
Tyler Ross Lambert

AN INTRODUCTION TO
MICROCONTROLLERS AND

EMBEDDED SYSTEMS

MECH 4240/4250 Supplementary Information

Last Revision: 2/13/2020 5:30 PM

2

Summary

Embedded systems are combinations of computer hardware and software designed for a specific

function within a larger system. These systems in robotics are the framework that allows electro-mechanical

systems to be implemented into modern machines. The key aspects of this framework are C programming

in embedded controllers, circuit design for interfacing microcontrollers with sensors and actuators, proper

filtering for post processing and real-time analysis of measured data, and control of those hardware

components. This document will cover the basics of C/C++ programming, including the basics of the C

language in hardware interfacing, communication, and algorithms for state machines and controllers. In

order to interface these controllers with the world around us, this document will also cover electrical circuits

required to operate controllers, sensors, and actuators accurately and effectively. Finally, some of the more

commonly used hardware that is interfaced with microcontrollers is gone over.

Table of Contents

Introduction .. 5

Software Basics ... 6

Numbering Systems ... 6

Variable Types and Memory .. 8

Unsigned and Signed Integers ... 8

Floating Point and Double Point Precision Values .. 11

Characters ... 12

Type Identifiers ... 13

Unions ... 15

Compiling C/C++ Code ... 16

General Notes .. 16

Simple C++ Program .. 18

Bitwise Operations ... 20

Arrays and Matrices ... 22

Loops ... 23

Logical Statements ... 24

Enumerations ... 26

Compiler Directives ... 27

Pointer Variables .. 28

Functions.. 30

Structures ... 32

Microcontrollers and the Arduino IDE .. 34

Electricity and Basic Electronic Components... 38

Electricity and Magnetism ... 38

Resistors ... 43

Capacitors .. 47

Last Revision: 2/13/2020 5:30 PM

3

Inductors .. 50

A Note on Reactive Power and AC Power Sources ... 52

Mechanical and Solid State Relays .. 55

Diodes .. 57

Bipolar Junction Transistors (BJT) .. 61

Metal Oxide Semiconductive Field Effect Transistors (MOSFET) ... 63

Semiconductor Doping .. 64

Operational Amplifiers .. 67

Batteries ... 69

Voltage Regulators... 72

Piezoelectric Components .. 73

Circuit Basics .. 74

Kirchoff’s Laws ... 74

Simple Voltage Divider ... 74

Analog First Order Low Pass Filter ... 75

Analog First Order High Pass Filter ... 78

Amplifier/Follower .. 79

Thevenin’s Equivalent Circuits .. 81

Basic Microcontroller Functionality ... 83

Analog to Digital Conversion (ADC) .. 83

ADC Library for Teensy Microcontrollers .. 86

Pulse-Width Modultion and Digital to Analog Conversion (DAC) ... 91

Capacitive Sensing and Touch Pins ... 95

CapacitveSensor Library ... 95

Interrupts and Interrupt Service Routines (ISRs) ... 97

Serial Communication ... 100

UART Signals ... 101

SPI Signals .. 110

I2C Signals .. 117

CAN Bus ... 122

OneWire Bus ... 125

Signal Processing and Digital Filters ... 127

Frequency Domain Considerations .. 128

IIR (Infinite Impulse Response) Filters .. 131

Discrete Low Pass Filter ... 131

Discrete High Pass Filter ... 136

Butterworth Filters .. 138

Chebyshev Filters .. 141

Bessel Filters ... 143

Conclusions ... 143

Last Revision: 2/13/2020 5:30 PM

4

FIR (Finite Impulse Response) Filters ... 144

Moving Average Filter .. 144

Over-Sampling .. 144

Median Filter ... 145

Velocity Filters .. 145

Kalman Filters and State Estimators ... 145

C++ Libraries .. 146

Hardware Considerations .. 149

Mechanical Switches and Switch Debouncing... 149

Analog Sensors (ex. Accelerometers) .. 154

Rotary Encoders ... 157

Load Cells .. 161

Piezoelectric Load Cells and Pressure Transducers .. 163

Logic Level Conversion and H-Bridges ... 164

Electric Motors .. 169

Stepper Motors .. 169

DC Motors .. 175

Thermocouples... 178

Telemetry and Wireless Data Transmission ... 181

Data Storage ... 189

SD Cards ... 191

Oscilloscopes .. 195

Soldering .. 198

Electronic Packaging .. 201

Conclusions.. 214

Additional Resources .. 215

Last Revision: 2/13/2020 5:30 PM

5

Introduction

An embedded system is a computer system with a specific, dedicated function that is designed so that

it should never need to be reprogrammed (i.e. engine control units, implantable medical devices, appliances,

etc.) The most common type of modern embedded system is a microcontroller, which is a small computer

system on a single integrated circuit. Some common examples of this type of embedded system comes in

the form of Arduino or Teensy microcontrollers, which come in a variety of form factors (Figure 1).

Figure 1. (left) Arduino Uno Microcontroller (right) Teensy 3.2 Microcontroller

Microcontrollers are adept at performing tasks such as reading sensors and implementing control laws,

but it is important to note that these devices are digital, which means they are discretized in how they

interpret data, in contrast to the real world in which we live which is analog, so that everything we see is

continuous in nature. In order to reconcile this, a microcontroller will utilize both digital-to-analog

conversion (DAC) to move from binary values to actual output voltages and analog-to-digital conversion

(ADC) to move from an input signal to digital data that the microcontroller can use.

Two of the more common microcontrollers are the Arduino and the Teensy models, which will be the

ones primarily discussed in this document. Older microcontrollers, such as a PIC microcontroller, might

be better suited for alternative tutorials.

There are countless factors that go into selecting which microcontroller is the most suited for any specific

project. Different microcontrollers have different sizes, different functionalities, different feature to

footprint ratios, different software architectures, varying number input/output (I/O) pins available for use,

different power requirements, different processing speeds, etc.

http://www.microchip.com/design-centers/microcontrollers

Last Revision: 2/13/2020 5:30 PM

6

Software Basics

Numbering Systems

A numbering system is simply a way in which to represent a quantity. Ideally, a numbering or numeral

system will be able to represent the set of all rational numbers all with their own unique representations

with a notation that is indicative of the algebraic and arithmetic structure of the numbers. A numbering

system is best characterized by its base, which is defined as the number of countable elements the number

can contain until it must increment to the next digit (the location index from right to left of a single numeric

symbol in a numeric expression). The most common numbering system in use is the decimal system (base

10), but other numbering systems such as binary (base 2) and hexadecimal (base 16) are often convenient

to use when speaking about computer systems. These numbering systems all use symbols (numeric

indicators) up to the value of the base in order to express a quantity. For example, the binary system uses

the symbols 0 and 1. The decimal (base 10) system uses 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The hexadecimal

numbering system uses the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, where A represents the

number 10 in decimal, B represents 11, and so on.

The digit location, starting from right to left (reflecting smallest to largest quantity) is designated by a

subscript on the constants in the following table that shows how each numbering system functions with

respect to these digits and the system’s base value (the mathematical expression being the conversion from

the system to the standard decimal notation):

Numbering System Base Mathematical Expression

Decimal 10 𝐷 = ⋯𝑑2102 + 𝑑1101 + 𝑑0100

Binary 2 𝐵 = ⋯𝑏22
2 + 𝑏12

1 + 𝑏02
0

Octal 8 O = ⋯𝑜28
2 + 𝑜18

1 + 𝑜08
0

Hexadecimal 16 𝐻 = ⋯ℎ2162 + ℎ1161 + ℎ0160

 Example. What is the decimal representation of the hexadecimal value A6?

 𝐴6 = 𝐴 × 161 + 6 × 160

𝐴6 = 10 × 161 + 6 × 160 = 𝟏𝟔𝟔

Last Revision: 2/13/2020 5:30 PM

7

To designate which numbering system is being used, common practice is to have the number be

preceded by 0d (for decimal), 0b (for binary), 0o (for octal), or 0x (for hexadecimal). Every numerical value

used in a computer system is resolved into binary at some point in the work flow of a program, but on the

front end, the user is likely to encounter the number is either an integer value or as a decimal value, which

are discussed in the next section.

Last Revision: 2/13/2020 5:30 PM

8

Variable Types and Memory

Due to the convenience of storing data as series of data that can be interpreted as

“on” or “off” (e.g. varying voltage levels or varying magnetic polarities on a disk), data in a

microcontroller is stored at its basest level as binary values. Each digit of a binary value is termed a bit,

and a collection of eight bits is known as a byte of data. This means that the working range for a byte is

between 0b00000000 and 0b11111111 (which corresponds to decimal 0 to 255 if the binary is to directly

convert to an integer value). This convention of using eight bits as a byte was started, in part, because of

extended ASCII codes that used eight bits to store character data. In a hexadecimal numeric system, a byte

can range in value from 0x00 to 0xFF. Note that 4 bits of binary corresponds with one hexadecimal digit.

When a variable in a microcontroller is initialized, its value is stored using bytes. There exist several

fundamental variable types/structures available for use (called type definitions):

• Integers – whole numbers, can be stored as signed values or unsigned values

• Float – short for floating point precision, can store decimal values using four bytes of memory

• Double – short for double point precision, can store decimal values with twice the precision as a

float (using eight bytes of memory). There is also a long double variant, which uses sixteen bytes

of memory but doubles the precision of a double.

• Characters – unsigned eight bit values which are initialized as characters (there are 128 unique

standard ASCII characters, so technically only the rightmost seven bits can be used to represent

character values, but many times the ASCII set is extended to 256 characters to take advantage of

the entire space available in a byte).

• Boolean Values – values that are either 0 or 1 and occupy a single bit

Unsigned and Signed Integers

An integer takes binary values and gives the corresponding decimal value through conversion of the base

2 number into a base 10 number. If it is an unsigned integer, each bit contributes to the magnitude of the

number and the conversion is relatively straightforward. For an n-bit binary value, an unsigned integer

will be able to occupy the range 0 to 2𝑛 − 1. For example, an 8-bit value can occupy the integer values

of 0 to 255 when converting the binary to decimal numbering systems with an unsigned integer

interpretation of the binary value. Keep in mind, when converting from decimal to binary number systems;

this implies that trying to capture a number above the maximum decimal number in the range, such as

256, will result in an overflow where the binary number wraps back around to 0.

If instead the binary representation is being used as a signed integer; a provision must be taken to

represent the sign of the number. Conveniently, the sign (either positive or negative) can correspond well

with the value of a single bit (0 or 1). Therefore, it is convention to make the leading bit of a signed

Last Revision: 2/13/2020 5:30 PM

9

integer 0 for a positive expression, and 1 for a negative expression. In the most basic representation of a

signed integer, the remaining bits sans the leading bit can be used to form the magnitude of the integer

value. This has the disadvantage of losing a bit that could otherwise be used to express the magnitude, but

is a convenient and intuitive way to express the integer. An n-bit signed integer can only be used to express

decimal quantities ranging from −2𝑛−1 to 2𝑛−1 - 1. Using our previous example of an eight-bit integer,

we would only be able to express quantities from -128 to 127. So, where we sacrifice the absolute value

of this magnitude, the overall range remains the same. This type of representation is known as the signed-

magnitude representation of a signed integer. A basic example chart is below for three-bit binary values

using this signed-magnitude representation is provided:

Table 1a. Three-bit binary Corresponding Signed and Unsigned Integer Values

Bits Unsigned Integer Value Signed Integer Value

011 3 3

010 2 2

001 1 1

0b000 0 0

101 5 -1

110 6 -2

111 7 -3

100 4 -4

Notice in the last line of Table 1 that 0b100 corresponds with the number -4 using signed-magnitude

representation, but could just as intuitively be used to represent the number 0, because the two magnitude

bits are both zero. This results in a bit of ambiguity and confusion when moving to the realm of digital

logic, so there exists conventions to clear up any ambiguity.

To convert a decimal value from unsigned to signed notation of an integer, digital logic has two

approaches of note. The first is one’s complement, in which the binary values of the positive signed integer

expression are all inverted (the 1’s are turned to 0’s and vice versa). Because a signed integer that is positive

always has a leading zero as a bit, the leading bit of the negative expression will always be 1, so this fact

remains consistent. This also proves to be a convenient notation for use in adding and subtracting signed

integers, but does not solve the issue of there being two representations of zero (a positive and a negative

zero). Therefore, it is far more common to see the two’s complement scheme which solves this “double-

zero” problem. This is the method used in most microcontrollers and computer systems. The two’s

complement scheme dictates that to get the negative notation of an signed integer, the number is written

out in binary in unsigned integer representation, then the digits are inverted, and finally one is added to the

result. Two’s complement notation dictates that positive values are regarded as identical to an unsigned

integer representation of the value, and the corresponding negative representation, when added to this

positive representation, results in zero.

Last Revision: 2/13/2020 5:30 PM

10

Example. How would the integer -28 be expressed as an eight bit number in signed-magnitude

notation, one’s complement notation, and two’s complement notation?

 (1) Write out 28 in binary notation as an unsigned integer:

 28 = 0b00011100

(2) Change the leading bit to a 1 for signed-integer notation:

-28 = 0b10011100 (signed integer notation)

 (3) Invert the bits of the signed integer representation of 28 to get one’s complement notation:

 0b00011100 -> 0b11100011 (one’s complement)

 (4) Add one to the an inversion of the unsigned integer notation for two’s complement:

 -28 = 0b11100011 + 0b00000001

-28 = 0b11100100 (two’s complement)

This process can be inverted to compute the unsigned representation of an integer given its signed integer

value. The steps for this would simply be to subtract one from the binary value and invert the bits. To add

or subtract signed binary values, one can use the two's complement method where each bit is inverted and

one is added/subtracted before adding the two values together. A table is provided comparing the different

types of binary notations for signed four-bit integers:

Table 1b. Four-bit representations of decimal values using signed integer notations

Decimal Signed Magnitude Signed One’s Complement Signed Two’s Complement

7 0111 0111 0111

6 0110 0110 0110

5 0101 0101 0101

4 0100 0100 0100

3 0011 0011 0011

2 0010 0010 0010

1 0001 0001 0001

0 0000 0000 0000

0 1000 1111 –

-1 1001 1110 1111

-2 1010 1101 1110

-3 1011 1100 1101

-4 1100 1011 1100

-5 1101 1010 1011

-6 1110 1001 1010

-7 1111 1000 1001

Last Revision: 2/13/2020 5:30 PM

11

The most important thing to note about integers when they are used in a program is that they do

not store any information behind the decimal point. Any calculations involving integers that results in

non-integer values will truncate anything after the decimal point, which can ruin the computation. This can

be addressed by scaling up the integer variable values by powers of ten to avoid decimal places during

calculation to some certain level of precision, but this is often not convenient or makes the values hard to

conceptualize in some instances. However, it is typically the case that when memory allocation concerns

crop up in some older microcontrollers, storing data as integer values was often the most efficient route. In

modern microcontrollers, this constraint is relaxed a little bit due to an abundance of memory, but it is still

something to keep in mind for the prudent programmer. To allow for an approximate representation of the

real numbers outside of integer values, the variable types of floating-point precision numbers and double

point precision numbers were created.

Floating Point and Double Point Precision Values

Numbers that are stored as floating point types have the following four-byte data structure:

𝑓𝑙𝑜𝑎𝑡 = (−1)[𝑠𝑖𝑔𝑛](1 + [𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎]) × [𝑏𝑎𝑠𝑒][𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡]

These bracketed values correspond to information stored in the binary of the floating point number. A

floating point number is stored in four bytes (32 bits) that are structures like so:

 The very first bit of a float is the signed bit that dictates the sign of the value. The next eight bits of

information form the exponent byte, which gives an eight-bit integer value. This exponent value is biased

by -127 from the pure decimal equivalent of the byte. The next 23 bits give the mantissa (fractional part of

number), which is a number that ranges from 0 to 1 in decimal and is given by:

𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 𝑀12
−1 + 𝑀22

−2 + ⋯+ 𝑀232
−23

Last Revision: 2/13/2020 5:30 PM

12

Double point precision types use this same structure, but offer three additional bits for the exponent (so

that the exponent can range from -1022 to 1023) and offers 29 more bits for the mantissa. This increases

the precision on decimal values over the single point precision floating point types, at the expense of eight

bytes of memory storage.

Characters

Characters are normally represented as strings of seven bits each in an encoding called ASCII

(American Standard Code for Information Interchange). On modern machines, each of the 128 ASCII

characters is the low seven bits of an octet or 8-bit byte; octets are packed into memory words so that (for

example) a six-character string only takes up one 64-bit memory word. The character type converts a series

of characters to unsigned eight-bit integers by default. Each alphanumeric member of the ASCII has an

integer equivalent. Characters can be printed either as the character (using %c) or as their integer equivalent

(using %d). Characters are NOT strings. Characters are denoted by single quotes in C (i.e. ‘A’); whilst

strings use double quotes. Note that there exists a variant of the character type known as the wide character

that takes up two or four bytes instead of the usual one byte of data, and this enables wide characters to

make use of larger character sets than the standard ASCII codes.

Last Revision: 2/13/2020 5:30 PM

13

Type Identifiers

When using a microcontroller and initializing variables, each variable must have its type specified upon

initialization, with the type keyword being placed immediately before the variable name. To specify an

integer variable, the keyword int (for a signed integer) or uint (for an unsigned integer) could be used,

but the amount of bits allocated to an integer varies with the computer. For portability of a program, it is

better to use the type identifier intxx_t/uintxx_t (where xx corresponds with the number of bits to be

used to variable storage). The type identifier for characters is Characters are initialized using the keyword

char

, for floating point numbers, it is float; and for double point precision values, it is double.

There are other type definitions, such as long (which is an integer value that is usually fairly large; by

convention it is twice as large as int) or bool (which is a boolean value, meaning that it is a single bit

reflecting 0 or 1). Another type definition is to declare a variable a byte. This allocates exactly eight bits

of data for the variable which when references returns an unsigned integer between 0 and 255.

 Example. Store a signed 16 bit integer variable as the decimal value 32.

 int16_t variable_name = 32;

Attempting to store a value larger than the variable can store based on the number of bytes it is allocated

will cause a “roll-over” effect. For example:

This code attempts to store 256 into an unsigned eight bit variable, despite the fact that an eight-bit

unsigned binary value can only range from 0 to 255. Because of this, the code will store the variable as the

number 1.

Variables can temporarily be used as another type in what is known as casting. This is done by

referencing the new type in parenthesis before the variable name during a calculation. For example, a float

variable can be temporarily used as an integer (which essentially truncates the float past the decimal point)

as shown:

Last Revision: 2/13/2020 5:30 PM

14

This is not always needed, as when performing arithmetic both C and C++ compilers have implicit

checks to make sure the data types are consistent and will promote the varying variables to different types

to ensure correct mathematical evaluation. The types are aligned in a hierarchy and if one of the variables

in the arithmetic are at a certain level in the hierarchy all of the other variables will be promoted to match

this level of precision. For example, if an unsigned integer is multiplied by an unsigned long, the unsigned

integer is promoted to an unsigned long for the mathematical expression. Likewise, if a float is multiplied

by a double, the float is promoted to double point precision during the math. As a final example, if a float

multiplies an integer, it is common to see the integer promoted to a float for the math to function. However,

casting can remove uncertainty in various applications for how integer values will interact with other

variable types when using various mathematical functions and is recommended when doing integer math

with floats or doubles.

When creating variables that are to be referenced as constant values (i.e. they will never be subject to

change at runtime), constants can be declared, and upon compiling of the code the constant will be replaced

by its value to optimize memory storage. The syntax for this is simply:

Last Revision: 2/13/2020 5:30 PM

15

Unions

If one space in memory is requested to store a variety of data types, unions can be used to accomplish

this task. A union is a special data type available in C that allows to store different data types in the same

memory location. You can define a union with many members, but only one member can contain a value

at any given time. Unions provide an efficient way of using the same memory location for multiple-purpose.

The syntax can be seen from the following example, initialize the union Data to store an integer, a floating

point number, and a character string:

The memory occupied by a union will be large enough to hold the largest member of the union. For

example, in the above example, Data type will occupy 20 bytes of memory space because this is the

maximum space which can be occupied by a character string. To store this union as any of these data types,

the following type of code could be used:

Last Revision: 2/13/2020 5:30 PM

16

Compiling C/C++ Code

To begin playing around with C and/or C++, one great open source program to use is Code::Blocks.

The download link is available on their website here. Code::Blocks is a free, open source program that

supports many compilers for several different programs, so it is a nifty tool for anyone looking to become

proficient in a programming language. This integrated development environment (IDE) has proper

syntax highlighting and has full breakpoint support, meaning that the code can be stepped through line by

line in debug mode, which is a luxury that a microcontroller will not afford the user.

