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Abstract: This paper presents a mass-spring model for real-time simulation of a deformable human 
body. A new type of springs that show collective behaviour was developed, which model the "matter" inside 
the object and make it approximately preserve its volume without the need of explicit volume computations 
during the simulation as it is done in conventional methods. Experiments on bodies with a different number 
of triangles show the low computational complexity, which is linear to the number of surface triangles. 
Results of applying the method in a system for virtual try-on of jeans are shown at the end of the paper. 
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INTRODUCTION 
Cloth-simulation on virtual human bodies has been dealt with for the last couple of 

decades by many researchers in computer graphics and simulation [11, 16, 17]. Its main 
applications are in fashion design industry and in electronic commerce when customers 
shop for garments on the web and try them on in a virtual booth. The simulation is much 
more convincing and accurate if the human body is deformable and compresses when the 
garment is dressed, at least in the main contact areas. This deformation should be volume 
preserving, although the accuracy of preservation is not important. The objective is to 
achieve visually pleasing results rather than accuracy. 

For years physical modelling and animation of deformable objects has been a 
problem of interest in the computer graphics society. Some of the first steps were initiated 
by Terzopoulos et al. [14, 15]. Their team described elastically and plastically deformable 
models and used the finite element method and energy minimisation techniques borrowed 
from mechanical engineering.  

Volume preservation is of interest in geometric modelling [2, 7, 8, 12, 13], virtual 
reality surgery simulations [3-5, 10] and entertainment industry [1, 9]. Geometric 
constraints are applied to free form deformations (FFD) as described in [13] to allow 
constant volume of deformed objects. Rappoport et al. [12] applied an iterative Lagrange 
multiplier method, called Uzawa based volume preservation, to constrain deformations to 
preserve the volume of an object modified by FFDs. Aubert and Bechmann [2] use a 
similar approach to [12], claiming to be more flexible by introducing an independent 
deformation function. They compute the exact volume of the triangular surface in a similar 
way as proposed in [8]. To allow handling of curved surface solids Hirota et al. [7] use a 
multi level of detail approach employing FFDs. Chadwick [3] applied FFDs to change the 
appearance of muscles and fatty tissue by changing the FFD control points according to a 
multi layered character skeleton. Hookean springs are added to automatically simulate 
stretch and squash of muscles and tissue. Volume preservation is not attempted here. 
Chen and Zeltzer [4] implement a finite element method (FEM) to create a complete 
biomechanical model of muscle action for cartoon character animation. This approach is 
very accurate but due to its computational complexity very slow. Promayon et al. [10] 
approximate surfaces of volumes by mass-points linked to their neighbours. Volume 
preservation is achieved by constraining the model to its volume calculated using an 
approach similar to [8]. Nedel and Thalmann [9] described a mass-spring system for 
modelling real-time muscle deformation. They presented the muscle shape as a surface 
based model fitted to the boundary of medical image data. In order to control the muscle 
volume during deformation a new type of springs was introduced called “angular springs”. 
The muscle deforms under the impact of external forces, but only when they are applied 
on a preliminary defined line called “action line”, which represents the direction of the 
forces produced by the muscle on the bones. Aubel and Thalmann [1] extend [9] by 
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introducing a new multi-layer model similar to [3]. “Action lines” are defined in a more 
general way using poly-lines.  

The main objective of our work was to develop a fast mass-spring model for 
simulating volume-preservation deformable bodies. A mass-spring system was chosen 
because of its simplicity and low computational complexity. A new kind of springs was 
introduced called “support springs”, which model the “matter” inside the object and make it 
preserve its volume. 

 
MASS-SPRING SYSTEM 
A general mass-spring system consists of n mass points, each of them being linked 

to its neighbours by massless springs of natural length greater than zero. Let pi(t), vi(t), 
ai(t), where i=1,…, n, be respectively the positions, velocities, and accelerations of the 
mass points at time t. The system is governed by the basic Newton’s law fi = m ai, where 
m is the mass of each point and fi is the sum of all forces applied at point pi. The force fi 
can be divided in two categories. The internal forces are due to the tensions of the 
springs. The overall internal force applied at the point pi is a result of the stiffness of all 
springs linking this point to its neighbours. The external forces can differ in nature 
depending on what type of simulation we wish to model. The most frequent ones are 
gravity and viscous damping. 

The formulations make it possible to compute the force fi (t) applied on point pi at any 
time t. The fundamental equations of Newtonian dynamics can be integrated over time by 
a simple Euler method.  

 
IMPLEMENTATION OF A DEFORMABLE BODY 
The main feature of the traditional mass-spring system is that it consists of individual 

springs, i.e. the response of each spring depends only on its own elongation and not on 
the elongation of other springs. The idea of this work was to create an ensemble of springs 
where the response of each member depends on the state of the whole team. In particular 
the algorithm generates a response that will preserve the volume of a deformable solid 
object. 

