendous progress in increasing communication commands, measuring the level of sub-microvolt of EEG amplitude, and so on, it is still challenging to make the leap from the lab to the marketplace, which hampers BCI applicability. This article highlights two formidable challenges...
Conference Paper
We present the use of two game-like tasks, Catnip and Dinorun, to explore affective responses to volitional control perturbations. We analyze behavioral and physiological measures with the self-assessment manikin (SAM), pupillometry, and electroencephalography (EEG) responses to provide intratrial emotional state as well as inter-trial correlates w...
Conference Paper
Recently, transfer learning and deep learning have been introduced to solve intra- and inter-subject variability problems in Brain-Computer Interfaces. However, the generalization ability of these BCIs is still to be further verified in a cross-dataset scenario. This study compared the transfer performance of manifold embedded knowledge transfer an...
Article
Full-text available
Acquiring Electroencephalography (EEG) data is often time-consuming, laborious, and costly, posing practical challenges to train powerful but data-demanding deep learning models. This study proposes a surrogate EEG data-generation system based on cycle-consistent adversarial networks (CycleGAN) that can expand the number of training data. This stud...
Article
Objective: Hyperscanning is an emerging technology that concurrently scans the neural dynamics of multiple individuals to study interpersonal interactions. In particular, hyperscanning with electroencephalography (EEG) is increasingly popular owing to its mobility and its ability to allow studying social interactions in naturalistic settings at th...
Article
Full-text available
A correction to this paper has been published: https://doi.org/10.1007/s11571-021-09686-x
Article
Full-text available
Objectives: Mindfulness-based stress reduction has been proven to improve mental health and quality of life. This study examined how mindfulness training and various types of mindfulness practices altered brain activity. Methods : Specifically, the spectral powers of scalp electroencephalography of the mindfulness-based stress reduction (MBSR) grou...
Article
Objective: Recently, transfer learning (TL) and deep learning (DL) have been introduced to solve intra- and inter-subject variability problems in Brain-Computer Interfaces (BCIs). However, current TL and DL algorithms are usually validated within a single dataset, assuming that data of the test subjects are acquired under the same condition as tha...
Preprint
Full-text available
Hyperscanning is an emerging technology that concurrently scans the neural dynamics of multiple individuals to study interpersonal interactions. In particular, hyperscanning with wireless electroencephalography (EEG) is increasingly popular owing to its mobility and ability to decipher social interactions in natural settings at the millisecond scal...
Article
Full-text available
It is common to believe that passengers are more adversely affected by motion sickness than drivers. However, no study has compared passengers and drivers’ neural activities and drivers experiencing motion sickness (MS). Therefore, this study attempts to explore brain dynamics in motion sickness among passengers and drivers. Eighteen volunteers par...
Article
Error self-detection based on error-related potentials (ErrP) is promising to improve the practicability of brain-computer interface systems. But the single trial recognition of ErrP is still a challenge that hinters the development of this technology. To assess the performance of different algorithms on decoding ErrP, this paper test four kinds of...
Article
Abstract- Objective: The speed of visual brain-computer interfaces (v-BCIs) has been greatly improved in recent years. However, the traditional v-BCI paradigms require users to directly gaze at the intensive flickering items, which would cause severe problems such as visual fatigue and excessive visual resource consumption in practical applications...
Article
Objective.P300s are one of the most studied event-related potentials (ERPs), which have been widely used for brain-computer interfaces (BCIs). Thus, fast and accurate recognition of P300s is an important issue for BCI study. Recently, there emerges a lot of novel classification algorithms for P300-speller. Among them, discriminative canonical patte...
Preprint
Full-text available
Mindfulness-based stress reduction (MBSR) has been proven to improve mental health and quality of life. This study examined how mindfulness training and various types of mindfulness practices altered brain activity. Specifically, the spectral powers of scalp electroencephalography (EEG) of the MBSR group (n = 17) who underwent an 8-week MBSR traini...
Article
Full-text available
The common spatial patterns (CSP) algorithm is the most popular spatial filtering method applied to extract electroencephalogram (EEG) features for motor imagery (MI) based brain-computer interface (BCI) systems. The effectiveness of the CSP algorithm depends on optimal selection of the frequency band and time window from the EEG. Many algorithms h...