`Upon downloading Code::Blocks, make sure to follow the instructions to include the GNU GCC

compiler. If installed correctly, inside of the Code::Blocks folder (likely inside of C:\Program Files

(x86)\CodeBlocks), there should be a folder called MinGW. A compiler is a program that takes programs

written in a language like C or C++ and converts them into machine instructions, or assembly language.

General Notes

C++ is a high-level programming language that was based on C and has many of its early compilers

written in C. C was a language originally created to help develop Unix based operating systems developed

by Dennis Ritchie between 1969 and 1973. The main features of C language include low-level access to

memory and a simple and clean style and structure, and these features led to many subsequent languages

carrying over a lot of influence from how C is structured. C++ is nearly a superset of C; having been based

on it, and almost all programs that will compile in C will also compile in C++. C++ shines in its ability to

allow the user to focus more on the problem they are trying to solve, rather than explicitly trying to figure

out how to tailor the program to interface with the system. One way in which it achieves this is with a focus

on making the language object oriented, in which the program will create several objects of an arbitrary

number with their own unique fields and datum that can interact with one another to perform a variety of

tasks.

C/C++ projects can either be created as a header file (.h) or a source file (.cpp). For execution of code

done for practice, the source file is the project type that should be chosen. Header files are typically used

for C function declarations and macro definitions to be shared between all of the source files. In C/C++,

code is executed in functions. The main() function is the heart of the code, and returns values of the

variable type indicated by the type identifier keyword specified immediately before the function. The value

to be returned is addressed by the return statement. In embedded systems, it is common to see the main()

function looped in perpetuity, but for the Arduino IDE discussed later there is a syntax that allows for the

main function to be looped in perpetuity by default with no added code needed (effectively replacing

main()with loop()).

http://www.codeblocks.org/

Last Revision: 2/13/2020 5:30 PM

17

Some of the more fundamental aspects of both C and C++ include language syntax such as the fact that

a semicolon (;) terminates a line of code, and is required at the end of each completed line of code.

Incrementing and decrementing a variable by 1 is done by using “++” or “--" after the variable name in a

line of code. This is a shortcut provided by C and C++. Comments are started by double backslash (i.e. //

this is a comment). A multiline comment can be initiated with an asterisk and a backslash, as shown: /*

…. */

At the start of many programs, a number sign or pound sign (#) is present followed by some text, forming

what is known as a compiler directive. A compiler directive, or preprocessor directive consists of code

that is executed during compilation of the code and not during runtime. A common example is the

statement, which allows for additional libraries to be added to the program upon compiling. A library is

additional code that can establish functions for the user of the library to call upon instead of having to code

them themselves. Several important libraries are required to utilize the full functionality of Code::Blocks,

and these are shown along with their compiler directive to below:

Table 2. Common libraries used in C/C++ programs

Library Purpose

stddef.h Defines several useful types and macros.

stdint.h Defines exact width integer types.

stdio.h Defines core input and output functions

stdlib.h
Defines numeric conversion functions, pseudo-

random network generator, memory allocation

string.h Defines string handling functions

cmath.h Defines common mathematical functions

Some of the native functions included in these libraries and included natively with the language include

the the sizeof(input) function; which reveals the size, in bytes, of the input expression and the

printf(“string”, var1, var2, …) function operates with similar syntax as MATLAB. Including the

cmath.h library enables the use of mathematical functions. For example, the pow(base, exponent)

function returns the value of the base input to the power specified by exponent. Other math functions

include sqrt(num) that returns the square root of num, and many more covered here.

http://www.cplusplus.com/reference/cmath/

Last Revision: 2/13/2020 5:30 PM

18

Simple C++ Program

As a first example we can explore three similar blocks of code compiled in C++ that will output the

string “Hello World”. First, recognize that iostream.h is part of the C++ standard library and functions

much in the same way as stdio.h does for the C libraries in that it allows the user to interface with input

and output commands. Also, recognize that in C++ there exist object classes or methods that constitute a

family of functions and variables that can only be talked to be addressing the classes by name or by telling

the program that the function you are trying to call exists only within a certain namespace. For example,

the std namespace, which stands for “standard namespace”, is included in the program when the

iostream.h is included in the program. The standard namespace includes some functions such as cin and

cout; which are the standard input and output commands, respectively. To use these functions, one must

tell the program that it is using the std namespace either for the entire block of code, or when the function

is called. The variant of the code that prints “Hello World” by referencing the namespace when the function

is called is shown below:

Notice that the syntax of cout calls for << to be used to specify what is being output to the prompt. Multiple

strings and variables can be concatenated by adding pieces of the string together and adding the << operator

between each piece.

A second variant of this code places the entire main method into the std namespace by adding the code

found in line 6 below which makes all functions called after the namespace is set be by default called to

that namespace:

Last Revision: 2/13/2020 5:30 PM

19

A third variant uses the printf() syntax discussed earlier:

Last Revision: 2/13/2020 5:30 PM

20

Bitwise Operations

Bitshifting is the mathematical operation denoted by “<<” and “>>” that shifts every bit over to the left

or to the right, respectively.

 Example.

This can be extremely useful in the situation where the user has two eight bit numbers and wishes to

combine them into a sixteen bit value. The following code would accomplish this task:

This code would return the decimal equivalent of 0b1111101000100010, or 64,034. Should this has only

been allocated eight bits of memory, it would have only returned 34, the value of low_byte, because the

variable would only use the lowest eight bits of information.

The bitwise NOT operation turns all 0s in a binary number into 1s and vice versa. In C++, this operation

is denoted with a tilde character (~), like so:

The bitwise AND operation is denoted by combining two binary values with an ampersand character

(&). This operation will return a 1 in place of a digit of the new binary value if both of the combined binary

value have a 1 as that digit, and will return a 0 for that digit otherwise, like so:

Last Revision: 2/13/2020 5:30 PM

21

The bitwise OR operation is denoted by combining two binary values with a vertical bar character (|).

This operation will return a 1 in place of a digit of the new binary value if either of the combined binary

value have a 1 as that same digit, and will return a 0 if both binary values have a 0 as that digit, like so:

The bitwise XOR (exclusive OR) operation is denoted by combining two binary values with a carat

character (^). This operation functions like an OR operation in that a 0 is returned if both binary values

have a 0 for that digit, and a 1 is returned for the digit if either binary value has a 1 as that digit. However,

whereas the bitwise OR will return 1 if both binary values have a 1 as the digit, the XOR operation would

instead return 0, like so:

Last Revision: 2/13/2020 5:30 PM

22

Arrays and Matrices

Arrays are group of values that span in a list. Each value of an array must be of the same data type,

specified by the type identifier before the array. The syntax for initializing an array in C is given in the

following example:

The number in the square brackets is the number of elements in the array, and the array values are

contained within the curly brackets. Arrays in C are zero-indexed, so the index of array values starts at 0

(unlike in MATLAB, where the first entry in an array is index 1). To reference a value in an array, take the

following example:

This will simply return the string “val = 842”.

Matrices are groups of information that is stored in columns as well as rows. If an array is a 1-D data

element, then a matrix would be considered a 2-D data element. Matrices in C are initialized with the

following syntax:

The first value inside of the square brackets is the number of rows, while the second is the number of

columns. Referencing the values inside of a matrix is the same as with arrays, with the indexing starting at

[0,0].

A very useful library exists in the form of MatrixMath.h that enables some matrix math functions that

are commonly employed to be used from within C Code. The library is available on Arduino’s website and

is located here. It enables matrix or vector algebra and includes the following functions:

 Matrix.Print

 Matrix.Copy

 Matrix.Transpose

 Matrix.Multiply

 Matrix.Add

 Matrix.Subtract

 Matrix.Scale

 Matrix.Invert

The exact syntax and how to use the library is available in the attached link. Be forewarned to check the

dimensions of your matrices beforehand, as this library will not return an error if matrix dimensions are

mismatches.

http://playground.arduino.cc/Code/MatrixMath

Last Revision: 2/13/2020 5:30 PM

23

Loops

An iterative loop is a block of code that repeats itself a set number of times. Two main examples of these

are for loops and while loops.

An example of while loop syntax is given below:

This example code will run the loop three times over, incrementing the counter index up by one upon

every iteration of the loop.

A for loop is initialized via for(variable, condition, increment). The variable in this expression

must have its type defined, but the general syntax for a for loop can be demonstrated with a simple example:

This code accomplishes the same task as the while loop above. C also allows for a do…while loop,

which is essentially a while loop that is guaranteed to run at least one time, but rarely can such a task not

be accomplished with a for or a while loop.

Note that in C, any variable created within a loop can only be accessed inside of that loop or at even

lower levels within loops that are nested inside of that loop. The areas of the code where the variable can

be referenced is known as the variable’s scope. If the variable is created outside of the loop, and is changed

within the loop, the changed value is the value that will be accessed when the variable is accessed. Note

that in this context, loop does not only refer to iterative loops, but to any block of code bounded by brackets.

This includes function expressions and even the main loop itself. These local variables are all stored in a

section of memory termed stack memory. Stack memory optimizes allocation in such a way that makes it

fast to use and every time a new variable is declared, it is placed into the stack such that all variables are

stored in a “last-in first-out” format. Then every time a function exits, all of the variables pushed onto the

stack by that function, are freed (that is to say, they are deleted). This is to the contrary to the alternative

form of memory: heap memory. Heap memory is global and is dynamically allocated by the machine. It

is slower to use compared to stack memory. Variables must be specifically declared to use heap memory,

and these variables must be manually terminated to avoid what is known as a memory leak from occurring

within a program.

Last Revision: 2/13/2020 5:30 PM

24

Logical Statements

The standard if/else logic used in most other languages is present in C, in which a condition can be

checked to be either TRUE or FALSE and code can be executed if the condition returns TRUE with an if

statement and code can optionally instead be executed if FALSE is returned using an else statement. An

example is shown using the correct syntax for checking if a variable is equals to another variable.

Make note of the double equals sign symbols inside of the if statement. This corresponds with a logical

comparison, whereas a single equals sign corresponds with assigning a variable a new value. The logical

tests that can be used include:

Also worth noting is that an if statement can check multiple conditions at once through the use of the

logical AND (represented with &&) or the logical OR (represented by ||).

The standard switch/case alternative to if/else logic does exist in C/C++. The syntax of this is seen

below in a simple example:

Last Revision: 2/13/2020 5:30 PM

25

This example all takes place inside of the main() loop, and prints different results based on the result of

the input of the variable grade. The evaluated expression is set inside of the switch statement, and if the

expression matches one of the conditions found in the case statements, the associated code is executed. If

none of the cases match the expression, the optional default case houses the executed code

Last Revision: 2/13/2020 5:30 PM

26

Enumerations

An enumeration consists of a set of named integer constants (called the "enumeration set," "enumerator

constants," "enumerators," or "members") and is considered a variable type. An enumeration type is

initialized with enum. The elements inside of the enumeration, for all intents and purposes, behave the

same as constants upon compilation of the code.

The example below demonstrates its usage:

This code would return a day based on the input of day_value (assuming that the variables

workday and day_value are given appropriate type definitions).

Last Revision: 2/13/2020 5:30 PM

27

Compiler Directives

A compiler directive tells the compiler to compile or skip blocks of code during compiling based on

some criteria during preprocessing of the code. These statements are prefaced with the hashtag symbol and

are very helpful in regards to memory storage. Note that no semicolon is required to terminate the end of a

line of code that consists of a compiler directive. An example is provided that would place the program in

debug mode based on chip architecture and user input:

Source lines handled in preprocessing, such as #define or #include are called preprocessing directives.

Conditional compilation is handled via the #if, #ifdef, #ifndef, #else, #elseif, and #endif directives.

The #error compiler directive can also be used to throw an error during the program.

Last Revision: 2/13/2020 5:30 PM

28

Pointer Variables

A variable is always stored at a certain location in memory, called its address. The address can be

referenced using the & symbol (the address-of operator) followed directly by the variable name. Pointer

variables are variables that reference the starting position of another variables’ address and return the value

held at that address. These variables are initialized by starting with an asterisk (called the dereference

operator). This operator can be seen as saying “value pointed to by” An example is provided:

To visualize what is actually happening in regards to memory storage, take the very simple example:

The actual address of a variable in memory cannot be known before runtime, but let's assume, in order

to help clarify some concepts, that myvar is placed during runtime in the memory address 1776. The

values contained in each variable after the execution of the first three lines are shown in the following

diagram:

Obviously, the variable foo is the pointer variable, because it “points to” the address of the variable it

stores (myvar). The fourth line example could be read as: "baz equal to value pointed to by foo", and

Last Revision: 2/13/2020 5:30 PM

29

the statement would actually assign the value 25 to baz, since foo is 1776, and the value pointed to by 1776

(following the example above) would be 25.

In memory, this can be represented as:

Accessing data in an array is also possible using pointer variables, but the syntax to specify the address

is the (array_name + index). An example of this is below:

Last Revision: 2/13/2020 5:30 PM

30

Functions

Functions in C can be initialized (termed prototyping if done at the start of code) with the following

syntax:

type function_name(input_1, input_2, …)

The type is the variable type of the returned value of the function. If the function does not return any

value at all, then this type should be left as void. If the inputs are not defined previously, their types must

also be defined. A simple example is a function that takes an integer Q and seeks to return the values of this

input incremented upwards and downwards by one. An attempt to accomplish this is provided below:

This function, if called, would return the value of dn, but the value of up cannot be accessed inside of

any loop other than the function itself. The trouble with C is that functions can only explicitly return one

value. Functions can also edit variables already created before the function is called, which can then be

used outside of the function. This is inconvenient, and so pointers can be used in order to return more than

one value from a function by directly editing the variable stored in memory. An example of this would be

an updated function from the one featured above:

Now, the values of Q and the address of up are the inputs. The variable dn is initialized, modified, and

returned. The memory that contains up is modified and this memory location contains the modified version

of up for future use.

Perhaps even more useful is that if a function is called as a pointer itself, it can be used as an argument

inside of another function. An example of this is provided using basic math such as addition and subtraction

as the functions to be passed as an argument into another function:

Last Revision: 2/13/2020 5:30 PM

31

Another point to note about functions is that the keyword static before a variable type indicates that the

function is always to use the value assigned to the variable from the last time the function was called.

Last Revision: 2/13/2020 5:30 PM

32

Structures

An array is used to bundle several values of the same type. To hold several data types together, a

structure can be used. Structures are initialized using the struct keyword. The structure must have its

contents defined, and then any structure can be created using the structure template. An example of

initializing a structure is given below:

One aspect of structures is that they can be passed as an output of a function, so this a means of having

multiple outputs returned from a function through the use of the return statement, precluding the use of

pointer variables. The syntax for this type of function is provided with the following statistics example, in

which an input array of float type variables is taken in and the maximum, minimum, mean, and standard

deviation and returned in a structure of floats.

Last Revision: 2/13/2020 5:30 PM

33

Last Revision: 2/13/2020 5:30 PM

34

Microcontrollers and the Arduino IDE

The software package Arduino offers an IDE that allows for the user to write C programs for a

microcontroller and is available for download here. Through the addition of the Teensyduino software

package (available here), the same environment can be used for development with the Teensy 3.2

microcontroller. Programs developed in this IDE are known as sketches. Several example sketches are

provided with Arduino that show off the functionality of the program.

Embedded programs (sketches) have two primary loops: setup() and loop(). It should be noted that

these have types of void, meaning they do not return any values. The setup() loop runs exactly once upon

startup of the board, and the loop() loop then runs in perpetuity in a loop after completion of the setup()

loop. The speed in which code can be executed depends on how efficiently the code is written and on the

hardware specifications of the onboard chip of the microcontroller. The code the user writes, when

compiled, will generate a sequence of machine operations that the microcontroller will need to carry out.

The fastest speed in which a machine instruction can be performed is the clock speed of the microcontroller

processor. This clock speed depends on the specific processor on the board, and a few examples are

provided below:

Board Processor Clock Speed

Arduino Uno ATmega328P 16 MHz

Arduino Due ATSAM3X8E Cortex-M3 84 MHz

Arduino Leonardo
ATmega32U4 16 MHz

Teensy 2.0

Arduino Nano ATmega328 16 MHz

Arduino Mega ATmega1280 16 MHz

Teensy 3.0 MK20DX128 Cortex-M4 48 MHz

Teensy 3.1 MK20DX256 Cortex-M4 72 MHz

Teensy 3.2 MK66FX1M0 Cortex-M4 180 MHz

Teensy 4.0 Cortex-M7 600 MHz

Variables that are global in scope are declared before the setup() loop (remember, variables are only

accessible within their specific scope, and so a variable declared before all loops are run can be accessed

anywhere in the sketch). The setup() loop is typically used to declare what the microcontroller pins will

do and initialize other aspects of the program.

A pin is a specific metallic interface that allows the internal electronics of the microcontroller to interact

with the surrounding world. The pinout of the Teensy 3.2 microcontroller as given in the provided placard

packaged with the unit, for example, looks like:

https://www.arduino.cc/en/main/software
https://www.pjrc.com/teensy/teensyduino.html

Last Revision: 2/13/2020 5:30 PM

35

There are a number of different types of pins, which are summarized below:

1) Digital Pins – pins that can read or write signals that are HIGH or LOW only

2) Analog Pins – pins that can read analog signals to within the resolution of the ADC

3) PWM Pins – pins that can write analog voltages to within the resolution of the DAC.

4) Touch Pins – pins that can sense capacitance

5) Serial Ports – pins that communicate using Serial protocol (typically UART)

6) I2C Ports – pins that communicate with sensors using the I2C Protocol

7) SPI Ports – pins that communicate with sensors using the SPI Protocol

The details of each of these will be gone into a later.

Last Revision: 2/13/2020 5:30 PM

36

To actually power a microcontroller, an external power supply can be used (as seen above, for the Teensy

3.2 this power would be provided to Vin and would range from 3.6 V to 6 V), or the microcontroller can

be powered from the 5 V rail from USB and hooked into a computer.

The simplest program to run on a microcontroller is one that blinks the built in LED (Light Emitting

Diode). As seen on the Teensy 3.2 pinout sheet, the built in LED is located on digital pin 13. A program

that would blink this LED is provided below:

There are a number of functions that appear in this simple code that have not been addressed. These

functions are all part of the Arduino.h library, which is a library that does not require a compiler directive

to include, as it is built into all sketches made in the Arduino IDE. These functions are outlined below, and

should be remembered as they are used in basically all sketches:

pinMode(pin, mode)

Purpose: Configures the specified pin to behave either as an input or an output. See the description

of digital pins for details on the functionality of the pins.

Parameters: pin: the number of the pin whose mode you wish to set

mode: INPUT, OUTPUT, or INPUT_PULLUP

digitalWrite(pin, value)

Purpose: Write a HIGH or a LOW value to a digital pin. If the pin has been configured as an

OUTPUT with pinMode(), its voltage will be set to the corresponding value: 5V (or

3.3V on 3.3V boards such as the Teensy 3.2) for HIGH, 0V (ground) for LOW. If the pin

is configured as an INPUT, digitalWrite() will enable (HIGH) or disable (LOW) the

internal pullup on the input pin. It is recommended to set the pinMode() to

INPUT_PULLUP to enable the internal pull-up resistor. See the later sections on pullup

resistors for more information.

Parameters: pin: the number of the pin whose mode you wish to set

value: HIGH, LOW

Last Revision: 2/13/2020 5:30 PM

37

digitalRead(pin)

Purpose: Reads the value from a specified digital pin, either HIGH or LOW, and returns this

value as a binary value.
Parameters: pin: the number of the pin to be read

delay(time)

Purpose: Pauses the program for the amount of time (in milliseconds) specified as parameter.

(keep in mind there are 1000 milliseconds in a second)

A couple of important notes to make here:

(1) When reading a digital signal, microcontrollers will consider voltages higher than a

certain threshold HIGH and lower than a certain threshold LOW. Voltages in between

these thresholds will return inconsistent results. There is more on the idea of voltage

later in this document.

(2) Using delay() with a negative time often crashes the program if it even compiles

at all.

Parameters: time: the number of milliseconds to pause (unsigned long type)

Another simple example that uses these functions is one that will set pin 13 (the LED pin) to the value

of whatever pin 7 is (either HIGH or LOW), as shown:

The exact method of getting pin 7 to read a digital HIGH or LOW will be discussed later.

Last Revision: 2/13/2020 5:30 PM

38

Electricity and Basic Electronic Components

Electricity and Magnetism

 Electricity is the physical phenomena that has to deal with the flow of charge. Charge is a quantity

of interest simply because oppositely charged particles (that is, positively and negatively charged) attract

each other while like charged particles repel each other. The base unit of charge is known as the Coulomb.