Let B be a body, whose surface is triangulated, as shown in Figure 1. The 
deformable volume preservation body is constructed as follows. All surface vertices are 
connected to each other with regular springs, described in the previous chapter. These 
springs model the elastic membrane of the body and keep the triangles’ surface 
approximately constant. In places where the body cannot compress, because of 
supporting bones, like the hips on the sides, the vertices are marked as static and they 
cannot move. All the other vertices on the surface are connected with equal rest-length 
springs, perpendicular to the surface, to an imaginary frame, which is inside the body. We 
call the collection of these springs support springs. They model the “filling” of the 3-D 
object. As mentioned earlier our approach does not aim accuracy, so the volume of the 
constructed body between the frame and the surface can be approximately computed as: 

 ∑
=

=
ntr

i
iilSV

1
, (1) 

where ntr is the number of all triangles, Si is the area of the i-th triangle, li is the length of 
the spring, connecting one of the vertices of the i-th triangle with the static frame. 
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Figure 1. Human body with a triangulated surface 

 
Let us make the following definitions. If l0 

i   is the natural (rest) length of the i-th 
support spring and li(t) is the length of the same spring at time t, and S(t) and V(t) are the 
body surface and volume at time t, then the following lengths are defined: 

 
 0)()(   ),(/))0()(()( iiitot ltltltSVtVtl −=Δ−=Δ  (2) 
 
The force acting on the surface vertex pi at time t due to the i-th support spring is 

computed as 
 fi(t) = –K(Δltot(t) +CΔli(t)) ui , (3) 

 
where K is the stiffness of the springs, ui = (pi–ci)/li is a unit vector, ci is a vertex on the 
frame, and C is a coefficient in (0, 1), which can be varied. As evident from Equation 3, the 
response of a support spring is a result from two different behaviours. The first one is the 
collective reaction, i.e. each spring opposes to the change in the volume, trying to 
preserve it constant. The second addend gives the individual behaviour of the spring. The 
coefficient C controls the proportion between the collective and individual behaviour. It can 
be varied, depending on the type of simulation. The bigger its value is, the stiffer the 
object, which requires larger forces to deform it.  

Implementing the above-described approach directly has a couple of drawbacks. 
Firstly it is computationally expensive for objects with a large number of faces. Secondly, 
our tests showed that the volume preservation accuracy and the simulation quality depend 
very much on the spring stiffness K in equation 3. In order to get pleasing results, this 
coefficient must be in a very narrow interval, which unfortunately depends on the 
magnitude of applied forces. Otherwise the volume preservation accuracy gets low and for 
some values of K the simulation even becomes unstable.  

 
This is why an approximation of equation 1 has been derived. Let SAV be the average 

triangle area. Dividing the two sides of equation 1 by SAV and rearranging the sum on all 
support springs instead of all triangles one can get 
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/ indicates that the i-th support spring participates in the volume 

calculation of ni truncated tetrahedrons. There is freedom in selecting one of the three 
edges for each truncated tetrahedron, so one can make sure that each edge is met at 
least once, i.e. ni>0 for all i=1, …, ns. If we substitute ∑ =

= ni
j AVji SSc

1
/  we derive the 

following equations 
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We consider that the coefficients ci do not change significantly over time and can be 

regarded as constants. So the only thing that needs to be computed during simulation is 
the length of each support spring. The technique tries to preserve the value ltot(t) constant, 
which is the weighted total length of all support springs.  

 
The force acting on the surface vertex pi at time t due to the i-th support spring is 

computed as 
 fi(t) = – ciK(Δltot(t)+CΔli(t)) ui . (6) 
 
According to equation 6 the reaction force does not depend only on the changes of 

spring lengths but also on the coefficient ci. This reflects the difference in the triangles face 
areas. 

 
RESULTS 
The algorithms were implemented on an AMD Duron PC, 1.3 GHz, 512 MB RAM, 

using the Open Inventor library for rendering the images. Volume preservation error tests 
were not done, because, as above mentioned, our aim is not to develop an accurate 
method for volume preservation deformation, but to just produce visually pleasing results.  

The method for body deformation was implemented in a system for dressing virtual 
people [16]. In the first version of the system the human body was considered rigid and it 
was not deformed during the simulation. In order to enhance the realism and quality of fit, 
the approach, described in this paper, was incorporated in a system for virtual try-on of 
jeans. The areas of the belly and buttocks are automatically marked as deformable. This is 
possible because the body is obtained with a 3D scanner, which also outputs human body 
landmarks such as points on the shoulders, waist, hips, elbows, etc. The results are shown 
in Figure 2. The same size of jeans was tried on the same body, once on a rigid body 
(right) and then on a deformable body (left). While the jeans do not fit on the rigid body 
thanks to the body compression they fit on the deformable one. The results were 
confirmed by an actual try-on. These customers were asked to try the actual jeans on. The 
tests confirmed that the jeans fit, so the implementation of a deformable body increased 
the quality of fit. There were a few cases like this. 

In order to check the algorithm complexity, we measured its speed for a different 
numbers of triangles on the surface. Results are given in Table 1. The times were 
measured using the profiling feature of Microsoft Visual C++ 6 and they are total times for 
computing the forces, integration of equations and rendering the image. As shown in the 
table the simulation still runs in real time for as many as 6728 triangles. Note that these 
times do not include the cloth simulation but just the body deformation! 
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Figure 2. Fit of jeans: left-with body deformation; right-with no deformation 

 
Table 1. Times for deforming a body with a different number of triangles on the surface 

Number of 
Triangles 

Time for 100 frames 
(s) 

Time per frame 
(ms) 

Frames per 
second 

1152 1.17 11.72 85.3 
2592 1.82 18.24 54.8 
4608 2.74 27.45 36.4 
6728 3.67 36.74 27.2 

 
CONCLUSIONS AND FUTURE WORK 
A mass-spring model for simulating a deformable human body has been developed. 

The technique is applicable for objects presented with their triangulated surfaces. It uses 
the so-called “support springs”, which act as an ensemble and their response depends on 
the change in the object's volume as well as on each individual spring. The technique has 
a very good speed and it runs in real time for objects with as many as 7000 triangles. This 
approach is very useful for simulating deformable human body parts in a virtual try-on 
system. The experiments showed that it improves the accuracy and quality of the fit. In the 
future the method can be applied to other parts of the human body. Applications of the 
technique in other fields will also be considered. Many thanks to Bodymetrics, Ltd., UK, 
who sponsored this work. 
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