Article
Full-text available
Learning from subject's calibration data can significantly improve the performance of a steady-state visually evoked potential (SSVEP)-based brain-computer interface (BCI), for example, the state-of-the-art target recognition methods utilize the learned subject-specific and stimulus-specific model parameters. Unfortunately, when dealing with new st...
Preprint
Full-text available
Objective: This study aims to establish a generalized transfer-learning framework for boosting the performance of steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) by leveraging cross-domain data transferring. Approach: We enhanced the state-of-the-art template-based SSVEP decoding through incorporating a least-squ...
Article
Full-text available
Spatial navigation is a complex cognitive process based on vestibular, proprioceptive, and visual cues that are integrated and processed by an extensive network of brain areas. The retrosplenial complex (RSC) is an integral part of coordination and translation between spatial reference frames. Previous studies have demonstrated that the RSC is acti...
Article
Full-text available
Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact with the environment. Recent advancements in technology and machine learning algorithms have increased interest in electroencephalographic (EEG)-based BCI applications. EEG-based intelligent BCI systems can facilitate continuous monitoring of fluctuations...
Article
Combing brain-computer interfaces (BCI) and virtual reality (VR) is a novel technique in the field of medical rehabilitation and game entertainment. However, the limitations of BCI such as a limited number of action commands and low accuracy hinder the widespread use of BCI-VR. Recent studies have used hybrid BCIs that combine multiple BCI paradigm...
Article
Full-text available
Background: Stroke is the leading cause of serious and long-term disability worldwide. Survivors may recover some motor functions after rehabilitation therapy. However, many stroke patients missed the best time period for recovery and entered into the sequela stage of chronic stroke. Method: Studies have shown that motor imagery- (MI-) based bra...
Article
Brain-Computer Interface (BCI) is actively involved in optimizing the communication medium between the human brain and external devices. Objective: Rapid serial visual presentation (RSVP) is a robust and highly efficient BCI technique in recognizing target objects but suffers from limited target selections. The BCI systems that combine steady-sta...
Article
Objective: This study aims to establish a generalized transfer-learning framework for boosting the performance of steady-state visual evoked potential(SSVEP)-based brain-computer interfaces (BCIs) by leveraging cross-domain data transferring. Approach: We enhanced the state-of-the-art template-based SSVEP decoding through incorporating a least-s...
Preprint
Full-text available
Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to the wide adoption of sophisticated machine learning approaches for decoding the EEG signals. However, recent studies have shown that machine learning algorithms are vulnerable to adversarial attacks, e.g., the attacker...
Preprint
Full-text available
Here we assume that emotional states correspond to functional dynamic states of brain and body, and attempt to characterize the appearance of these states in high-density scalp electroencephalographic (EEG) recordings acquired from 31 participants during 1-2 hour sessions, each including fifteen 3-5 min periods of self-induced emotion imagination u...
Article
In this study we quantified performance variations of motor imagery (MI)-based brain-computer interface (BCI) systems induced by practice. Two experimental sessions were recorded from ten healthy subjects while playing a BCI-oriented videogame for two weeks. The analysis focused on the exploration of electroencephalographic changes during mental pr...
Article
Full-text available
Recently, the advances in passive brain-computer interfaces (BCIs) based on electroencephalogram (EEG) have shed light on real-world neuromonitoring technologies. However, human variability in the EEG activities hinders the development of practical applications of EEG-based BCI. To tackle this problem, many transfer-learning techniques perform supe...
Article
Full-text available
An electroencephalogram (EEG) based brain-computer interface (BCI) speller allows a user to input text to a computer by thought. It is particularly useful to severely disabled individuals, e.g., amyotrophic lateral sclerosis patients, who have no other effective means of communication with another person or a computer. Most studies so far focused o...
Article
Full-text available
Objective: Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) that can deliver high information transfer rate (ITR) usually require subject's calibration data to learn the class-and subject-specific model parameters (e.g. the spatial filters and SSVEP templates). Normally, the amount of the calibration data for lea...