This force is the provider of the energy used in all of these applications, because the geometry and

concentration of charged particles creates what is known as an electric field which creates a potential

energy in all charged particles located in the field. By convention, the direction of the electric field lines

move outward from positively charged particles and towards negatively charged particles to reflect the

direction of the force that would be enacted to a test charge inside of that field, as shown:

Figure 2. Electric Field Diagram

Coulomb’s Law gives the magnitude of force between two charged particles (𝑞1, 𝑞2) separated by a

distance 𝑟 such that:

𝐹 = 𝑘
𝑞1𝑞2

𝑟2

This looks very similar to the force that gravity enacts between two bodies with mass, except instead a

gravitational constant G, there is Coulomb’s constant k (𝑘 ≈ 9 × 109
Nm2

C2). The magnitude of the electric

field itself is obtained by placing a test charge of one Coulomb inside of an electric field and observing the

force applied to that test charge such that:

𝐸 =
𝐹

𝑞
= 𝑘

𝑞𝑠𝑜𝑢𝑟𝑐𝑒

𝑟2

Worth noting is that Gauss’ Law, which uses the vector quantities of all of these values states that inside

of any enclosed volume with surface area A, the integral of the electric field can be found so that:

∮�⃑� ∙ 𝑑𝐴 =
𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

휀0

Last Revision: 2/13/2020 5:30 PM

39

where 휀0 is the electric permittivity (휀0 ≈ 8.85
𝐹

𝑚
 where F is Farads, a unit discussed here). The

derivation of this statement comes from the divergence theorem of multivariate calculus.

Much like gravitational potential energy is accumulated as one moves an object through a gravitational

field, electrical potential energy is accumulated as one moves a charge through an electrical field a distance

d so that:

∆𝑃𝐸 = −𝐹𝑑 (assuming constant force and motion parallel to force)

If one looks at the potential energy of a particle with one Coulomb of charge inside of the electric field,

one obtains the voltage at that point in the electric field (measured in Volts [V], which is actually

Joules/Coulomb). This is the electrical potential energy per unit charge, which can then directly be related

to the electric field:

∆𝑉 = −𝐸𝑑

If left free to move, a voltage will induce motion in charged particles, causing them to move. Because

voltage is a potential energy due to placement in an electric field, much like gravity causes potential energy

in objects in a gravitational field, voltage is a relative measurement. This means that to measure voltage,

one must measure it against a reference voltage, which is commonly termed ground (or 0 V).

A voltage differential can be created through chemical reactions (such as in a battery) or by mechanical

action (such as in a generator or alternator). The motion of charge caused by a voltage differential is termed

electric current and is measured in Amperes [A] (which is actually Coulombs/second). An applied voltage

differential is directly proportional to the current it creates via Ohm’s Law, stated here:

∆𝑉 = 𝐼𝑅

where ∆𝑉 is the voltage differential across the conduit, 𝐼 is the current through the conduit, and 𝑅 is the

resistance, measured in Ohms.

The power consumed by a resistive element is simply the voltage drop across the element multiplied

by the current across the element:

Last Revision: 2/13/2020 5:30 PM

40

𝑃 = 𝑉𝐼 =
𝑉2

𝑅
= 𝐼2𝑅

Across something like a resistive element, this power will simply be given off as heat, but inside of

something like a DC motor, it can be used to generate useful work.

It is worth noting that electric fields are present between static charges, but as charges begin to move, a

magnetic field is generated. and the cumulative effect of the electric and magnetic fields is provided in the

Lorenz Force Law in which the vector values of the force and field quantities are required:

𝐹 = 𝑞(�⃑� + 𝑣 × �⃑�)

𝐸 is the familiar electric field in vector form so that it indicates directionality as well as the magnitude

and q is again the charge inside of the field generated by a source charge. But now, the charge is moving

with velocity v through a magnetic field B. The Biot-Savart Law gives the magnetic field such that for

constant current I:

�⃑� =
𝜇0𝐼

4𝜋
∫

𝑑ℓ⃑ × �̂�

𝑟2

𝜇0 is an empirically gathered constant called the magnetic constant or vacuum permeability of space

which is found as roughly 1.256
𝑉𝑠

𝐴𝑚
. 𝑑ℓ⃑ is a vector line element in the same direction of the current reflecting

an infinitely small portion of wire. r is given as the distance between the location of 𝑑ℓ⃑ and where the

magnetic field is being calculated, and �̂� is a unit vector in the direction of r (and so will point radially

outward from the conduit). Due to the nature of the cross product, one can see that a force created by a

magnetic field is going to act perpendicular to the flow of current and to the unit vector that acts radially

outward from the wire. This means that a magnetic field will have the following appearance which

corresponds to the often used right hand rule:

Figure 3. Magnetic Field Lines and the Right Hand Rule

Thus it can be seen that not only does any flow of current generate a magnetic field, but these magnetic

field lines circle around the line of current and their magnitude decreased based on the inverse square law.

Last Revision: 2/13/2020 5:30 PM

41

The magnetic version of Gauss’ Law is Ampere’s Law, which states that that for any closed loop path,

the sum of the length elements times the magnetic field in the direction of the length element is equal to the

permeability times the electric current enclosed in the loop, or in mathematical terms:

∑𝐵∥ ∆ℓ = 𝜇0𝐼

This is just one way of stating that the magnetic field in space around an electric current is proportional

to the electric current, which is intuitive because the electric current is the source of the magnetic field in

the first place.

For a coil of wire such as a solenoid with n turns these computations are greatly simplified and the

magnitude of the magnetic field is simply:

Figure 4. Magnetic Field Lines through a Solenoid

𝐵 = 𝜇0𝑛𝐼

A magnet is any material with a permanent magnetic dipole (created from the movement of electrons

in the atoms). By convention, these poles of a magnet are termed North and South with the magnetic field

lines moving from North to South. Materials capable of exhibiting this behavior are said to be

ferromagnetic (ferro coming from iron, which is one of the main elements exhibiting this phenomena)

Last Revision: 2/13/2020 5:30 PM

42

Figure 5. Magnetic Field Lines from a Magnetic Dipole

Based on the definition of voltage given earlier, one can see that a voltage cannot simply be defined

only in terms of movement through an electric field, as the potential energy of a test particle can be

changed by magnetic field lines as well. This is only applicable when the wire carrying the current is

itself moving, so for most common cases it can be neglected. However, there are certain cases where it

cannot be neglected and the voltage is changed by a changing magnetic field.

As engineers, the physics behind the relationship between electric and magnetic field lines to the

voltages and current we see in practice is oftentimes not particularly useful information. The next sections

will go over most of the commonly used electrical components with more of an emphasis on the practical

sides of their use.

Last Revision: 2/13/2020 5:30 PM

43

Resistors

A resistor is a passive two-terminal electrical component that implements electrical resistance as a

circuit element. They are often branded by the colors on their ceramic component, as shown (Figure 6).

These colors indicate the value of the resistor as well as the tolerance on that nominal value and can be read

through the use of a color wheel as found here assuming a multimeter is not available.

Figure 6. Typical Axial Lead Resistor

To place a mechanical analogy onto how resistors work in regards to the flow of electrons, consider the

following image showing a hydraulic pipe (Figure 7).

Figure 7. Hydraulic Analogy to Ohm's Law

In this example, the hair in the second pipe creates a larger resistance to the flow, which means that

higher water pressure (voltage) is required (in the form of more water in the tank) in order to achieve the

same flow of water (electric current).

https://cdn.instructables.com/ORIG/FTM/Z1O8/HS3GUGE6/FTMZ1O8HS3GUGE6.pdf

Last Revision: 2/13/2020 5:30 PM

44

Following through with Ohm’s Law, one can analyze the effects of placing resistors in series with one

another:

Because the same current passes through each resistor, an equivalent resistance for a single resistor

that replaces all of these series resistors can easily be found.

∆𝑉 = 𝐼𝑅𝑒𝑞 = 𝐼𝑅1 + 𝐼𝑅2 + ⋯+ 𝐼𝑅𝑛

𝑅𝑒𝑞 = 𝑅1 + 𝑅2 + ⋯+ 𝑅𝑛

Similarly, if resistors were placed in parallel with one another in the following orientation:

the effects can also be computed by acknowledging that the voltage drop is the same across each

resistor.

𝐼 =
∆𝑉

𝑅𝑒𝑞
=

∆𝑉

𝑅1
+

∆𝑉

𝑅2
+ ⋯+

∆𝑉

𝑅𝑛

𝑅𝑒𝑞 = (
1

𝑅1
+

1

𝑅2
+ ⋯+

1

𝑅𝑛
)
−1

Every material has a material property known as its electrical resistivity (denoted here as 𝜌). This

property is intrinsic, meaning it doesn’t change based on the amount of the material present. It has base

units of Ωm. From this material property, the electrical resistance of any conduit is found from the following

relationship where A is the cross-sectional area of the conduit and L is the length of the conduit:

𝑅 =
𝜌𝐿

𝐴

This states that as the cross-sectional area goes up, the electrical resistance decreases and as the length

goes up, the electrical resistance increases. For this reason, when making circuits, long stretches of wire are

typically a bad thing because as Ohm’s Law indicates, it creates a voltage drop across the wires.

While it is true that resistivity is a material property, it is a material property that varies with temperature.

Oftentimes this relationship is expressed as a linear relationship so that:

𝜌 = 𝜌𝑟𝑒𝑓 + 𝛼∆𝑇

Last Revision: 2/13/2020 5:30 PM

45

𝜌𝑟𝑒𝑓 is the electric resistivity at a reference temperature, typically room temperature or 20 degrees

Celsius, and 𝛼 is the temperature coefficient of resistivity. As a point of nomenclature, note that a

materials’ conductivity is simply the inverse of its resistivity.

A table of the electrical resistivity of common materials is given below:

Table 3. Electrical Resistivities of Common Materials

Material
Resistivity ρ

(ohm m)

Temperature

coefficient α

per degree C

Conductivity σ

x 107 /Ωm

Silver 1.59 x10-8 .0038 6.29

Copper 1.68 x10-8 .00386 5.95

Copper, annealed 1.72 x10-8 .00393 5.81

Aluminum 2.65 x10-8 .00429 3.77

Tungsten 5.6 x10-8 .0045 1.79

Iron 9.71 x10-8 .00651 1.03

Platinum 10.6 x10-8 .003927 0.943

Manganin 48.2 x10-8 .000002 0.207

Lead 22 x10-8 ... 0.45

Mercury 98 x10-8 .0009 0.10

Nichrome

(Ni,Fe,Cr alloy)
100 x10-8 .0004 0.10

Constantan 49 x10-8 ... 0.20

Carbon*

(graphite)
3-60 x10-5 -.0005 ...

Germanium* 1 - 500 x10-3 -.05 ...

Silicon* 0.1 - 60 ... -.07 ...

Glass 1 - 10000 x109

Quartz

(fused)
7.5 x1017

Hard rubber 1-100 x1013

* the resistivity of these materials (which are called semiconductors) is heavily dependent on the presence of impurities in the

material (these impurities are called dopants).

Last Revision: 2/13/2020 5:30 PM

46

Materials with a very low resistance, typically metals, are called conductors, and materials with a very

high resistance are called insulators. Metals are able to perform as conductors because on an atomic level,

they share their outer electrons very freely with neighboring metal atoms in what is termed a metallic bond

(some have heard this termed the “sea of electrons”). Insulators are much more unlikely to lose electrons

and as such are poor conductors of electric current. Materials that are somewhere in the middle of these two

tend to be called semiconductors. A common example of a semiconductor is silicon, which is widely used

in the manufacture of electronic chip packages. Other common semiconductors are Germanium and

Gallium-Aresenide.

When selecting appropriate resistors for a project, considerations must be placed on what value of

resistor is needed, what accuracy is required of that nominal value to satisfy the true resistance of the circuit,

and what amount of power is acceptable to pass through the resistor. As power is dissipated through a

resistor, a majority of that electrical potential energy that is lost is converted to thermal energy in the resistor

(with small amounts being lost to radiation). Resistors that experience too sharp of a temperature increase

can see their material properties permanently change and the resistor can become damaged and unusable.

Therefore, each resistor comes with a form of power rating, expressing the maximum safe power dissipation

through the resistor at steady state. If a resistor can withstand more than one Watt of power dissipation, it

is typically termed a power resistor. Power resistors can sometimes look very different than ordinary

ceramic resistors and not carry the same labelling and markings to display their resistance as the common

variety.

Last Revision: 2/13/2020 5:30 PM

47

Capacitors

A capacitor is a passive two-terminal electrical component that stores electrical energy in an electric

field. They come in many different forms, some of which are shown below (Figure 8).

Figure 8. Variety of Different Sized Capacitors

While all things have some amount of capacitance (that is the measure of how well electrical energy is

stored in a capacitor), the ideal capacitor is two parallel plates of conducting material separated by an

insulating dielectric. The dielectric prevents current from flowing between the plates, but instead allows

current to “pass” through the capacitor by charge moving to accumulate on each plate (Figure 9).

Figure 9. Parallel Plate Capacitor Diagram

The capacitance of any object is given, in Farads (F), by 𝐶 =
𝑄

𝑉
, where Q is the accumulated charge and

V is the voltage across the gap between the conduits. Typically capacitors are much smaller orders of

magnitude than a Farad, often on the order of picoFarads (pF) or nanoFarads (nF).

Last Revision: 2/13/2020 5:30 PM

48

This definition of capacitance provides the basis of the voltage to current relationship for a capacitor:

𝑉(𝑡) =
𝑄(𝑡)

𝐶

𝑑𝑉

𝑑𝑡
=

𝐼(𝑡)

𝐶

𝐼(𝑡) = 𝐶
𝑑𝑉

𝑑𝑡

This relationship will prove to be fundamental to our understanding of how certain circuits work. Note

that if voltage was a sinusoidal function as is the case with AC (Alternating Current) power sources, then

the current is proportional to the derivative of this function, which ensures that the current waveform leads

the voltage waveform by exactly 90 degrees.

Capacitors wired in parallel can then be found to have an equivalent capacitance given by the fact that

the voltage across each capacitor is the same:

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑒𝑞

𝑑𝑉

𝑑𝑡
= 𝐶1

𝑑𝑉

𝑑𝑡
+ 𝐶2

𝑑𝑉

𝑑𝑡
+ ⋯+ 𝐶𝑛

𝑑𝑉

𝑑𝑡

𝐶𝑒𝑞 = 𝐶1 + 𝐶2 + ⋯+ 𝐶𝑛

And capacitors wired in series giving an equivalent capacitance of:

∆𝑉 = ∆𝑉1 + ∆𝑉2 + ⋯+ ∆𝑉𝑛

∆𝑉 =
𝑄𝑡𝑜𝑡𝑎𝑙

𝐶𝑒𝑞
=

𝑄1

𝐶1
+

𝑄2

𝐶2
+ ⋯+

𝑄𝑛

𝐶𝑛

Because the capacitors are in series, the same amount of current must pass “through” them. This

implies that the charge differential across each capacitor is the same, and the equivalent capacitance can

then be given by:

𝐶𝑒𝑞 = (
1

𝐶1
+

1

𝐶2
+ ⋯+

1

𝐶𝑛
)
−1

Last Revision: 2/13/2020 5:30 PM

49

A supercapacitor is a capacitor with capacitance values much higher than normal capacitors (typically

ten to one hundred times higher and on the order of 1 F) used for the express purpose of energy storage. As

such, they provide an alternative to batteries. Supercapacitors do not use the dielectric that is standard for

ordinary capacitors, instead opting for physical phenomena known as electrostatic double-layer capacitance

and electrochemical pseudocapacitance, neither of which is discussed here. The voltage range for

supercapacitors is lower than normal capacitors, and they normally can only be used safely in well-defined

ranges that can loosely be stated to lie between 2.1 and 4 V. To achieve higher voltages from

supercapacitors, several units will have to be used in series with one another.

 An electrolytic capacitor is a capacitor in which the dielectric is a very thin oxide layer of the base

metals that carry the charge. Because of the extremely small distance between the charge carries, the

capacitance of these capacitors are usually very high compared to alternatives. However, because of their

construction electrolytic capacitors are usually polarized, and if the polarity is incorrectly applied to the

capacitor, it tends to violently fail so care must be taken when using these.

Last Revision: 2/13/2020 5:30 PM

50

Inductors

An inductor, also called a coil or reactor, is a passive two-terminal electrical component that stores

electrical energy in a magnetic field when electric current is flowing through it. The general concept at play

here is that a moving charge has a magnetic field perpendicular to the motion of the charge. This magnetic

field, when passing through some conduit, can have an equivalent magnetic flux computed based on the

magnetic field density through the cross sectional area of the conduit. It is a fact of the nature of the universe

that things are resistant to change, and as mechanical engineers we are often inclined to view this as the

inertia of different objects. Magnetic flux is no different, and when the magnetic flux changes, either

through the current levels changing or through the current flow changing direction, a voltage is induced

(hence the name inductor) that will generate magnetic flux that attempts to resist the change.

In other words, when the current flowing through an inductor changes, the time-varying magnetic field

induces a voltage in the conductor, described by Faraday's law of induction. According to Lenz's law,

the direction of induced electromotive force (e.m.f.) opposes the change in current that created it. As a

result, inductors oppose any changes in current through them. These laws are mathematically described

below.

An image of various types of inductors is provided below (Figure 10).

Figure 10. Variety of Inductor Types

An inductor is characterized by its inductance (L), measured in Henris (H) which is given by the

following relationship:

𝐿 =
𝑑∅

𝑑𝐼

where ∅ is the magnetic flux and I is the current. Faraday’s Law of Induction then states that the

induced voltage is given by:

𝑉𝐿 =
𝑑∅

𝑑𝑡
=

𝑑

𝑑𝑡
(𝐿𝐼) = 𝐿

𝑑𝐼

𝑑𝑡

So inductance is also a measure of the amount of electromotive force (voltage) generated for a given

rate of change of current. For AC power sources, this relationship ensures that the current waveform will

lag the voltage waveform by exactly 90 degrees.

Last Revision: 2/13/2020 5:30 PM

51

Inductors behave identically to resistors when wired in series or parallel in regards to the construction

of an equivalent inductance, as shown below:

Series Inductors

∆𝑉 = ∆𝑉1 + ∆𝑉2 + ⋯+ ∆𝑉𝑛

𝐿𝑒𝑞

𝑑𝐼

𝑑𝑡
= 𝐿1

𝑑𝐼1
𝑑𝑡

+ 𝐿2

𝑑𝐼2
𝑑𝑡

+ ⋯+ 𝐿𝑛

𝑑𝐼𝑛
𝑑𝑡

Because the current moving through each inductor must be the same:

𝐿𝑒𝑞 = 𝐿1 + 𝐿2 + ⋯+ 𝐿𝑛

Parallel Inductors

∆𝑉 = 𝐿𝑒𝑞 (
𝑑𝐼1
𝑑𝑡

+
𝑑𝐼2
𝑑𝑡

+ ⋯+
𝑑𝐼𝑛
𝑑𝑡

)

∆𝑉 = 𝐿𝑒𝑞 (
∆𝑉1

𝐿1
+

∆𝑉2

𝐿2
+ ⋯+

∆𝑉𝑛
𝐿𝑛

)

Because the voltage across each inductor must be the same:

𝐿𝑒𝑞 = (
1

𝐿1
+

1

𝐿2
+ ⋯+

1

𝐿𝑛
)
−1

Last Revision: 2/13/2020 5:30 PM

52

A Note on Reactive Power and AC Power Sources

Capacitors and inductors are called reactive elements in a circuit, whereas a resistor is called a resistive

element. For DC circuits, reactive elements are only a factor during the transient response (such as when a

circuit initially is connected and begins to charge capacitors or alter the magnetic fields through inductors).

For AC circuits, their presence is much more of a factor as mentioned earlier. A simple illustration and

mnemonic called “ELI the ICE man” is provided to reemphasize this significance:

In this way, whereas a resistor carries the property of resistance, (denoted with capital letter R) capacitors

and inductors are said to carry reactance (denoted with capital letter X). Reactance is also measured in

Ohms, much like resistance; but because its effect is not to limit current or voltage, but to shift its phase, it

cannot be treated in the same way as resistance. Because of this, the joint effects of resistance and reactance

are combined to form the net impedance of the circuit. Impedance is typically represented by the capital

letter Z and does follow the familiar and linear Ohm’s Law such that:

∆𝑉 = 𝑍𝐼

Last Revision: 2/13/2020 5:30 PM

53

Euler’s formula which relates Euler’s number (e) to sinusoidal functions provides an exceedingly

convenient and compact way to express impedance. Recall the following form of Euler’s formula proven

by taking the Taylor series expansion of all the terms present in the equation:

𝑒𝑖𝑥 = cos(𝑥) + 𝑖sin(𝑥)

Euler’s formula essentially demonstrates exactly how periodic expressions can be mapped onto the

complex plane.

Resistance can be modelled as the real portion of impedance and reactance as the imaginary portion of

impedance. In so doing, both the effects of limiting current flow from resistive elements (which restrict

current flow and cause heat to be given off as real work) and limiting current flow from reactive elements

(which does no real work but ties up energy in the form of electric and magnetic fields in reactive elements)

shows that impedance can be represented as a complex number. Euler’s formula demonstrates this is

convenient, because the complex plane can be used to compactly represent the periodicity of the impedance.

In Cartesian notation, impedance is then represented as:

𝑍 = 𝑅 + 𝑖𝑋

When viewed in this fashion, the magnitude of the impedance is found as the hypotenuse of the triangle

formed by the resistance and the reactance on the real-imaginary plane:

𝑍 = √𝑅2 + (𝑋𝐿 − 𝑋𝐶)
2

The reactances are directly proportional to the capacitance and inductance of the components being

analyzed such that:

𝑋𝐿 = 2𝜋𝑓𝐿

𝑋𝐶 =
1

2𝜋𝑓𝐶

where f is the frequency in Hertz. This leads to the intuitive notion that as the frequency goes up,

inductors will block current and capacitors will be more likely to let current pass. Mathematically, one

might look at the expression (𝑋𝐿 − 𝑋𝐶)
2 and be confused as to why 𝑋𝐿 and 𝑋𝐶 are not additive.

Last Revision: 2/13/2020 5:30 PM

54

This follows from the fact that, in polar notation, the reactance of a capacitor is found such that:

𝑋𝐶 =
1

2𝜋𝑓𝐶
𝑒−𝑖

𝜋
2

This is a way of stating that the AC voltage across a capacitor lags the AC current by 90 degrees. The

application of Euler’s formula to this expression yields:

𝑋𝐶 =
1

𝑖2𝜋𝑓𝐶

The final trick comes from the nature of imaginary numbers. Note the following:

1

𝑖
= (

𝑖

𝑖
) (

1

𝑖
) =

𝑖

𝑖2
= −𝑖

This fact leads to the final form of a capacitors reactance:

𝑋𝐶 = −𝑖
1

2𝜋𝑓𝐶

So, when finding the magnitude of impedance, the capacitors reactance is subtracted from the inductors

reactance.

When looking at real circuits in which resistors, capacitors, and inductors are all present, the current will

end up being out of phase with the voltage by some value that is less than or equal to 90 degrees. Not all of

the power being put into the system will be used to do real work, as some of it is tied up in the reactive

elements, which leads to the idea of the power triangle as shown below.

Figure 11. Power Triangle

Only the real power can be used to do real work, but the apparent power is what must be supplied in

order to get the real power out of the circuit. It is worth noting that real power is denoted in Watts, apparent

power is denoted in VA (Volt Amperes) and reactive power is denoted in VAr (Volt Amperes reactive).

Last Revision: 2/13/2020 5:30 PM

55

Mechanical and Solid State Relays

A relay is an electrical device, typically incorporating an electromagnet, that is activated by a current

or signal in one circuit to open or close another circuit. An example of a mechanical relay exists in the form

of the solenoids that work inside of the starter motor of a vehicle to send power from the main battery to

the engine, in a way similar to the following image (Figure 12):

Figure 12. Example mechanical relay

A solid state relay (SSR) is just what it sounds like; an integrated circuit that acts like a mechanical

relay. A solid state relay allows to control high-voltage AC loads from lower voltage DC control circuitry.

Solid state relays, have several advantages over mechanical relays. One such advantage is that they can be

switched by a much lower voltage and at a much lower current than most mechanical relays. Also, because

there’s no moving contacts, solid state relays can be switched much faster and for much longer periods

without wearing out. They accomplish this by using infrared light as the ‘contact,’ a solid-state relay is

really just an IR LED (covered in next section) and a phototriac coupler (a device that transfers the input

signal while isolating the input and output) sealed up into a little box. Thanks to the fact that the two sides

of the relay are photo-coupled, you can rely on the same type of electrical isolation as in mechanical relays.

An example of a kit that includes such a relay is provided by SparkFun here (SparkFun Beefcake Relay

Control Kit) which takes in 4-6 V DC from a microcontroller and can output 220 VAC.

Solid state relays are an extremely convenient piece of equipment because with a low voltage trigger

signal one can obtain a remotely operated switch that allows large current to pass through. However, they

are notoriously sensitive to moisture and other environmental issues and are one of the top areas of a failure

in a system, so care should be taken to make sure they are in good working condition prior to use.

https://www.sparkfun.com/products/13815
https://www.sparkfun.com/products/13815

Last Revision: 2/13/2020 5:30 PM

56

Solid state relays can generate a large amount of heat due to large voltages and currents passing through

them. Because of this, they are often equipped with large heat sinks, such as the one shown below:

Figure 13. SSR-40 Solid State Relay with Heat Sink

Last Revision: 2/13/2020 5:30 PM

57

Diodes

A diode is a two-terminal electronic device that ideally conducts current with zero resistance in one

direction and infinite resistance in the other. A semiconductor diode, the most common type today, is a

crystalline piece of semiconductor material with a p–n junction connected to two electrical terminals

(Figure 14).

Figure 14. Basic Diode Diagram

A p–n junction is a boundary or interface between two types of semiconductor material, p-type and n-

type, inside a single crystal of semiconductor. The "p" (positive) side contains an excess of “holes”, while

the "n" (negative) side contains an excess of electrons. The basic idea of a diode is that current can flow

from the p-type to the n-type (from the anode to the cathode) but not the other way around. This is because

while each doped region is relatively conductive, the boundary between them experiences charge diffusion

(as some electrons move onto the positive side of the boundary and holes move to the negative size of the

boundary due to electrostatic forces). This effect creates an insulating depletion region between the doped

regions in the vicinity of the junction, as illustrated:

If a voltage differential is applied to the diode, the positive terminal (the origin of electrons with negative

charge) needs to be applied to the anode and the negative terminal to the cathode to remove the depletion

layer and allow current to pass. However, it takes a very high voltage to induce current in the opposite

direction (from the cathode to the anode), because the depletion layer will simply expand and become more

insulating in this configuration. A Schottky diode is a very commonly used diode and has the following

appearance, with the cathode being the end with the vertical gray bar (Figure 15).

Last Revision: 2/13/2020 5:30 PM

58

Figure 15. Schottky Diode

A common mechanical analogy for a diode is a one-way spring loaded check valve where the electric

current is represented as water and the mechanism of the diode is represented by the valve itself.

One common example of the usage of a diode is in an LED (Light Emitting Diode), shown below

(Figure 16).

Figure 16. Basic LED Schematic

The actual behavior of a diode is given by a chart detailing how much current passes through it based

on the applied voltage (Figure 17).

Last Revision: 2/13/2020 5:30 PM

59

Figure 17. Typical Diode Current versus Voltage Relationship

Note that to get current that flows in the opposite direction than the diode intends, a very high voltage

is required (known as the reverse breakdown voltage). Before this point, any current flow in the opposite

direction is miniscule, and after this point current flows freely. The forward breakdown voltage is much,

much lower.

The ideal diode has no reverse breakdown voltage and has behavior outlined by the nonlinear,

exponential relationship given by:

𝐼𝐷 = 𝐼𝑆 [𝑒
𝑞𝑉𝐷
𝑛𝑘𝑇 − 1]

where:

𝐼𝐷 ≡ current through the diode (A)

𝑉𝐷 ≡ voltage across the diode (V)

𝐼𝑆 ≡ rated saturation current of the diode (A)

𝑞 ≡ electron charge (1.6 × 10−19 Coloumb)

𝑞 ≡ Boltzmann Constant (1.38 × 10−23
Joules

Kelvin
)

𝑛 ≡ non − ideality factor (≈ 1)

𝑇 ≡ diode temperature (K)

There exists a special type of diode, known as the Zener diode. A Zener diode allows current to flow

from its anode to its cathode like a normal semiconductor diode, but it also permits current to flow in the

Last Revision: 2/13/2020 5:30 PM

60

reverse direction when its Zener voltage is reached. Zener diodes have a highly doped p-n junction. Normal

diodes will also break down with a reverse voltage but the voltage and sharpness of the knee are not as well

defined as for a Zener diode. Also normal diodes are not designed to operate in the breakdown region, but

Zener diodes can reliably operate in this region. A Zener diode is represented by the following symbol:

The relationship between current and voltage for a Zener diode may look like (Figure 18):

Figure 18. Zener Diode Current versus Voltage Relationship

Note how much lower the reverse breakdown voltage is. This value happens to be incredibly stable for

Zener diodes, and so this fact is often taken advantage of to achieve a stable, reliable, regulated voltage to

within 1% tolerance. In this way, a Zener diode (in series with a shunt resistor to limit current) can be used

a simple linear voltage regulator.

Last Revision: 2/13/2020 5:30 PM

61

Bipolar Junction Transistors (BJT)

A bipolar junction transistor (bipolar transistor or BJT) is a type of transistor that uses both electron

and hole charge carriers. In contrast, unipolar transistors, such as field-effect transistors, only use one kind

of charge carrier. For their operation, BJTs use two junctions between two semiconductor types, n-type and

p-type. A schematic outlining their mechanism of action is shown below (Figure 19):

Figure 19. BJT Mechanism of Action

A BJT has three terminals: the emitter (E), the base (B), and the collector (C). In the shown orientation,

the transistor is doped in a NPN type orientation, but PNP types exist as well (the current will flow in the

opposite direction). The chief principle of a BJT is that it acts as a current activated switch. A small amount

of current from the base to the emitter will allow for a very large current to be able to pass through from

the collector to the emitter. In a circuit diagram, a BJT will typically look like:

Last Revision: 2/13/2020 5:30 PM

62

A transistor can only pass through a finite amount of current based on the applied voltages to its

terminals. These limitations are outlined by detailing the maximum rated power output of a BJT and

constructing a diagram similar to the following (Figure 20):

Figure 20. BJT Maximum Current Ratings

Saturation is said to occur when the maximum current is reached through the collector for a given

current through the base. Underneath the cut-off current, no current will pass through the collector.

An example of what a BJT looks like is given below (Figure 21):

Figure 21. Typical BJT Appearance

Last Revision: 2/13/2020 5:30 PM

63

Metal Oxide Semiconductive Field Effect Transistors (MOSFET)

A MOSFET is a three terminal device with the three terminals being the Gate (G), the Source (S), and

the Drain (D). There is a fourth terminal, the Body (B), but this is almost always shorted and connected

with the Drain inside of the MOSFET (Figure 22).

Figure 22. MOSFET Diagram

Essentially, whereas the BJT is a current activated switch, the MOSFET is a voltage activated switch.

When a voltage is applied between the Gate and Body, the electrical field that is generated can alter the

charge distribution inside of the substrate and allow current to pass from the Source to the Drain. This is

why these transistors are called Field Effect Transistors. A small voltage applied to the Gate will allow

large amounts of current to pass from the Source to the Drain.

A typical MOSFET might have the following appearance (Figure 23):

Figure 23. Typical MOSFET Appearance

These transistors are more robust and can typically handle more current than a BJT. A MOSFET can be

operated in enhancement mode, as described above, or, less commonly, it can use what is known as

depletion mode, where the application of the electric field actually causes the ability to transmit charge

from Source to Drain to be drastically reduced.

Last Revision: 2/13/2020 5:30 PM

64

Semiconductor Doping

Diodes and transistors all make use of P type and N type semiconductors to selectively pass current as

the user supplies a small current or voltage to initiate it. The most common semiconductor in use is silicon,

which has a lattice structure as shown:

Figure 24. Silicon Lattice Structure

It is worth noting that silicon has four valence electrons (electrons in the outer orbitals that are more

freely shared with surrounding atoms). The Resistivity of Silicon is 1.56 X 10 Ωcm, and is due to the

presence of one electron out of 2 × 1013 that has sufficient energy (1.1 electron Volts [eV]) to jump from

the valence band to the conduction band. Silicon forms what is called covalent bonds with itself (meaning

the electrons are shared equally between the atoms), in contrast to ionic bonds (where electrons are not

shared equally between the atoms).

The semiconducting properties of materials such as silicon can be modified by changing the atomic

structure of single crystals of these materials. If one or more of the silicon atoms in the lattice is replaced

with an impurity atom, or dopant, (e.g. boron or phosphorus), the conductivity of the modified structure is

significantly changed. These impurities come in two primary forms:

 N-Type Semiconductors: Elements from the VA Column of the Periodic Table with five valence

electrons in their outer shell such as Phosphorus, Arsenic, and Antimony.

 If Phosphorus with its five valence electrons is introduced into the silicon lattice, the fifth electron

is not used to complete covalent bonding. This extra electron, an extrinsic charge, is relatively free to carry

current. Hence, the resistivity of phosphorus-doped silicon is lower than that of pure silicon. Silicon with

Last Revision: 2/13/2020 5:30 PM

65

dopant elements from the VA Column of the Periodic Table are Classified as N-Type Semiconductors,

because they contain extra electrons That are negative charge carriers

 P-Type Semiconductors: Elements from the IIIA Column of the Periodic Table with three valence

electrons in their outer shell such as Boron, Aluminum, and Gallium.

 If silicon atoms in the crystal lattice are replaced with a dopant atom with three valence electrons

in its outer shell, such as boron, then covalent bonding occurs between silicon and boron but the outer shell

is not filled so that a single vacancy or “hole” exists. This hole is an accepter of electrons, and it acts as a

positive charge carrier. The semiconductors with dopant elements selected from Column IIIA in the

periodic table are classified as P-Type because of the extra positive charges, which are carried by the holes,

are capable of moving through the atomic lattice.

The resistivity of a semiconductor is inversely proportional the number of charge carriers are present in

the silicon lattice. Ideally, the relationship is expressed as the rather esoteric function:

𝜌 =
1

𝑒𝑁𝜂

where e is the charge of the charge carrier, N is the number of charge carries, and 𝜂 is the “mobility” of

the charge carrier. A plot illustrating just how linear this relationship can actually be is provided below:

Figure 25. Semiconductor Resistivity versus Dopant Concentration

Last Revision: 2/13/2020 5:30 PM

66

Unsurprisingly, the act of putting these impurities into the silicon lattice is called doping. Doping of

semiconductors is a fundamental part of the manufacture of ICs from silicon wafers and is mostly done

through selective diffusion of the impurities into the silicon.

Last Revision: 2/13/2020 5:30 PM

67

Operational Amplifiers

An operational amplifier (or op-amp) is a complex system of electronic components such as resistors,

capacitors, inductors, diodes, and transistors that works to create a device that outputs a voltage that works

to make the differential voltage inputs equal to one another. Typically they are drawn as follows:

Figure 26. Basic Representation of an Op-Amp

An ideal operational amplifier has the following characteristics:

a. Infinite Gain

b. Infinite Input Impudence

c. Zero Output Impedance

d. No noise during operation

e. Outputs any voltage between the two supply rails

In reality, operational amplifiers can only output voltage to within one or two volts of the supply rails,

and they do add some noise to the operation. While the gain is not infinite, it is typically very large.

The simplest operational amplifier is the comparator:

This op-amp will compare the input voltage to ground, and if the input voltage is greater than ground,

the output voltage will be positive, and if it is less than ground, the output voltage will be negative. This is

the fundamental building block for how a microcontroller can achieve Analog to Digital Conversion. By

sampling a voltage and using a comparator, the microcontroller can hone in to some degree of precision to

what the sampled voltage was. There will be more on Analog to Digital Conversion later. Operational

Last Revision: 2/13/2020 5:30 PM

68

amplifiers can be used as analog circuits to do real math, such as addition, subtraction, multiplication,

division, integration, and differentiation. More information on this is found here.

https://www.allaboutcircuits.com/textbook/semiconductors/chpt-8/differentiator-integrator-circuits/

Last Revision: 2/13/2020 5:30 PM

69

Batteries

An electric battery is a device consisting of one or more electrochemical cells with external

connections provided to power electrical devices. The voltage in each cell of a battery is dependent upon

the chemistry of the battery. A few very common examples are provided:

Table 4. Battery Types and Nominal Voltages

Battery Type Nominal Voltage

Alkaline (AA, AAA, …) 1.5 V

Nickel Cadmium 1.5 V

Lithium – X 3.7 V

A nominal voltage is close to the average voltage of the cell over the lifetime of the battery. The cell

capacity is essentially how “big” the battery is or how many cells are in the battery in parallel. By placing

cells in a battery in series, the voltages of each cell are additive. By placing cells in a battery in parallel, the

energy capacity and maximum current draw (measured in Amp hours [Ah]) increases. The performance of

a battery is characterized by its discharge diagram, which shows battery voltage compared to stored energy.

An example discharge diagram is shown below:

Figure 27. Discharge Diagram of Various Batteries

As a battery nears the end of its life, the voltage falls of dramatically. Also worth noting is that as current

draw increases, the voltage decreases faster for a given amount of energy in a battery. For example, an

alkaline 9V battery is actually just six 1.5 V volt cells wired in series. This means that the maximum current

draw for a 9V battery is fairly low (on the order of 200 mA) and such a battery would never be used for

high current applications such as driving a motor.

A battery’s C rating gives the ratio of continuous current possible (mA) to the cell capacity (mAh). For

example, a 1 Ah battery with a 2C charge and 8C discharge rating can charge with a maximum current of

2 A and discharge with a maximum current of 8 A. The important of this is that a battery will likely catch

Last Revision: 2/13/2020 5:30 PM

70

fire if these ratings are exceeded. To create a battery charger, the current must be limited (preferably far

below the C rating).

Some general notes on batteries:

 the positive end of the electromechanical cell is referred to as the anode and the negative end is the

cathode.

 Lead acid batteries are used in cars and are moderately expensive with a cell voltage of 2.1 V.

 Lithium ion batteries have a cell voltage of 3.6 V, but are very expensive and an extreme fire

hazard.

Batteries come in all different types and sizes. A few different types can be shown as seen below:

Figure 28. Various Types of Battery Types and Sizes

In a circuit, batteries are typically represented with the following symbol:

Last Revision: 2/13/2020 5:30 PM

71

NOTE: In order to power a microcontroller safely with a battery and read data via its USB port, the

USB power must be cut from the power supply of the microcontroller. This can be accomplished on a

Teensy 3.2 by cutting the copper trace indicated on the bottom side of the board. These pads can be

reconnected at any time with solder. Through the use of two diodes, it is also possible to enable powering

of the Teensy with a battery or USB both at any time, with the higher voltage between the two being used

if the two are plugged in at the same time.

Last Revision: 2/13/2020 5:30 PM

72

Voltage Regulators

Through the use of Zener diodes to maintain a steady voltage, operational amplifiers to buffer the circuit,

and resistors to adjust the voltage on one leg of the Zener diode, a stable voltage regulator can be crafted.

This helps solve the problem of the unreliable voltages given off by batteries. Some of the most readily

available voltage regulators are the LM317xx series (where xx corresponds to the regulated voltage output).

For adjustable voltage regulators, the grounded voltage of the Zener diode can be adjusted by changing the

resistors that are fed into the ADJ pin of the voltage regulator, based on the data sheet of the regulator.

The two capacitors are there to maintain constant power supply to the voltage regulator and the two

resistors enable the output voltage to be adjusted (for those that offer adjustable outputs).

Voltage regulators tend to dissipate a lot of energy heat. Conservation of energy reveals:

𝑃ℎ𝑒𝑎𝑡 = 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 = 𝐼(𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)

For a load attached the output, 𝑅𝐿, the current passing through the regulator will be:

𝐼 =
𝑉𝑜𝑢𝑡

𝑅𝐿

So, the power lost to heating is given by:

𝑃ℎ𝑒𝑎𝑡 =
𝑉𝑜𝑢𝑡(𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)

𝑅𝐿

This means that lower resistances for the load create more losses due to heat (more current equates to

higher heat losses in the regulator). The overall efficiency of a such a device would be given by:

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
≈ 20%

Often voltage regulators are the cause for the need of a heat sink to avoid overheating of electronics

because they are terribly inefficient devices, but useful ones. There exist alternatives to raise the efficiency

in the form of switching regulators but the increased efficiency tends to not justify their increased cost.

Through the addition of a shunt resistor immediately out of the regulator’s output that leads into both

the load and the GND input of the regulator, the ground reference of the Zener diode is read as the output

of the shunt resistor. This keeps the current passing through the shunt resistor as constant, and turns a linear

voltage regulator into a current regulator.

http://www.mouser.com/ds/2/389/lm217-974117.pdf

Last Revision: 2/13/2020 5:30 PM

73

Piezoelectric Components

Piezoelectricity and more specifically the piezoelectric effect is related to the observed physical

phenomena that electric charge can accumulate in certain crystalline and ceramic materials when those

materials are exposed to a mechanical stress. It is interesting to note that piezoelectricity can result in a

voltage difference from mechanical stress being imposed onto a specimen, but likewise works in reverse: a

voltage difference applied to a specimen will result in the accompanying strain. A piezoelectric sensor is

a device that uses the piezoelectric effect to measure changes in pressure, acceleration, temperature, strain,

or force by converting them to an electrical charge. Piezoelectric sensors are often desirable because the

deformation in the specimen is often very small when voltage readouts are produced. This ensures a degree

of ruggedness in the sensor that is not seen in sensors that use resistive or capacitive measurements.