Article
This study aims to find an effective method to evaluate the efficacy of cognitive training of spatial memory under a virtual reality environment, by classifying the EEG signals of subjects in the early and late stages of spatial cognitive training. This study proposes a new EEG signal analysis method based on Multivariate Permutation Conditional Mu...
Article
Full-text available
Human memory retrieval is the core cognitive process of the human brain whenever it is processing the information. Less study has focused on exploring the neural correlates of the memory retrieval of scientific concepts when presented in word and picture modalities. Fewer studies have investigated the differences in the involved brain regions and h...
Article
Full-text available
Multifocal steady-state visual evoked potentials (mfSSVEPs) have been successfully applied to assess visual field loss in glaucoma. However, the potential of mfSSVEPs for command control has not been fully explored yet. It is significant to detect single-trial mfSSVEPs and establish a brain-computer interface (BCI) system. This study designed a sti...
Article
Electroencephalography (EEG) data are difficult to obtain due to complex experimental setups and reduced comfort with prolonged wearing. This poses challenges to train powerful deep learning model with the limited EEG data. Being able to generate EEG data computationally could address this limitation. We propose a novel Wasserstein Generative Adver...
Conference Paper
Task-related component analysis (TRCA) has been the most effective spatial filtering method in implementing high-speed brain-computer interfaces (BCIs) based on steady-state visual evoked potentials (SSVEPs). TRCA is a data-driven method, in which spatial filters are optimized to maximize inter-trial covariance of time-locked electroencephalographi...
Conference Paper
Full-text available
Visual brain-computer interface (BCI) systems have made tremendous process in recent years. It has been demonstrated to perform well in spelling words. However, different from spelling English words in one-dimension sequences, Chinese characters are often written in a two-dimensional structure. Previous studies had never investigated how to use BCI...
Conference Paper
Steady State Visual Evoked Potentials (SSVEPs) have been widely used in Brain-Computer Interfaces (BCIs). SSVEP-BCIs have advantages of high classification accuracy, high information transfer rate, and strong anti-interference ability. Traditional studies mostly used low/medium frequency SSVEPs as system control signals. However, visual flickers wi...
Conference Paper
Steady-State Visual Evoked Potentials (SSVEPs) have become one of the most used neural signals for brain- computer interfaces (BCIs) due to their stability and high signal- to-noise rate. However, the performance of SSVEP-based BCIs would degrade with a few training samples. This study was proposed to enhance the detection of SSVEP by combining the...
Conference Paper
Full-text available
Brain-computer interfaces (BCIs) allow for translating electroencephalogram (EEG) into control commands, e.g., to control a quadcopter. This study, we developed a practical BCI based on steady-state visually evoked potential (SSVEP) for continuous control of a quadcopter from the first-person perspective. Users watched with the video stream from a...
Article
Most research in Brain-Computer-Interfaces (BCI) focuses on technologies to improve accuracy and speed. Little has been done on the effects of subject variability, both across individuals and within the same individual, on BCI performance. For example, stress, arousal, motivation, and fatigue can all affect the electroencephalogram (EEG) signals us...
Article
Full-text available
The brain function of prediction is fundamental for human beings to shape perceptions efficiently and successively. Through decades of effort, a valuable brain activation map has been obtained for prediction. However, much less is known about how the brain manages the prediction process over time using traditional neuropsychological paradigms. Here...
Article
Objective: A passive brain-computer interface recognizes its operator's cognitive state without an explicitly performed control task. This technique is commonly used in conjunction with consumer-grade EEG devices for detecting the conditions of fatigue, attention, emotional arousal, or motion sickness. While it is easy to mount the sensors in the...
Article
Objective: Recently, electroencephalography (EEG)- based brain-computer interfaces (BCIs) have made tremendous progress in increasing communication speed. However, current BCI systems could only implement a small number of command codes, which hampers their applicability. Methods: This study developed a high-speed hybrid BCI system containing as...
Article
This commentary presents a replication study to verify the effectiveness of a sum of squared correlations (SSCOR)-based steady-state visual evoked potentials (SSVEPs) decoding method proposed by Kumar et al.. We implemented the SSCOR-based method in accordance with their descriptions and estimated its classification accuracy using a benchmark SSVEP...