A piezoelectric transducer has very high DC output impedance and can be modeled as a proportional

voltage source and filter network. The voltage 𝑉 at the source is directly proportional to the applied force,

pressure, or strain. The inductance 𝐿𝑚is due to the inertia of the sensor itself. 𝐶𝑒is inversely proportional to

the mechanical elasticity of the sensor. 𝐶0 represents the static capacitance of the transducer, resulting from

an inertial mass of infinite size. 𝑅𝑖is the insulation leakage resistance of the transducer element. If the

sensor is connected to a load resistance, this also acts in parallel with the insulation resistance.

Figure 29. (top) Circuit diagram schematic of piezoelectric transducer (bottom) circuit diagram explaining the transient

behavior of piezoelectric transducers

Above all else, it should be noted that the insulation leakage resistance causes piezoelectrics to be unable

to measure static forces indefinitely. If a static force or pressure is applied to a piezoelectric transducer,

there is an initial transient as the capacitors in the system are charged. Eventually, however, the insulation

resistance provides a leak path for the charge and the measurement undergoes a new transient back towards

zero. Therefore, piezoelectric transducers are often best suited for dynamic load measurements, such as

impact tests or blast wave measurements.

Last Revision: 2/13/2020 5:30 PM

74

Circuit Basics

Kirchoff’s Laws

Kirchoff’s Laws are two important and fundamental laws to analyzing any electrical circuit. For electric

current to flow, a voltage differential must be supplied to a conduit in a closed loop. If there is not a closed

loop, any current flow will only occur for microseconds (if at all) while the conduit comes to an equilibrium.

To analyze these circuits, some basic rules that emerge from conservation laws:

1. Kirchoff’s Current Law (KCL)

The sum of all current entering a node at any position in an electric circuit is zero.

2. Kirchoff’s Voltage Law (KVL)

The sum of all voltage drops in a complete circuit is zero.

Utilizing these laws and knowledge of the constitutive equations that make up the basic electronic

components, circuits can now be analyzed.

Simple Voltage Divider

One of the most basic circuits that can be analyzed is the simple voltage divider with no load attached

to the output, as drawn below:

The current passing through the circuit is given by 𝐼 =
𝑉𝑖𝑛

𝑅1+𝑅2
 which means that:

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 − 𝐼𝑅1

Last Revision: 2/13/2020 5:30 PM

75

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 (
𝑅2

𝑅1 + 𝑅2
)

It is worth noting that if the two resistors are the same, then the output voltage is exactly half of the input

voltage. However, if the output voltage is wired into anything with a resistance of its own, that resistance

will be considered to be in parallel with 𝑅2 and the voltage divider will no longer function as predicted.

Analog First Order Low Pass Filter

A filter is something that removes unwanted portions of a signal while retaining the important

information contained a signal. A common example of this would be electrical noise, which typically has

high frequency components that skew the signal of interest. A low pass filter, put simply, helps attenuate

(reduce the impact of) high frequency portions of signals. The simplest low-pass filter is a first order analog

low-pass filter constructed with a single resistor and capacitor, as drawn below:

By summing the currents at the output node (to the right of the resistive element) and invoking

Kirchoff’s Current Law (KCL), find that:

∑𝐼𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐼𝑅 − 𝐼𝐶 = 0

This shows that the current passing through the resistor must equal the current passing through the

capacitor. From the constitutive equations developed earlier for both a resistor and a capacitor, find that:

𝐼𝑅 =
𝑉𝑖𝑛𝑝𝑢𝑡 − 𝑉𝑜𝑢𝑡𝑝𝑢𝑡

𝑅

𝐼𝐶 = 𝐶
𝑑𝑉𝑜𝑢𝑡𝑝𝑢𝑡

𝑑𝑡

𝑉𝑖𝑛𝑝𝑢𝑡 − 𝑉𝑜𝑢𝑡𝑝𝑢𝑡

𝑅
= 𝐶

𝑑𝑉𝑜𝑢𝑡𝑝𝑢𝑡

𝑑𝑡

Simplifying yields:

𝑉𝑖𝑛𝑝𝑢𝑡(𝑡) = 𝑅𝐶
𝑑𝑉𝑜𝑢𝑡𝑝𝑢𝑡

𝑑𝑡
+ 𝑉𝑜𝑢𝑡𝑝𝑢𝑡(𝑡)

This is a first order differential equation with an eigenvalue of
1

𝑅𝐶
 (this means the response is that of

exponential decay). In other words, the homogenous solution to this problem takes the form:

Last Revision: 2/13/2020 5:30 PM

76

𝑉𝑜𝑢𝑡𝑝𝑢𝑡(𝑡) = 𝐴𝑒−1
𝑅𝐶⁄ 𝑡

where A is a constant that is determined by the initial conditions of the problem, such that:

𝑉𝑜𝑢𝑡𝑝𝑢𝑡(𝑡) = 𝑉𝑜𝑢𝑡𝑝𝑢𝑡(0)𝑒
−1

𝑅𝐶⁄ 𝑡

The low pass filter, as specified above, is important because is able to attenuate signals that lie above a

certain cutoff frequency. To see this effect, the dynamics of the problem must be transformed into the

frequency domain via the use of the Laplace transform ℒ{𝑓(𝑡)} = 𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
 where 𝑠 = 𝜎 +

𝑗𝜔:

𝑉𝑖𝑛𝑝𝑢𝑡(𝑠) = 𝑉𝑜𝑢𝑡𝑝𝑢𝑡(𝑠)(𝑅𝐶𝑠 + 1)

The transfer function of this system is then given by:

𝑉𝑜𝑢𝑡𝑝𝑢𝑡(𝑠)

𝑉𝑖𝑛𝑝𝑢𝑡(𝑠)
=

1

𝑅𝐶𝑠 + 1

Note that the variable s corresponds with, by definition, the relation 𝑠 ≡ 𝑗𝜔 if system transients are

ignored, where 𝜔 is the frequency of oscillation in the system. Therefore, the transfer function can be of

the system is:

𝑉𝑜𝑢𝑡𝑝𝑢𝑡(𝑗𝜔)

𝑉𝑖𝑛𝑝𝑢𝑡(𝑗𝜔)
=

1

𝑗𝑅𝐶𝜔 + 1

To see the effects of how this system gain (ratio of output signal to input signal) changes with frequency,

the magnitude of the transfer function must be taken:

|
𝑉𝑜𝑢𝑡𝑝𝑢𝑡(𝑗𝜔)

𝑉𝑖𝑛𝑝𝑢𝑡(𝑗𝜔)
| = |

1

𝑗𝑅𝐶𝜔 + 1
| =

1

√(𝑅𝐶𝜔)2 + (1)2

This is true because the magnitude of a complex number is given by the Pythagorean theorem applied

to the complex plane. Note some interesting features of this magnitude is that as frequencies go higher, the

signal gain moves towards 0, and as frequencies go towards 0, the signal gain moves towards 1 (the DC

gain). This is characteristic of a low pass filter.The cutoff frequency (where the signal has been attenuated

to -3 dB, or 70.7% of the DC gain) is given in this case by
1

𝑅𝐶
 (radians per second). An analysis of the phase

response of a low pass filter would show that it also causes a phase lag in the output signal (45 degrees

exactly at the cutoff frequency).

Physically, this circuit acts in way for two specific reasons:

 At low frequencies, there is plenty of time for the capacitor to charge up to practically the same

voltage as the input voltage.

 At high frequencies, the capacitor only has time to charge up a small amount before the input

switches direction. The output goes up and down only a small fraction of the amount the input goes up and

down. At double the frequency, there's only time for it to charge up half the amount.

Last Revision: 2/13/2020 5:30 PM

77

When a signal is attenuated through a low pass filter, it should be noted that this simply means that it

begins to resemble a flat line at the average of the input signal. This is the fundamental idea behind Digital

to Analog Conversion (DAC). Because nature itself acts as a low pass filter, extremely high frequency

digital signals will be filtered to resemble an analog signal.

Last Revision: 2/13/2020 5:30 PM

78

Analog First Order High Pass Filter

 A slight rearrangement of the capacitor and the resistor drastically changes how the circuit

attenuates signal frequencies. Take the following circuit, which will soon be shown to be an analog first

order high pass filter:

By summing the currents at the output node (to the right of the capacitive element) and invoking

Kirchoff’s Current Law (KCL), find that:

∑𝐼𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐼𝐶 − 𝐼𝑅 = 0

This shows that the current passing through the resistor must equal the current passing through the

capacitor. From the constitutive equations developed earlier for both a resistor and a capacitor, find that:

𝐼𝑅 =
𝑉𝑜𝑢𝑡

𝑅

𝐼𝐶 = 𝐶
𝑑(𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)

𝑑𝑡

𝑉𝑜𝑢𝑡

𝑅
= 𝐶

𝑑𝑉𝑖𝑛

𝑑𝑡
− 𝐶

𝑑𝑉𝑜𝑢𝑡

𝑑𝑡

Moving into the Laplace domain once again:

𝑉𝑜𝑢𝑡(𝑠) = 𝑅𝐶𝑠𝑉𝑖𝑛(𝑠) − 𝑅𝐶𝑠𝑉𝑜𝑢𝑡(𝑠)

The transfer function of this system is then given by:

𝑉𝑜𝑢𝑡(𝑠)

𝑉𝑖𝑛(𝑠)
=

𝑅𝐶𝑠

𝑅𝐶𝑠 + 1

Note that the variable s corresponds with, by definition, the relation 𝑠 ≡ 𝑗𝜔 when system transients are

ignored, where 𝜔 is the frequency of oscillation in the system. Therefore, the transfer function can be

represented as:

𝑉𝑜𝑢𝑡𝑝𝑢𝑡(𝑗𝜔)

𝑉𝑖𝑛𝑝𝑢𝑡(𝑗𝜔)
=

𝑗𝑅𝐶𝜔

𝑗𝑅𝐶𝜔 + 1

Last Revision: 2/13/2020 5:30 PM

79

To see the effects of how this system gain (ratio of output signal to input signal) changes with frequency,

the magnitude of the transfer function must be taken:

|
𝑉𝑜𝑢𝑡𝑝𝑢𝑡(𝑗𝜔)

𝑉𝑖𝑛𝑝𝑢𝑡(𝑗𝜔)
| = |

𝑗𝑅𝐶𝜔

𝑗𝑅𝐶𝜔 + 1
| =

𝑅𝐶𝜔

√(𝑅𝐶𝜔)2 + (1)2

Notice that lim
𝜔→0

|
𝑉𝑜𝑢𝑡𝑝𝑢𝑡(𝑗𝜔)

𝑉𝑖𝑛𝑝𝑢𝑡(𝑗𝜔)
| = 0 and lim

𝜔→∞
|
𝑉𝑜𝑢𝑡𝑝𝑢𝑡(𝑗𝜔)

𝑉𝑖𝑛𝑝𝑢𝑡(𝑗𝜔)
| = 1, which is characteristic of a high pass filter.

High pass filters add a phase lead to the output signal.

Worth noting that if a low pass filter and a high pass filter are connected, a band pass filter can be

created that only passes a certain band of frequencies. This is also called a “lead-lag compensator”.

Amplifier/Follower

By using an operational amplifier connected in a feedback loop with the inverted (negative) input as

shown, the op-amp can be used to amplify the signal:

Because no current can pass through either input of the operational amplifier, and both inputs have the

same voltage by definition of how an op-amp works, the current output is given by:

𝐼𝑜𝑢𝑡 =
𝑉𝑖𝑛

𝑅𝑔

Kirchoff’s Voltage Law then allows for the output voltage to be solved for:

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 + 𝐼𝑅𝑓 = 𝑉𝑖𝑛 + (
𝑉𝑖𝑛

𝑅𝑔
)𝑅𝑓

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 + 𝐼𝑅𝑓 = 𝑉𝑖𝑛 (1 +
𝑅𝑓

𝑅𝑔
)

The signal is amplified by a factor based on the values of the two resistors. It is also worth noting that

if 𝑅𝑓 = 0, then the output voltage would simply equal the input voltage (𝑅𝑔 could even be removed from

Last Revision: 2/13/2020 5:30 PM

80

the circuit and achieve this same result). This has the effect of buffering whatever circuit gives out 𝑉𝑖𝑛 from

the output of the operational amplifier and creates what is known as a follower. Using a follower with the

voltage divider enables it to work regardless of what types of resistance the output voltage of the divider is

exposed to on its leg of the circuit.

NOTE: It is left to the reader to research or show themselves the types of filters that can be created by

combining elements such as capacitors, inductors, and resistors in series and in parallel (for example, an

RL circuit in series creates a high pass filter when measuring voltage and a low-pass filter when measuring

current). Generally, the order of the filter created is equal to the number of reactive elements (energy storing

elements in the form of capacitors and inductors) that are present in the circuit. A second order filter will

have attenuate signals twice as fast as a first order signal, but may have some frequency in which the gain

is greater than unity (resonance).

It should also be noted that one special RLC circuit with a diode can be used to create a switching

regulator, which is a voltage regulator that turns “on” and “off” so as to increase efficiency, but at the

expense of increased cost of the regulator itself.

Last Revision: 2/13/2020 5:30 PM

81

Thevenin’s Equivalent Circuits

A fundamental theorem exists in electrical circuit analysis known as Thévenin's theorem which holds

that any electric network can be simplified into a power source, a Thévenin's equivalent resistor (𝑅𝑡ℎ), and

the load resistor which represents the system of interest. The general algorithm to generate this circuit is

as follows:

(1) Find the source voltage by removing the load resistor from the original circuit and computing the

voltage across the open connection points where the load resistor used to be.

(2) Find the Thévenin resistance by removing all power sources in the original circuit (voltage sources

should be converted to shorts and current sources should be converted to open circuits) and

computing the total resistance between the open connection points.

(3) Draw the equivalent circuit with the Thévenin voltage source in series with the Thévenin resistor.

The load resistor re-attached between the two open points of the equivalent circuit.

A simple example is shown below assuming a load resistor exists between node A and node B:

The reason such an equivalent circuit can be constructed is because these electrical systems can usually be

modelled as entirely linear systems. This means that every circuit drawn in this document can be described

using a system of linear, time-invariant, differential equations and as such; the principle of superposition

holds. Superposition implies that for a linear system. The only time this is not strictly true is when nonlinear

components (e.g. semiconductor elements) are introduced into the circuit and the nonlinearities cannot be

regarded as negligible. The idea behind superposition is that the circuit can be analyzed to find the

contribution of each individual source of current of voltage and because everything is modelled as linear,

the time response of each solution can be added together to get the real solution for the total circuit. By

modelling voltage sources as shorts, the voltage differential is removed and by modelled current sources as

opens, the current provided by the source is removed.

Last Revision: 2/13/2020 5:30 PM

82

Last Revision: 2/13/2020 5:30 PM

83

Basic Microcontroller Functionality

Analog to Digital Conversion (ADC)

An Analog to Digital Converter (ADC) is a very useful feature that converts an analog voltage on a

pin to a digital number. By converting from the analog world to the digital world, we can begin to use

electronics to interface to the analog world around us.

A successive-approximation ADC uses a comparator to successively narrow a range that contains the

input voltage. At each successive step, the converter compares the input voltage to the output of an internal

digital to analog converter which might represent the midpoint of a selected voltage range. At each step in

this process, the approximation is stored in a successive approximation register (SAR). For example,

consider an input voltage of 6.3 V and the initial range is 0 to 16 V. For the first step, the input 6.3 V is

compared to 8 V (the midpoint of the 0–16 V range). The comparator reports that the input voltage is less

than 8 V, so the SAR is updated to narrow the range to 0–8 V. For the second step, the input voltage is

compared to 4 V (midpoint of 0–8). The comparator reports the input voltage is above 4 V, so the SAR is

updated to reflect the input voltage is in the range 4–8 V. For the third step, the input voltage is compared

with 6 V (halfway between 4 V and 8 V); the comparator reports the input voltage is greater than 6 volts,

and search range becomes 6–8 V. The steps are continued until the desired resolution is reached.

Example. For a 3-bit ADC on a Teensy 3.2 microcontroller with a 3.3 V reference, what would the

analog reading be for a 1.5 V signal?

ADC Reference Signal Higher than Reference? SAR Bit Stored

1.625 V No 0

0.8125 V Yes 1

1.21875 V Yes 1

The SAR stores 0b011, which is decimal 3, out of a possible 0b111, which is decimal 7. So, the analog

voltage read is:

𝑉𝑟𝑒𝑎𝑑 =
3

7
(3.3 𝑉) = 1.414 V

As the resolution increases, the estimate of the analog voltage also gets better.

Last Revision: 2/13/2020 5:30 PM

84

Inside of a microcontroller, the circuit responsible for performing ADC starts with a special

configuration known as a sample and hold (S&H) circuit, which is simplified below:

A clock signal (from the microcontroller) causes the switch to close when a sample is to be taken (AI).

After the switch closes, it is quickly reopened and the voltage that was sampled is stored on the capacitor.

The second operational amplifier shown acts as a follower, isolating the output from the input circuit. This

effectively discretizes the input signal and ensures that each ADC avoids interference from a change in the

input, resulting in something similar to:

The output of the sample and hold circuit is then passed to another operational amplifier acting as a

comparator, which compares the voltage to a reference as dictated by the SAR. These references are always

held relative to analog ground (AGND) on microcontrollers that have such a pin, such as a Teensy 3.2. One

might notice that a microcontroller has two pins, both labelled for ground (GND and AGND). Inside of the

microcontroller, AGND is directly connected to GND via an inductor, to separate digital signals from

analog signals. The ADC circuit operates relative to AGND, so it is imperative to remember that analog

voltage readings should take place on circuits grounded to AGND. If they are not, then excessive noise

can be expected in the read analog signal.

Last Revision: 2/13/2020 5:30 PM

85

The internal ADC can be used on a microcontroller using the built in Arduino function analogRead(),

described below:

analogRead(pin)

Purpose: Reads the value from the specified analog pin. The Arduino board contains a 6 channel

(8 channels on the Mini and Nano, 16 on the Mega), 10-bit analog to digital converter.

This means that it will map input voltages between 0 and 5 V into integer values between

0 and 1023. For the Teensy 3.2, this reference is instead 3.3 V on a 16-bit ADC (with 13

“usable bits” for a range of 0 to 8192) This yields a resolution between readings of: 5

volts / 1024 units or, .0049 volts (4.9 mV) per unit for the Arduino boards and 0.0004 V

(0.4 mV) for the Teensy 3.2. The input range and resolution can be changed using

analogReference().

It takes about 100 microseconds (0.0001 s) to read an analog input, so the maximum

reading rate is about 10,000 times a second.

Parameters: pin: the number of the pin whose mode you wish to read an analog voltage on (must be

an analog pin)

analogReadResolution(resolution)

Purpose: Set the resolution of the ADC. For a Teensy 3.2, the maximum value this can be is 16-

bit, but because of electrical noise considerations, the maximum effective value of this

parameter is around 12 or 13 bits.
Parameters: resolution: the number of bits dedicated to the SAR for the ADC

An example of using analogRead() would be to read an analog voltage of a device such as a

potentiometer. A potentiometer is any device that can change resistance based on user input (such as

turning of a screw). They typically have three terminals, and the mechanism in which they work is best

illustrated below (Figure 30):

Figure 30. Potentiometer Schematic

Last Revision: 2/13/2020 5:30 PM

86

The Teensy 3.2 has two ADCs on board, making it possible to take synchronous measurements. Several

functions, including some that change the resolution of the ADC and enable synchronous or continuous (or

both) measurements are provided in the ADC.h library which must be included to activate that

functionality. A list of the functions is provided here where the library was first introduced and more detail

on the library is gone into in the next subsection.

ADC Library for Teensy Microcontrollers

As mentioned before, the ADC.h library allows for the user of a Teensy 3.0 or later microcontroller to

easily take full advantage of the capabilities of the hardware. As stated, the Teensy has two onboard ADCs

and they can only be used on specific pins with some overlap. For the Teensy 3.1/3.2 this breakdown is as

follows:

https://forum.pjrc.com/threads/25532-ADC-library-update-now-with-support-for-Teensy-3-1

Last Revision: 2/13/2020 5:30 PM

87

For the Teensy 3.6 this breakdown takes the following form:

Obviously, the library must be included into the sketch using a compiler directive, but then the following

functions become available (the old functions are also still available and can be called by putting “adc->”

before the function):

Last Revision: 2/13/2020 5:30 PM

88

ADC *adc = new ADC();

Purpose: Creates the new ADC object that is required to use the newly defined functions

Parameters: none

adc->setReference(option, ADC_x);

Purpose: Sets the voltage reference on one of the two Teensy ADCs (ADC_0 or ADC_1) to one of

three options:

(a) ADC_REFERENCE::REF_3V3: All boards have the 3.3 V output of the

regulator (VOUT33 in the schematics). If VIN is too low, or you are powering

the Teensy directly to the 3.3V line, this value can be lower. In order to know

the value of the final measurement you need to know the value of the reference

in some other way. This is the default option.

(b) ADC_REFERENCE::REF_EXT: The second option available to all

boards is the external reference, the pin AREF. Simply connect this pin to a

known voltage and it will be used as reference. The AREF pin is 3.3 V tolerant

(higher voltages will likely ruin the microcontroller).

(c) ADC_REFERENCE::REF_1V2: Teensy 3.0 and 3.1/3.2 have an

internal 1.2V reference. Use it when voltages are lower than 1.2V or when

using the PGA in Teensy 3.1/3.2.

Parameters: option: the voltage reference to be used as defined above

ADC_x: the ADC to set the reference on (either ADC_0 or ADC_1)

adc->setSamplingSpeed(speed, ADC_x);

Purpose: Sets the amount of time to allow the sample-and-hold circuit capacitor to load up the

voltage that is trying to be measured. The longer the time for the capacitor to load up, the

more accurate the reading. For lower impedance readings, the speed can be raised, but for

higher impedance readings, it should be lowered. The speed can be set based on some

predetermined values from the ADC_SAMPLING_SPEED class enum (where ADCK is

the ADC clock speed which can be changed):

ADC_SAMPLING_SPEED::VERY_LOW_SPEED is the lowest possible sampling speed

(+24 ADCK)

ADC_SAMPLING_SPEED::LOW_SPEED adds +16 ADCK.

ADC_SAMPLING_SPEED::MED_SPEED adds +10 ADCK.

ADC_SAMPLING_SPEED::HIGH_SPEED adds +6 ADCK.

ADC_SAMPLING_SPEED::VERY_HIGH_SPEED is the highest possible sampling

speed (0 ADCK added).

Parameters: speed: the sampling speed in terms of how many ADCK are added between samples

using the constants specified above

ADC_x: the ADC to use (either ADC_0 or ADC_1)

Last Revision: 2/13/2020 5:30 PM

89

adc->setConversionSpeed(speed, ADC_x);

Purpose: Sets the amount of time to allow for the actual analog to digital conversion, which depends

on the bus speed. The speed can be selected from predetermined values of the

ADC_CONVERSION_SPEED class enum:

ADC_CONVERSION_SPEED::VERY_LOW_SPEED is guaranteed to be the lowest

possible speed within specs for resolutions less than 16 bits (higher than 1 MHz), it's

different from ADC_LOW_SPEED only for 24, 4 or 2 MHz.

ADC_CONVERSION_SPEED::LOW_SPEED is guaranteed to be the lowest possible

speed within specs for all resolutions (higher than 2 MHz).

ADC_CONVERSION_SPEED::MED_SPEED is always greater than or equal to

ADC_LOW_SPEED and less than or equal to ADC_HIGH_SPEED.

ADC_CONVERSION_SPEED::HIGH_SPEED_16BITS is guaranteed to be the

highest possible speed within specs for all resolutions (lower or equal than 12 MHz).

ADC_CONVERSION_SPEED::HIGH_SPEED is guaranteed to be the highest possible

speed within specs for resolutions less than 16 bits (lower or equal than 18 MHz).

ADC_CONVERSION_SPEED::VERY_HIGH_SPEED may be out of specs, it's

different from ADC_HIGH_SPEED only for 48, 40 or 24 MHz.

Parameters: speed: the conversion speed based on the constants defined above

ADC_x: the ADC to use (either ADC_0 or ADC_1)

adc->setAveraging(num_samples);

Purpose: Establishes the number of samples to take in and average for each voltage measurement.

This is very useful for a type of digital filtering known as oversampling which can under

certain circumstances increase the resolution of the ADC.
Parameters: num_samples: the number of samples to take in and average for each reading

ADC::Sync_Result adc->analogSyncRead(pin1, pin2);

Purpose: Takes a synchronous voltage measurement on two analog pins at the same time. It will set

up both ADCs and measure pin1 with ADC_0 and pin2 with ADC_1. The result is stored

in the structure ADC::Sync_Result, with members .result_adc0 and .result_adc1 so

that you can get both. ADC_0 has to be able to access pin1 (same for pin2 and ADC1).

If the pin can't be accessed by the ADC you selected it will return ADC_ERROR_VALUE.

See the example files for more details.

Parameters: pin1, pin2: the two analog pins on which the voltage is being read

adc->analogReadDifferential(pin1, pin2);

Purpose: Takes a differential voltage measurement between two pins and returns the value as an

integer.
Parameters: pin1, pin2: the two analog pins on which the voltage is being read

Last Revision: 2/13/2020 5:30 PM

90

adc->analogSyncReadDifferential(pin1, pin2);

Purpose: Takes a synchronous differential voltage measurement between two pins and returns the

value as an integer. ADC_0 has to be able to access pin1 (same for pin2 and ADC1). If

the pin can't be accessed by the ADC you selected it will return ADC_ERROR_VALUE
Parameters: pin1, pin2: the two analog pins on which the voltage is being read

adc->startContinuous(pin, ADC_xx);

Purpose: Starts continuous analog to digital conversions on a pin using the specified ADC. It

returns as soon as the ADC is set, use analogReadContinuous() to read the value.
Parameters: pin: the pin to start continuous conversion on

ADC_xx: the ADC to use (either ADC_0 or ADC_1)

adc->startContinuousDifferential(pin1, pin2, ADC_xx);

Purpose: Starts continuous differential analog to digital conversions between two pins using the

specified ADC. If single-ended and 16-bit then it will be required to cast the result as an

unsigned integer to avoid sign issues with voltage readings above 1.65 V
Parameters: pin: the pin to start continuous conversion on

ADC_xx: the ADC to use (either ADC_0 or ADC_1)

adc->startSynchorinzedContinuous(pin1, pin2);

Purpose: Starts a continuous differential conversion in both ADCs simultaneously. It will set up

both ADCs and measure pin1 with ADC_0 and pin2 with ADC_1. ADC_0 has to be

able to access pin1 (same for pin2 and ADC1). If the pin can't be accessed by the ADC

you selected it will return ADC_ERROR_VALUE.
Parameters: pin1, pin: the pins to start continuous conversion on

ADC::Sync_Result adc->readSynchorinzedContinuous();

Purpose: Reads the continuous synchronous voltage measurement on two analog pins at the same

time. The result is stored in the structure ADC::Sync_Result, with members

.result_adc0 and .result_adc1 so that you can get both. See the example files for more

details.
Parameters: none

adc->printError();

Purpose: Prints any errors from all ADC, if they exist
Parameters: none

Last Revision: 2/13/2020 5:30 PM

91

Pulse-Width Modultion and Digital to Analog Conversion (DAC)

Pulse-width modulation (PWM), or pulse-duration modulation (PDM), is a modulation technique used

to encode a message into a pulsing signal. Although this modulation technique can be used to encode

information for transmission, its main use is to allow the control of the power supplied to electrical devices,

especially to inertial loads such as motors.

A pulse width signal is a digital square wave that is characterized by its duty cycle (or percent of the

time the signal is HIGH) (Figure 31).

Figure 31. Pulse Wave

Because PWM waves have a very high frequency, they appear as analog signals in the real world. The

power associated with one of these waves is given by 𝑃 = 𝑉𝑅𝑀𝑆𝐼𝑅𝑀𝑆 = 𝐷𝑉𝑝𝑒𝑎𝑘𝐼𝑝𝑒𝑎𝑘, where D is the duty,

a number between 0 and 1. Because of the nature of RMS (Root Mean Squared) voltages and currents, it

should be noted that for analog voltage generated from a PWM wave:

𝑉 = 𝑉𝑝𝑒𝑎𝑘√𝐷

Last Revision: 2/13/2020 5:30 PM

92

PWM signals can be written using the analogWrite() function, outlined below.

analogWrite(pin, value)

Purpose: Writes an analog value (PWM wave) to a pin. Can be used to light a LED at varying

brightnesses or drive a motor at various speeds. After a call to analogWrite(), the pin will

generate a steady square wave of the specified duty cycle until the next call to

analogWrite() (or a call to digitalRead() or digitalWrite() on the same pin). The

frequency of the PWM signal on most pins is approximately 490 Hz. On the Uno and similar

boards, pins 5 and 6 have a frequency of approximately 980 Hz. Pins 3 and 11 on the

Leonardo also run at 980 Hz. You do not need to call pinMode() to set the pin as an output

before calling analogWrite().The analogWrite() function has nothing to do with the

analog pins or the analogRead() function.

Parameters: pin: the pin that is being written to

value: the duty cycle: between 0 (always off) and 255 (always on) for 8-bit resolution.

An example of using both analogWrite() and analogRead() is presented below in code that will light

up an LED attached to pin 9 with a PWM signal based on the reading a potentiometer attached to pin 9.

Last Revision: 2/13/2020 5:30 PM

93

Functions exist for changing the characteristics of the pulse width generated by analogWrite(),

such as:

analogWriteResolution(res)

Purpose: Set the resolution of the PWM generated by analogWrite(). The default is 8-bit

resolution, but the maximum resolution can be as high as 32 bits on some microcontrollers.

If a value is specified higher than the DAC capabilities of a pin on a microcontroller, the

extra bits will simply be truncated.
Parameters: res: the resolution of the PWM wave in bits

analogWriteFrequency(pin, freq)

Purpose: Sets the frequency of the PWM wave. Depending on the microcontroller, there is likely an

optimal frequency that this should be set to. There is a lower limit of a few Hz before this

fails to accurately work.
Parameters: pin: pin on which to change the frequency of the PWM wave.

freq: the frequency of the PWM wave in Hertz

tone(pin, freq, duration)

Purpose: Generates a square wave of the specified frequency (and 50% duty cycle) on a pin. A

duration can be specified, otherwise the wave continues until a call to noTone(). The pin

can be connected to a piezo buzzer or other speaker to play tones (such as in the Arduino

tutorial here). Only one tone can be generated at a time. If a tone is already playing on a

different pin, the call to tone() will have no effect. If the tone is playing on the same pin,

the call will set its frequency.
Parameters: pin: pin on which to apply the tone

freq: the frequency of the PWM wave in Hertz as unsigned integer type

duration (optional): how long the tone should be applied in milliseconds as unsigned

long

https://www.arduino.cc/en/Tutorial/ToneMelody?from=Tutorial.Tone

Last Revision: 2/13/2020 5:30 PM

94

noTone()

Purpose: Stops the generation of a square wave triggered by tone(), and has no effect if no tone is

being generated. If you want to play different pitches on multiple pins, you need to call

noTone() on one pin before calling tone(), on the next pin.
Parameters: none

Last Revision: 2/13/2020 5:30 PM

95

Capacitive Sensing and Touch Pins

Capacitive sensing is useful for creating touch pads or buttons that do not require any force to activate.

On Arduino boards and all Teensy models before the Teensy 3.0, capacitive sensing can be accomplished

with two pins through the use of the CapacitiveSensor.h library. However, for later Teensy models an

internal reference capacitor was added into the hardware that allows for a capacitor to be connected to a

Touch pin and to ground and for its capacitance to be measured using the following function:

touchRead(pin)

Purpose: Reads the capacitance from the specified touch pin. This function returns a 16 bit number

representing the capacitance on the pin with the number being equivalent to 0.02 pF. For

example, if a 40 pF capacitor is connected to a touch pin, the number returned will be 2000.

The measurement time depends on the capacitance. A worst-case measurement takes about

5 ms. Typical capacitances used for human touch typically read much faster. Even when

cycling through all the touch sensitive pins, you get excellent sensitivity at very responsive

speeds.
Parameters: pin: the number of the pin whose mode you wish to read the capacitance.

CapacitveSensor Library

While not as reliable or fast as measurements with the touch pins, using the CapacitiveSensor library

does work well. Each sensor connects to two pins: send and receive. The CapacitiveSensor method toggles

a microcontroller send pin to a new state and then waits for the receive pin to change to the same state as

the send pin. A variable is incremented inside a while loop to time the receive pin's state change. The

method then reports the variable's value, which is in arbitrary units. The send pin must connect with a large-

value resistor, between 100KΩ to 50MΩ. Larger values allow more sensitivity, but with slower response.

The receive pin may be connected with a wire, but a 1KΩ or higher resistor will help protect the Teensy's

pin if a user directly touches the object and delivers an electro-static shock. The safest construction uses an

insulating layer sensors can share a single send pin, but each must have its own receive pin. The idea of this

type of layout is given below:

http://playground.arduino.cc/Main/CapacitiveSensor

Last Revision: 2/13/2020 5:30 PM

96

Figure 32. Capacitive Sensing Method of Operation

Teensy's ground pin should be connected to earth ground for best results. Normally the USB cable

connects to a PC, which connects to earth ground by its power code. But when using a laptop on battery

power or running without a computer, you may need to make a dedicated connection to earth ground.

The CapacitiveSensor library includes the following functions:

CapacitiveSensor mySensor(sendPin, receivePin)

Purpose: Create the CapacitiveSensor object, using a specific pair of pin. You should create a

separate CapacitiveSensor object for each sensor. Sensors can share the same sendPin, but

each needs its own receivePin.

Parameters: sendPin: pin that the microcontroller will toggle to a new state

receivePin: pin the microcontroller will wait to return data until it matches the state of
sendPin

mySensor.capacitiveSensor(numSamples)

Purpose: Measures the sensor capacitance in arbitrary units (as it is proportional the elapsed time

taken). The measurement is averaged based on the number of samples specified. More

measurements increases sensitivity, but takes longer. A negative number is returned if any

error occurs.
Parameters: numSamples: number of samples to average

mySensor.set_CS_Timeout_millis(timeout_millis)

Purpose: Determines how long to take before timing out if the receive (sense) pin fails to toggle in

the same direction as the send pin. A timeout is necessary because a while loop will lock-

up a sketch unless a timeout is provided. CS_Timeout_Millis' default value is 2000

milliseconds (2 seconds).

Parameters: timeout_millis: timeout threshold in milliseconds

Last Revision: 2/13/2020 5:30 PM

97

Interrupts and Interrupt Service Routines (ISRs)

The problem of the buttons being asynchronous to the microcontroller from the previous section has not

yet been addressed. This problem is resolved with the use interrupts. Interrupts are useful for making

things happen automatically in microcontroller programs, and can help solve timing problems. Good tasks

for using an interrupt may include reading a rotary encoder, or monitoring user input. In essence, by

attaching an interrupt to a pin, whenever that pin moves HIGH, a special type of function is executed,

regardless where the program currently is in the code itself. This function is called an Interrupt Service

Routine (ISR). An ISR should have no input parameters, nor should it return anything. Typically, an ISR

should be as short and as fast as possible to avoid conflicting with the main program. Variables that are

changed inside of an ISR may be currently being referenced inside of the main program, and so they should

be given a unique data type known as volatile. A volatile variable is loaded from RAM (Random Access

Memory) and not from the storage registry, and so is suitable for when the variable must be changed mid-

computation due to an interrupt.

This very simple example displays the syntax of using an interrupt by making it so whenever pin 4

changes, the LED turns on or off:

Last Revision: 2/13/2020 5:30 PM

98

A number of new functions appear in this example code, and their documentation is as follows:

attachInterrupt(digitalPinToInterrupt(pin), ISR, mode)

Purpose: Attaches an interrupt to a digital pin, specified which ISR to associate with this interrupt,

and what has to happen in order for the interrupt to be activated.

Four constants are predefined as valid values for mode:

 LOW to trigger the interrupt whenever the pin is low,

 CHANGE to trigger the interrupt whenever the pin changes value

 RISING to trigger when the pin goes from low to high,

 FALLING for when the pin goes from high to low.

Parameters: pin: the pin that has the interrupt attached

ISR: the ISR to call when the interrupt occurs (must be a void function with no inputs)

mode: defines when the interrupt should be triggered.

Last Revision: 2/13/2020 5:30 PM

99

detachInterrupt(digitalPinToInterrupt(pin))

Purpose: Turns off the given interrupt associated with a specific pin.

Parameters: pin: the pin that has the interrupt attached

noInterrupts()

Purpose: Disables interrupts (you can re-enable them with interrupts()). Interrupts allow certain

important tasks to happen in the background and are enabled by default. Some functions

will not work while interrupts are disabled, and incoming communication may be ignored.

Interrupts can slightly disrupt the timing of code, however, and may be disabled for

particularly critical sections of code.

Parameters: none

interrupts()

Purpose: Re-enables interrupts (after they've been disabled by noInterrupts()). Interrupts allow

certain important tasks to happen in the background and are enabled by default. Some

functions will not work while interrupts are disabled, and incoming communication may be

ignored. Interrupts can slightly disrupt the timing of code, however, and may be disabled

for particularly critical sections of code.

Parameters: none

Last Revision: 2/13/2020 5:30 PM

100

Serial Communication

Serial communication utilizes digital data (HIGH, LOW) and timing to transmit data, compared to

analog sensors that change an analog voltage based on their output. Some of the more common examples

of serial communication to be explored are:

 UART (Universal Asynchronous Receiving and Transmitting)

o Examples: TTL, RS232, RS422

o Universal in potential usages, but slow (approximately 10 Mhz – 35 MHz)

 SPI (Serial Peripheral Interface)

o Very fast (approximately 500 MHz)

o Requires a unique “chip select” wire for each chip

o Functions by allowing a “master” (microcontroller) to handle “slave’ ICs (integrated circuits).

 I2C (Inter – Integrated Circuit)

o Fast (slower than SPI, but faster than UART)

o Only requires two wires for up to approximately 63 slave devices.

 CAN (Controller Aided Network)

o Works like I2C but gives some sensors “priority” over others

 One Wire

o Works similarly to I2C but data and clock information are combined onto one wire.

Last Revision: 2/13/2020 5:30 PM

101

UART Signals

UART is considered “universal” because its protocol is to send all data as character bytes. For example,

the number 123.45, which could be sent as a four byte float, is instead sent as six bytes in the form of a

character array. This is a big reason why the protocol is slower than its counterparts, because a lot of space

is wasted during the transmission of data. UART is “asynchronous” because each device has a buffer (where

the received data is stored) and an internal clock. Data does not have to be sent and received in any specific

timeframe, because it is always sent to the buffer and parsed when the chip’s internal clock dictates that it

should be. Each device requires its own buffer, which can be inconvenient when working with more than

two devices. The Teensy 3.2 microcontroller has three buffers available for use in UART communication

(Serial1, Serial2, and Serial3 ports). These ports comprise of two pins, TX (transmitter) and RX

(receiver). The interface between two UART devices can be very simply illustrated, as seen below:

UART signals come in a variety of signal types, some examples of which are given below:

Table 5. UART Examples

UART Signal Type LOW (V) HIGH (V) Speed

Transistor-

Transistor Logic

(TTL)

0 to 0.8 2.0 to 5.0 ~ 10 MHz

RS232 3.0 to 15.0 -3.0 to -15.0 10 MHz

RS422/EIA422 Positive Negative 10 MHz

RS485 < -0.2 > 0.2 35 MHz

All types of UART can send information both directions at the same time, which means that the protocol

is full duplex. This is in comparison to simplex protocols which only allow one-way communication, which

UART is obviously capable of, and half duplex, which allows for two-way communication, just not at the

same time.

Last Revision: 2/13/2020 5:30 PM

102

UART data framing usually takes the following form:

Figure 33. UART Data Structure

The start bit is logical LOW, and the stop bit is logical HIGH. These bits indicate when to start and stop

reading the character array sent as the data. This ensures that the receiver checks the data line at a known

interval (the BAUD rate, measured in bits/second). Two UART devices must be able to agree upon a

BAUD rate, or else communication will be impossible. The data itself is sent as a byte with an optional

ninth bit in the form of a parity bit. The parity bit returns a 1 or a 0 depending on if the number of 1’s in

the byte are even or odd (Even parity bits return 1 for an odd count and 0 for an even count, and odd parity

bits return 0 for an odd count and 1 for an even count).

All UART hardware operations are controlled by a clock signal which runs at a multiple of the data rate

(usually 8 times the BAUD rate). The receiver tests the state of the incoming signal on each clock pulse,

looking for the start bit. If the apparent start bit lasts one half of the bit time, it counts as a valid start bit

and signals the start of a new character byte to be received.

UART is frequently used in applications such as computer modems, and with GPS via the NMEA

(National Marine Electronics Association) standard. Wireless communication and Bluetooth modules

frequently use UART signals as well.

One other aspect about UART to mention is that all microcontroller boards have at least one Serial port

(Serial) in which the board can communicate with a computer via the USB (Universal Serial Bus) port.

This means that a board such as the Teensy 3.2 actually has four Serial ports altogether. The microcontroller

can receive 5V power and transmit data via the USB protocol using the Serial port and the Serial object

class created in the Arduino.h library. A basic example of demonstrating how to initialize Serial

communication via the Arduino IDE is given below:

Last Revision: 2/13/2020 5:30 PM

103

There are several important functions to discuss when referring to Serial communication, which are

outlined here:

Serial.begin(BAUD, optional: config)

Purpose: Sets the data rate in bits per second (BAUD) for serial data transmission on the Serial port

specified (Serial, Serial1, Serial2, or Serial3). For communicating with the

computer, use one of these rates: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800,

38400, 57600, or 115200. You can, however, specify other rates for interfacing with other

devices. An optional second argument configures the data, parity, and stop bits. The default

is 8 data bits, no parity, one stop bit.

Parameters: BAUD: the data transfer rate (in bits/s) as long type

config: sets data, parity, and stop bits. Valid parameters are:

SERIAL_5N1 SERIAL_5E2

SERIAL_6N1 SERIAL_6E2

SERIAL_7N1 SERIAL_7E2

SERIAL_8N1 (the default) SERIAL_8E2

SERIAL_5N2 SERIAL_5O1

SERIAL_6N2 SERIAL_6O1

SERIAL_7N2 SERIAL_7O1

SERIAL_8N2 SERIAL_8O1

SERIAL_5E1 SERIAL_5O2

SERIAL_6E1 SERIAL_6O2

SERIAL_7E1 SERIAL_7O2

SERIAL_8E1 SERIAL_8O2

Last Revision: 2/13/2020 5:30 PM

104

Serial.end()

Purpose: : Disables serial communication on the Serial port specified, allowing the RX and TX pins

to be used for general input and output. To re-enable serial communication, call
Serial.begin().

Parameters: none

Serial.print(val, format)

Purpose: Prints data to the serial port as human-readable ASCII text. This command can take many

forms. Numbers are printed using an ASCII character for each digit. Floats are similarly

printed as ASCII digits, defaulting to two decimal places. Bytes are sent as a single

character. Characters and strings are sent as is. For example:

 Serial.print(78) gives "78"

 Serial.print(1.23456) gives "1.23"

 Serial.print('N') gives "N"

 Serial.print("Hello world.") gives "Hello world."

An optional second parameter specifies the base (format) to use; permitted

values are BIN (binary, or base 2), OCT (octal, or base 8), DEC (decimal, or base

10), HEX (hexadecimal, or base 16). For floating point numbers, this parameter

specifies the number of decimal places to use. For example:
 Serial.print(78, BIN) gives "1001110"
 Serial.print(78, OCT) gives "116"
 Serial.print(78, DEC) gives "78"
 Serial.print(78, HEX) gives "4E"
 Serial.println(1.23456, 0) gives "1"
 Serial.println(1.23456, 2) gives "1.23"
 Serial.println(1.23456, 4) gives "1.2346"

Serial.println () behaves the same as Serial.print () except that the

printed value will be printed preceded by a new line character (so that the printed

value is on a new line). You can pass flash-memory based strings to

Serial.print() by wrapping them with F().For example :
 Serial.print(F(“Hello World”))

Parameters: val: the value to print (any data type)

format: specifies the number base (for integral data types) or number of decimal places

(for floating point types)

Last Revision: 2/13/2020 5:30 PM

105

Serial.printf(string, var1, var2, …)

Purpose: Behaves the same as Serial.print () except allows the user to insert placeholders for

variables known as type field characters. Common examples of these would be %d

for a decimal value (integer) and %f for a float. A detailed list a type field characters

and how to use them can be found here.
Parameters: string: the string to print

var{x}: placeholder designations for user-defined variable names whose values will be

placed in the string and will be formatted based on the type field characters used

Serial.available()

Purpose: Returns the number of bytes (characters) available for reading from the serial port specified.

This is data that's already arrived and stored in the serial receive buffer (which holds 64

bytes).

Parameters: none

Serial.read()

Purpose: Reads incoming serial data on the specified serial port and returns the first byte of incoming

serial data available (or -1 if no data is available) as an integer.

Parameters: none

Serial.write(val)

Purpose: Writes binary data to the serial port. This data is sent as a byte or series of bytes; to send the

characters representing the digits of a number use the print() function instead.

Parameters: val: a value to send as a single byte or a string to send as a series of bytes.

To actually interface with the Serial monitor (Serial communication from microcontroller to computer

through USB), first specify the COM port in which the USB is connected into the computer from the

Arduino IDE (Tools -> Port -> COMxx)

https://msdn.microsoft.com/en-us/library/hf4y5e3w.aspx

Last Revision: 2/13/2020 5:30 PM

106

The Serial Monitor can then be brought up from the Tools menu or the keyboard shortcut Ctrl + Shift +

M. The Serial monitor will appear as the following window that will display text as its printed:

A very simple example for interfacing with data received from Serial communication is given below:

Last Revision: 2/13/2020 5:30 PM

107

Another simple example showing off writing of Serial data is below:

UART Flow Control

UART Flow Control is a method for slow and fast devices to communicate with each other over UART

without the risk of losing data. Consider the case where two units are communicating over UART. A

transmitter, T, is sending a long stream of bytes to a receiver, R. Now assume that R is a slower device than

T and at a certain point, it cannot keep up with the data that is being received. At this point, R needs to

either do some processing on the data or empty some buffers, before it can keep receiving data. In the

meantime, R needs to tell T to stop transmitting for a while. This is where flow control comes in. Flow

control provides extra signaling to inform the transmitter that it should stop (pause) or start (resume) the

Last Revision: 2/13/2020 5:30 PM

108

transmission. Several forms of flow control exist. What is referred to as hardware flow control uses extra

wires. The logic level on these wires define whether the transmitter should keep sending data or stop. With

software flow control, special characters are sent over the normal data lines to start or stop the transmission.

With hardware flow control (also called RTS/CTS flow control), two extra wires are needed in addition

to the data lines. They are called RTS (Request to Send) and CTS (Clear to Send). These wires are cross-

coupled between the two devices, so RTS on one device is connected to CTS on the remote device and vice

versa, as shown:

Figure 34. UART Basics with Flow Control

Each device will use its RTS to output if it is ready to accept new data and read CTS to see if it is allowed

to send data to the other device. As long as a device is ready to accept more data it will keep the RTS line

HIGH. It will take RTS LOW some time before its receive buffer is full. There might still be data on the

line and in the other device transmit registers which has to be received even after RTS has been taken LOW.

The other device is required to respect the flow control signal and pause the transmission until RTS is again

brought HIGH.

The flow control is bidirectional, meaning both devices can request a halt in transmission. If one of the

devices never have to request a stop in transmission (i.e. it is fast enough to always receive data), the CTS

signal on the other device can be tied to the asserted logic level. The RTS pin on the fast device can thus

be freed up to other functions.

With some UART protocols such as RS-232, there will be pins such as Data Terminal Ready (DTR)

and/or Data Set Ready (DSR) which are likewise used for flow control. There is very little consistency

from device to device on how these pins are to be used. For example, on a modem, the signal may be

terminated when the DTR line is driven LOW in some cases, and in others it may do something else entirely.

It is worth noting that for older equipment, the CTS lines between two UART devices would be tied

together and the RTS lines would also be tied together and the flow control would only be unidirectional.

Last Revision: 2/13/2020 5:30 PM

109

Through the use of acknowledgement bytes (ACK) it is possible to regulate the flow of UART data in

software as well.

Last Revision: 2/13/2020 5:30 PM

110

SPI Signals

SPI offers much faster signal transmission than UART, being able to operate up at 500 MHz. SPI

functions by allowing a “master” microcontroller to handle multiple “slave” IC’s, which is cheap because

the microcontroller can use its internal clock (making this interfacing synchronous with the microcontroller)

, especially if the “slaves” are just sensors that are outputting information. The general wiring schematic is

given by:

Figure 35. SPI Basic Wiring Diagram

SCLK ≡ Serial Clock

MOSI ≡ Master Out Slave In (DO ≡ Data Out)

MISO ≡ Master In Slave Out (DI ≡ Data In)

SS ≡ Slave Select (CS ≡ Chip Select)

SPI communication follows the following basic steps:

1. Master configured clock using frequency supported by slave (up to a few MHz).

2. Master selects slave device by sending logical LOW on the SS/CS pin.

3. Master waits while ADC works on slave to record measurement.

4. Full duplex communication occurs on MOSI/MISO pins using master clock.

5. Master selects next slave after data transmission is completed and process repeats.

Last Revision: 2/13/2020 5:30 PM

111

The master must configure the clock polarity (CPOL) and the clock phase (CPHA) with respect to

when to take the data. Polarity determines whether the line level is HIGH or LOW when the sensor is

inactive, and Phase determines when the data is read (as the line falls or rises). This means:

Figure 36. SPI Modes

Given that there are four distinct signals to be expected that tells the slave when the read the data and

when to change, these combinations of clock phase and clock polarity have been summarized into an SPI

Mode convention:

Comparing the modes and the resultant data in/out is possible with a timing diagram, as shown:

Figure 37. SPI Timing Diagram

Last Revision: 2/13/2020 5:30 PM

112

This type of system ensures that data comes in a stream of bits, instead of waiting on a buffer to be read.

This data is often “raw” and will need to be converted into something useful, which is found on the data

sheet of the slave.

The SPI.h library is used to communicate via SPI protocol and must be included using a compiler

directive into any sketch that tries to interface with SPI devices. SPI protocol can be used to communicate

between microcontrollers.

Some important functions used to interface with SPI are given below:

SPI.begin()

Purpose: Initializes the SPI bus by setting SCK, MOSI, and SS to outputs, pulling SCK and MOSI

low, and SS high.

Parameters: none

SPI.end()

Purpose: Disables the SPI bus (leaving pin modes unchanged).

Parameters: none

SPI.transfer(val)

Purpose: SPI transfer is based on a simultaneous send and receive: the received data is returned in

receivedVal (or receivedVal16). In case of buffer transfers the received data is

stored in the buffer in-place (the old data is replaced with the data received).

Parameters: val: the byte to send out over the bus (or two bytes)

SPI.beginTransaction(SPISettings(speedMaximum, dataOrder, dataMode))

Purpose: Initializes the SPI bus using the defined SPISettings. The SPISettings object is used to

configure the SPI port for your SPI device. All 3 parameters are combined to a single

SPISettings object, which is given to SPI.beginTransaction(). When all of your

settings are constants, SPISettings should be used directly in

SPI.beginTransaction(). For constants, this syntax results in smaller and faster

code. If any of your settings are variables, you may create a SPISettings object to hold the

3 settings. Then you can give the object name to SPI.beginTransaction(). Creating

a named SPISettings object may be more efficient when your settings are not constants,

especially if the maximum speed is a variable computed or configured, rather than a number

you type directly into your sketch.

Parameters: speedMaximum: the maximum speed of communication. For a SPI chip rated up to 20

MHz, use 20000000.

dataOrder: MSBFIRST or LSBFIRST (specifies whether the Most Significant Bit

(MSB) or Least Significant Bit) comes first in data transmission.

dataMode: specifies the SPI Mode (SPI_MODE0, SPI_MODE1, SPI_MODE2, or

SPI_MODE3)

SPI.endTransaction()

Purpose: Stop using the SPI bus. Normally this is called after de-asserting the chip select, to allow

other libraries to use the SPI bus.

Parameters: none

https://www.arduino.cc/en/reference/SPI

Last Revision: 2/13/2020 5:30 PM

113

SPI.usingInterrupt(interruptNumber)

Purpose: If your program will perform SPI transactions within an interrupt, call this function to

register the interrupt number or name with the SPI library. This allows

SPI.beginTransaction() to prevent usage conflicts. Note that the interrupt specified

in the call to usingInterrupt() will be disabled on a call to

beginTransaction() and re-enabled in endTransaction().

Parameters: interruptNumber: the associated interrupt number.

An example for how to wire up and use a SCP1000 Barometric Sensor which uses SPI protocol on an

Arduino is provided below. First, the circuit is provided showing how to wire up the barometric sensor’s

breakout board:

The actual schematic for what is happening in this circuit is shown in the next figure.

https://www.sparkfun.com/products/retired/8161

Last Revision: 2/13/2020 5:30 PM

114

The code below starts out by setting the SCP1000's configuration registers in the setup(). In the main

loop, it sets the sensor to read in high resolution mode, meaning that it will return a 19-bit value, for the

pressure reading, and 16 bits for the temperature. The actual reading in degrees Celsius is the 16-bit result

divided by 20.

Then it reads the temperature's two bytes. Once it's got the temperature, it reads the pressure in two

parts. First it reads the highest three bits, then the lower 16 bits. It combines these two into one single

long integer by bit shifting the high bits then using a bitwise OR to combine them with the lower 16 bits.

The actual pressure in Pascal is the 19-bit result divide by 4.

Last Revision: 2/13/2020 5:30 PM

115

Last Revision: 2/13/2020 5:30 PM

116

Last Revision: 2/13/2020 5:30 PM

117

I2C Signals

The main inconvenience with SPI communication is that it requires four wires for each slave device. As

a user starts to incorporate multiple sensors into an embedded program, the hardware can become tedious

to keep up with. This is the main motivation behind the development of I2C communication, which requires

only two wires for interfacing with any number of sensors. I2C is not as fast as SPI, but is still much faster

than typical UART data transmission, usually finding data exchange rates between 100 kHz and 50 MHz.

Communication, as stated, is possible through two lines: the Serial Clock (SCL) and Serial Data (SDA).

Both of these lines are connected to both the microcontroller and the sensor and require pull-up resistors,

because I2C devices can only pull voltage down to LOW. The general schematic for this protocol is

demonstrated below:

Figure 38. I2C Basic Wiring Diagram

Like with SPI, two sensors cannot communicate at the same time and thus require some method of

communicating. Unlike in SPI, which hardwires a Chip Select pin and uses wired signals to select which

sensor is being referenced at any point in time, I2C references the slave chips by sending a unique 7-bit

address down the single SDA line in order to determine which sensor is “speaking”. These addressed can

be reserved (for a cost), so for convenience these integrated circuits usually have a hardwired adjustable

address (with 2 – 8 unique address numbers).

To send a message from the master to the slave, the following procedure is undergone:

1. Master starts: sends address + W (Write Bit)

2. Waits for slave with indicated address ACK (Acknowledge Bit)

3. Master sends which register(s) to change to slave with the indicated address

4. Master sends data that is wanted into the register

To accept a message from a slave (read it into the microcontroller):

1. Master starts: sends address + R (Read Bit)

Last Revision: 2/13/2020 5:30 PM

118

2. Waits for slave with indicated address ACK

3. Master sends register that is to be read to slave with indicated address

4. Slave returns the data to master

The general timing diagram will take the following form:

Figure 39. I2C Timing Diagram

To set a chip’s adjustable address, some knowledge of the chip is required. Often, specific pins labelled

A0, A1, … will be present on the chip and depending on whether those pins are held HIGH or LOW, the

address changes. For example, consider the HT16K33 driver chip with the following solder pads:

https://learn.adafruit.com/adafruit-led-backpack/changing-i2c-address

Last Revision: 2/13/2020 5:30 PM

119

Should solder connect the two pads, the input will be considered HIGH, and if not, the pin will be

considered LOW. The default address of this device is 0x70 (addresses are frequently represented in

hexadecimal to save space). Changing the address of this device is fairly simple. Look on the back to find

the two or three A0, A1 or A2 solder jumpers. Each one of these is used to hardcode in the address. If a

jumper is shorted with solder, that sets the address. A0 sets the lowest bit with a value of 1, A1 sets the

middle bit with a value of 2 and A2 sets the high bit with a value of 4. The final address is 0x70 + A2 + A1

+ A0. So for example if A2 is shorted and A0 is shorted, the address is 0x70 + 4 + 1 = 0x75. If only A1 is

shorted, the address is 0x70 + 2 = 0x72.

I2C protocol is easily implemented in microcontrollers through the Wire.h library. Several helpful

functions exist within this library (much like with the SPI library), some of the more important ones are

talked about here:

Wire.begin(address)

Purpose: Initiate the Wire library and join the I2C bus as a master or slave. This should normally be

called only once.

Parameters: address: the 7-bit slave address (optional); if not specified, join the bus as a master.

Wire.requestFrom(address, quantity, stop)

Purpose: Used by the master to request bytes from a slave device. The bytes may then be retrieved

with the available() and read() functions. As of Arduino 1.0.1, requestFrom() accepts a

boolean argument changing its behavior for compatibility with certain I2C devices. If true,

requestFrom() sends a stop message after the request, releasing the I2C bus. If false,

requestFrom() sends a restart message after the request. The bus will not be released, which

prevents another master device from requesting between messages. This allows one master

device to send multiple requests while in control. The default value is true.

Parameters: address: the 7-bit address of the device to request bytes from

quantity: the number of bytes to request

stop: boolean value, true will send a stop message after the request, releasing the bus. false

will continually send a restart after the request, keeping the connection active.

Wire.read()

Purpose: Returns the number of bytes available for retrieval with read(). This should be called on

a master device after a call to requestFrom() or on a slave inside the onReceive()

handler.

Parameters: none

Wire.write(val, length)

Purpose: Writes data from a slave device in response to a request from a master, or queues bytes for

transmission from a master to slave device (in-between calls to beginTransmission() and

endTransmission()).

Parameters: val: value to send as a single byte, string, or an array of data to send as several bytes

length: the number of bytes to transmit if an array is being written (no argument needed

otherwise)

https://www.arduino.cc/en/Reference/Wire

Last Revision: 2/13/2020 5:30 PM

120

Wire.beginTransmission(address)

Purpose: Begin a transmission to the I2C slave device with the given address. Subsequently, queue

bytes for transmission with the write() function and transmit them by calling
endTransmission().

Parameters: address: the 7-bit slave address to transmit to

Wire.endTransmission(stop)

Purpose: Ends a transmission to a slave device that was begun by beginTransmission() and

transmits the bytes that were queued by write(). As of Arduino 1.0.1,

endTransmission() accepts a boolean argument changing its behavior for compatibility

with certain I2C devices. If true, endTransmission() sends a stop message after

transmission, releasing the I2C bus. If false, endTransmission() sends a restart message

after transmission. The bus will not be released, which prevents another master device from

transmitting between messages. This allows one master device to send multiple

transmissions while in control. The default value is true.

The returned byte will be:

 0: success

 1: data too long to fit in transmit buffer

 2: received NACK on transmit of address

 3: received NACK on transmit of data

 4: other error

Parameters: stop: boolean. true will send a stop message, releasing the bus after transmission. false

will send a restart, keeping the connection active.

A simple example showing how to use I2C protocol is the reading of a digital potentiometer. The

AD5171 Digital Potentiometer can be wired in the following configuration so that the potentiometer reading

impacts the brightness of some LEDs:

Last Revision: 2/13/2020 5:30 PM

121

The schematic of this circuit is shown below:

When the AD5171's pin 6, ADO, is connected to ground, it's address is 44. To add another digital pot

to the same SDA bus, connect the second pot's ADO pin to +5V, changing it's address to 45. To interface

with the potentiometer and light up the LED, the following code could be used:

Last Revision: 2/13/2020 5:30 PM

122

CAN Bus

The CAN (controller area network) bus is a vehicle bus standard designed to allow microcontrollers

and devices to communicate with each other within a vehicle without a host computer. This bus standard

includes its own messaging protocol for communications between nodes on the network. This standard was

invented for the interfacing of sensors in an automobile, where there are several systems that need to interact

with each other, and each have a certain priority over others for how fast they need information.

Figure 40. Example CAN Bus

The CAN bus (Controller Area Networking) was defined in the late 1980 by Bosch, initially

for use in automotive applications (CAN 2.0). It has been found to be very useful in a wide

variety of distributed industrial systems. A 2014 enhancement to the specifications (CAN FD)

improves the performance of CAN. Generally speaking, CAN has the following characteristics:

 Uses a single terminated twisted pair cable to transmit data

 Multiple masters can exist on a single CAN Bus

 Highly reliable with extensive error checking

 Maximum Signal frequency used is 1 Mbit/sec (CAN 2.0) , 15 Mbits/sec (CAN FD)

 Typical maximum data rate achievable is 320 kBits/sec for CAN 2.0 and 3.7 MBits/sec for CAN FD

 Maximum latency of high priority message <120 µsec at 1Mbit/sec

 The faster the data transmission, the shorter the available conduit.

Last Revision: 2/13/2020 5:30 PM

123

CAN is unusual in that the entities on the network, called nodes, are not given specific

addresses. Instead, it is the messages themselves that have an identifier which also determines the

messages' priority. Nodes then depending on their function transmit specific messages and look for

specific message. For this reason there is no theoretical limit to the number of nodes although in practice

it is ~64. Note that no two nodes can transmit the same message ID as this violates the priority rules.

Three specifications are in use:

 CAN 2.0A sometimes known as Basic or Standard CAN with 11 bit message identifiers which

was originally specified to operated at a maximum frequency of 250Kbit/sec and is ISO11519.

 CAN 2.0B known as Full CAN or extended frame CAN with 29 bit message identifier which can

be used at up to 1Mbit/sec and is ISO 11898.

 CAN FD increases the max data throughput to ~ 3.7 Mbits/sec. It does this by retaining much of

the 2.0 packet structure (which it is compatible with) but using one reserved bit to indicate that the data

part of the packet is using the new standard. Once an FD enabled device or interface detects this it can do

two things..... Transmits/receives the data part at a secondary frequency of up to 12 Mbits/sec (v

1Mbits/sec for CAN 2.0) and also it allows the data part of the package to consist of up to 64 bytes (v 8

bytes for CAN 2.0). For more details see CAN FD.

CAN may be implemented over a number of physical media so long as the drivers are open-collector

and each node can hear itself and others while transmitting (this is necessary for its message priority and

error handling mechanisms). The most common media is a twisted pair 5V differential signal which will

allow operations in high noise environments, and with the right drivers will work even if one of the wires

is open circuit. A number of transceiver chips are available the most popular probably being the Philips

82C251 as well as the TJA1040.

When running Full CAN (ISO 11898-2) and CAN FD at its higher speeds it is necessary to terminate

the bus at both ends with 120 Ohms. The resistors are not only there to prevent reflections but also to

unload the open collector transceiver drivers. The bus must always be terminated correctly:

http://www.can-cia.org/fileadmin/cia/files/icc/13/hartwich.pdf
http://www.nxp.com/documents/data_sheet/PCA82C251.pdf
http://www.nxp.com/documents/data_sheet/PCA82C251.pdf
http://www.nxp.com/documents/data_sheet/TJA1040.pdf

Last Revision: 2/13/2020 5:30 PM

124

The Teensy 3.1 and 3.2 can join a CAN Bus through their designated pins and use of the FlexCan.h

library. The relevant functions and descriptions can be found at the bottom of that page.

https://github.com/teachop/FlexCAN_Library

Last Revision: 2/13/2020 5:30 PM

125

OneWire Bus

An additional data protocol comes in the form of OneWire (1-Wire) which actually uses just one wire

for both data transmission and the clock. Dallas Semiconductor (now Maxim) produces a family of devices

that are controlled through a proprietary 1-wire protocol. There are no fees for programmers using the

Dallas 1-Wire (trademark) drivers.

On a 1-Wire network, which Dallas has dubbed a MicroLan a single master device communicates with

one or more 1-Wire slave devices over a single data line (the 1-Wire Bus), which can also be used to provide

power to the slave devices (meaning that the only two lines fed to a sensor are data and ground in what is

called parasitic power mode). An example of such a device is the MAX31850 Thermocouple Breakout

Board for reading K type thermocouples. For longer stretches of wire between the microcontroller and the

sensor, parasitic power mode is less likely to give reliable results.

When operating in parasitic power mode, only two wires are required: one data wire, and ground. In this

mode, the power line must be connected to ground, per the datasheet. At the master, a 4.7k pull-up

resistor must be connected to the 1-wire bus. When the line is in a HIGH state, the device pulls current

to charge an internal capacitor. This current is usually very small, but may go as high as 1.5 mA when doing

a temperature conversion or writing EEPROM. When a slave device is performing one these operations,

the bus master must keep the bus pulled HIGH to provide power until the operation completes; a delay of

750ms is required for a DS18S20 temperature conversion. The master cannot do anything during this time,

like issuing commands to other devices, or polling for the slave's operation to be completed. To support

this, the OneWire.h library makes it possible to have the bus held HIGH after the data is written.

With an external supply, three wires are required: the bus wire, ground, and power. The 4.7k pull-up

resistor is still required on the bus wire. As the bus is free for data transfer, the microcontroller can

continually poll the state of a device doing a conversion. This way, a conversion request can finish as soon

as the device reports being done, as opposed to having to wait for conversion time (dependent on device

function and resolution) in parasitic power mode.

The functions included with OneWire.h are:

OneWire myWire(pin)

Purpose: Create the OneWire object, using a specific pin. Even though you can connect many 1 wire

devices to the same pin, if you have a large number, smaller groups each on their own pin

can help isolate wiring problems. You can create multiple OneWire objects, one for each

pin.

Parameters: pin: the pin for the OneWire Bus

myWire.search()

https://www.adafruit.com/products/1727
https://www.adafruit.com/products/1727
https://www.pjrc.com/teensy/td_libs_OneWire.html

Last Revision: 2/13/2020 5:30 PM

126

Purpose: Search for the next device. The addrArray is an 8 byte array. If a device is found,

addrArray is filled with the device's address and true is returned. If no more devices are

found, false is returned.

Parameters: addrArray: 8 byte array representing the OneWire address of the current device.

myWire.reset_search()

Purpose: Begin a new search. The next use of search will begin at the first device.

Parameters: none

myWire.reset()

Purpose: Reset the 1-wire bus. Usually this is needed before communicating with any device.

Parameters: none

myWire.select(addrArray)

Purpose: Select a device based on its address. After a reset, this is needed to choose which device you

will use, and then all communication will be with that device, until another reset.

Parameters: addrArray: 8 byte array representing the OneWire address of the selected device.

myWire.skip()

Purpose: Skip the device selection. This only works if you have a single device, but you can avoid

searching and use this to immediatly access your device.

Parameters: none

myWire.write(num,1)

Purpose: Writes a byte of data to the selected device. The second argument is optional but if entered

as “1”, the OneWire bus will leave power applied to it after writing.

Parameters: num: the byte of data to be written

myWire.read()

Purpose: Reads and returns a byte of data from the selected device

Parameters: none

myWire.crc8(dataArray, length)

Purpose: Compute a CRC (Cyclic Redundancy Check) on an array of data to detect data corruption.

Parameters: dataArray: the data to be checked

length: the length bit for the CRC check

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

Last Revision: 2/13/2020 5:30 PM

127

Signal Processing and Digital Filters

All analog filters have a digital equivalent that can be implemented programmatically without the

hardware required of a RC Filter or RLC Filter. These equivalent filters are termed digital filters. The

general idea behind the construction of a filter is to eliminate unwanted aspects of an input signal, which is

generally noise. Noise is typically represented as uniformly represented, randomly distributed data

(Gaussian distribution). Analog and digital filters both focus on the elimination of unwanted frequency

content in a measured signal, but go about it with different methodologies. The ideal filter will eliminate

noise from the system by following some of the following basic principles:

1. Data will fall inside of a range

2. Data has a maximum speed in which it can change

3. Data comes in at the right time (no phase lag or phase lead)

4. Data is based on the physics that are expected.

When a microcontroller samples and discretizes a signal using an ADC, generates an approximate

waveform of the initial signal. It is important to note that the speed at which a signal is sampled should be

fast enough so that the signal is not aliased. An aliased signal is one looks like a signal completely different

than the one that was intended to be sampled that because it is not sampled frequently enough, as shown in

the following example.

To prevent aliasing, the signal should be sampled at least twenty times the signal frequency. (Nyquist

theory dictates that an absolute minimum is sampling twice as fast as the signal’s frequency but in reality

you should sample as much as is feasible given the resources). The highest relevant signal frequency will

tend to be used as a reference for where the desired cutoff frequency lies for the appropriate filter to be

applied to the data once it is sampled. For example, for an input signal will frequency data at 1 Hz, 5 Hz,

and 100 Hz present, the data should be sampled at minimum at twice the highest relevant frequency using

the Nyquist criterion, which is 200 Hz, but ideally this rate would be much higher. A filter applied to the

data can then be crafted such that the cutoff frequency is something slightly above 100 Hz (it should be set

such that the attenuation on the 100 Hz data is within an acceptable range).

Last Revision: 2/13/2020 5:30 PM

128

Frequency Domain Considerations

 As has been alluded in in the sections pertaining to analog filters of first and second order, where

the order refers to both the number of reactive elements in an RLC circuit, the order also generally refers

to the highest value exponent in the filter transfer function. Typically, because analog filters behave

continuously rather than discretely, it is convenient to express these transfer functions in the Laplace (or

frequency) domain by taking the Laplace transform of the time domain constitutive equations and finding

the transfer function once the system model is described using the parameter 𝑠 = 𝜎 + 𝑗𝜔. The frequency

parameter is defined in this way such that 𝜎 can be viewed as the transient decay term in an exponential

and 𝑗𝜔 can be viewed as the complex frequency part of the exponential, which reflect oscillations in a

response. As an aside, keep in mind that if the real part of the complex 𝑠 is zero (i.e. 𝑠 = 𝑗𝜔) then what we

are technically looking at is half of a Fourier transform that only is interested in the frequency response of

a system, irrespective of any signal damping. As the filters engineers design typically want a constant

response across frequencies with time, the damping term 𝜎 is generally regarded as zero.

 The Fourier transform allows one to see how the system amplifies or attenuates signals of any

frequency in a spectrum. However, discrete systems do not act continuously, and implementing a discrete

filter programmatically is not possible using the continuous expressions. However, the resolution to this is

the idea of the z-transform, which is analogous to the Laplace transform but for discretized signals. In

order to convert a system from being mapped from the s-place to the z-plane, a conversion between the s

parameter and the z parameter needs to be derived. The bilinear transform is a first-order approximation

of the natural logarithm function that is an exact mapping of the z-plane to the s-plane. Recall that delaying

a signal by a seconds in the Laplace domain is equivalent to multiplying the system by 𝑒−𝑎𝑠. This is the

basis of the conversion from continuous signals to discrete ones.

When the Laplace transform is performed on a discrete-time signal (with each element of the discrete-

time sequence attached to a correspondingly delayed unit impulse), the result is precisely the Z transform

of the discrete-time sequence with the substitution of:

𝑧 ≡ 𝑒𝑠𝑇

where 𝑇 is the sample period. This definition enables 𝑧−1 to represent a unit delay and 𝑧−𝑛 to represent a

delay of n samples. Notice that this expression can be written as:

𝑧 = 𝑒𝑠𝑇 =
𝑒𝑠𝑇/2

𝑒−𝑠𝑇/2
≈

1 +
𝑠𝑇
2

1 −
𝑠𝑇
2

Last Revision: 2/13/2020 5:30 PM

129

The inverse of this mapping, which yields the mapping from 𝑠 → 𝑧 is:

𝑠 ≡
ln (𝑧)

𝑇

A first-order approximation of this natural logarithm using Taylor series yields:

𝑠 ≡
ln(𝑧)

𝑇
≈ (

2

𝑇
) (

𝑧 − 1

𝑧 + 1
) = (

2

𝑇
)(

1 − 𝑧−1

1 + 𝑧−1)

This enables a conversion from the s-domain to the z-domain via substitution, which then allows for

the definition of 𝑧−𝑛 being a delay of n samples of length T to map the expression back to the time domain.

The formal expression that allows for this transform is called the inverse Z transform, but this is a difficult

to evaluate expression. Alternatively, tabulated z-transforms and their time domain pairs are available

online. There is also the method of “coefficient matching”, which essentially states that:

if 𝑋(𝑧) = ∑ 𝑐𝑛𝑧−𝑛

∞

𝑛=−∞

 then 𝑥[𝑛] = 𝑐𝑛

It can be shown that the general shape of the frequency response of a continuous filter transformed to

a digital filter via a bilinear transformation is conserved (, but the continuous frequencies do not map

linearly to the z-domain. If we denote the digital filter derived via the bilinear transform as a function of z

called 𝐻𝑑(𝑧) and the original continuous filter as 𝐻𝑎(𝑠) it can be seen that the bilinear transform creates

the relationship:

𝐻𝑑(𝑧) = 𝐻𝑑(𝑒
𝑗𝜔𝑑𝑇) = 𝐻𝑎(𝑠) = 𝐻𝑎 (

2

𝑇

𝑒𝑗𝜔𝑑𝑇 − 1

𝑒𝑗𝜔𝑑𝑇 + 1
)

This can be simplified to:

𝐻𝑑(𝑒𝑗𝜔𝑑𝑇) = 𝐻𝑎 (𝑗
2

𝑇
 tan (

𝑇

2
𝜔𝑑))

Denoting the continuous frequency as 𝜔𝑎 =
2

𝑇
 tan (

𝑇

2
𝜔𝑑), the corresponding digital frequency map is

given by:

𝜔𝑑 =
2

𝑇
tan−1 (

𝑇

2
𝜔𝑎)

Last Revision: 2/13/2020 5:30 PM

130

The key takeaway to this point is that if one converts a continuous filter to a digital filter via use of the

bilinear transform, there will be a warping of the frequency response. As the sample rate increases, the error

associated with this warping decreases. That is to say:

lim
𝑇→0

𝜔𝑑 = 𝜔𝑎

The effect of the frequency warping can be combatted by selecting a single frequency in which to map

between the continuous and discrete filters (usually the cutoff frequency). A filter designer can select an

appropriate cutoff frequency and pre-warp this frequency so that when converting the filter to the digital

domain the cutoff frequency is where the user intended it to be.

Last Revision: 2/13/2020 5:30 PM

131

IIR (Infinite Impulse Response) Filters

An IIR (Infinite Impulse Response) filter is one that, should the input to the filter be a step function,

never truly reaches the DC value of the step function, but instead asymptotically approaches the value

exponentially. All analog filters are categorized as IIR filters of a continuous nature, but discretized filters

can also be categorized as an IIR filter. While this behavior may sound bothersome, in practice due to

rounding and truncations, these filters do in fact reach their true value eventually. The considerations when

using these filters tend to be the same as their analog counterparts: the filter will attenuate unwanted

frequency data at the expense of adding some phase delay to the frequencies in the measurement set and

amplifying certain frequencies in the passband (the band of frequencies deemed acceptable) in a

phenomena known as ripple.

Discrete Low Pass Filter

A simple first order low pass filter can be obtained for recorded measurement 𝑦𝑘 given new raw sensor

measurement 𝑥𝑘 by assuming the complex system can be modelled as a simple one with the first order

dynamics:

�̇� + 𝜆𝑦 = 𝜆𝑥

The continuous transfer function of such a simple system would appear as:

𝐻(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
=

𝜆

𝑠 + 𝜆

𝜆 being placed on the right hand side of the equation makes it so that the “DC Gain” (or frequency

response as the frequency of the input signal moves towards 0) is unity (one) validating that this transfer

function represents a low-pass filter. The single pole of the transfer function indicates it is a first-order

filter. Another way to state this is that the step response magnitude of such a transfer function will be unity.

𝜆 denotes the single pole of the transfer function, and in this way is the reciprocal of this simple system’s

time constant (𝜏). The parallels of our system model a simple RC circuit should be clear when writing out

this transfer function, as the transfer function is the same as with a simple RC low pass filter, where 𝜆 =
1

𝑅𝐶
.

In the digital microcontroller, assume the sample rate (𝑇𝑠) is much greater than the system bandwidth

(𝜔𝑏) and then simulate the simple model with the raw measurement as the input. In other words, find the

relationship 𝑦𝑘 = 𝑓(𝑥𝑘 , 𝑦𝑘−1) from �̇� = 𝜆𝑥 − 𝜆𝑦.

Last Revision: 2/13/2020 5:30 PM

132

Here we will use a first order backwards difference approximation to create a convenient relationship:

�̇�𝑘 =
𝑦𝑘 − 𝑦𝑘−1

𝑇𝑠

Discretizing the expression for �̇� gotten from our system model can yield:

�̇�𝑘 = 𝜆(𝑥𝑘 − 𝑦𝑘)

Substitution yields into Euler’s method reveals the formula:

𝑦𝑘 − 𝑦𝑘−1

𝑇𝑠
= 𝜆(𝑥𝑘 − 𝑦𝑘)

𝑦𝑘 − 𝑦𝑘−1

𝜆𝑇𝑠
+ 𝑦𝑘 = 𝑥𝑘

(
𝜆𝑇𝑠 + 1

𝜆𝑇𝑠
) 𝑦𝑘 = 𝑥𝑘 +

𝑦𝑘−1

𝜆𝑇𝑠

𝑦𝑘 = (
𝜆𝑇𝑠

𝜆𝑇𝑠 + 1
) 𝑥𝑘 + (

1

𝜆𝑇𝑠 + 1
)𝑦𝑘−1

Denoting 𝛼 =
𝜆𝑇𝑠

𝜆𝑇𝑠+1
 we arrive at the discrete low-pass filter:

𝒚𝒌 = 𝜶𝒙𝒌 + (𝟏 − 𝜶)𝒚𝒌−𝟏 𝐟𝐨𝐫 𝟎 < 𝜶 < 𝟏

𝛼 is required to be a number greater than 0 but less than 1 in order for this scheme to be stable. Notice that

this definition of 𝛼 emerged because of our specific choice of discretization technique. If we had instead

used a forward difference method to approximate the derivative �̇� and worked through the same math, an

identical scheme would be revealed except that 𝛼 would be set equal to 𝜆𝑇𝑠 (sample time multiplied by the

cutoff frequency of the filter). As it turns out, given the initial assumption that the sample time be far smaller

than the filter time constant, it can be said that these two results are approximately the same. It should be

noted that even though a continuous first order low-pass filter was used as a basis for the creation of this

discrete filter, the behavior of the filter can differ quite a bit from its continuous time counterpart if the

sample time approaches the filter time constant. As a rule, the sample rate should be selected to be at least

an order of magnitude greater than the filter time constant to maintain a semblance of continuous time

behavior.

An example was generated in Octave for a sinusoid of frequency 1 Hz with a signal to noise ratio of

four. The measurement was sampled at 100 Hz and then passed through discrete low-pass filters with cutoff

frequencies of 0.5 Hz, 1 Hz, 2 Hz and 5 Hz. Notice that there is a trade-off in the time domain between

Last Revision: 2/13/2020 5:30 PM

133

noise attenuation and signal attenuation and phase shift, just as there is with the analog equivalent filter.

When the cutoff frequency is exactly equal to the base sinusoid frequency, there is approximately a -3 dB

reduction in amplitude (~70.7% of original amplitude)

Figure 41. Digital first order low-pass filter acting on noisy sinusoid

There is an alternative approach to designing a discrete low-pass filter, and that is to use the bilinear

transform in order to convert the continuous filter transfer function into the discrete domain. Performing

this transform yields:

Last Revision: 2/13/2020 5:30 PM

134

𝐻(𝑧) =
𝜆

(
2
𝑇
) (

1 − 𝑧−1

1 + 𝑧−1) + 𝜆

Algebraically rearranging terms yields:

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)

1 + 𝑧−1

(1 +
2
𝜆𝑇

) + (1 −
2
𝜆𝑇

)𝑧−1

(1 +
2

𝜆𝑇
)𝑌(𝑧) + (1 −

2

𝜆𝑇
)𝑧−1𝑌(𝑧) = 𝑋(𝑧) + 𝑧−1𝑋(𝑧)

Converting this into the discrete domain through coefficient matching yields:

𝑦𝑘 = (
𝜆𝑇𝑠

𝜆𝑇𝑠 + 2
) {𝑥𝑘 + 𝑥𝑘−1 − (

𝜆𝑇𝑠 − 2

𝜆𝑇𝑠
) 𝑦𝑘−1}

Last Revision: 2/13/2020 5:30 PM

135

This filter was put into Octave and compared against the same 1 Hz sinusoid as demonstrated before:

Figure 42. Digital LPF from bilinear transform of continuous first order LPF acting on noisy sinusoid

Last Revision: 2/13/2020 5:30 PM

136

Discrete High Pass Filter

A simple first order high pass filter can be obtained for recorded measurement 𝑦𝑘 given new raw sensor

measurement 𝑥𝑘 by assuming the complex system can be modelled as:

𝜆�̇� + 𝑦 = 𝜆�̇�

The transfer function of this simple system would be:

𝐻(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
=

𝜆𝑠

𝜆𝑠 + 1

Notice that as 𝑠 → 0, the filter magnitude response decays to zero, representing the high-pass nature of

this filter response. Performing the same discretization and substitutions as with the discrete low pass filter,

we arrive at:

�̇�𝑘 =
𝑦𝑘 − 𝑦𝑘−1

𝑇𝑠

�̇�𝑘 =
𝑥𝑘 − 𝑥𝑘−1

𝑇𝑠

𝜆
𝑦𝑘 − 𝑦𝑘−1

𝑇𝑠
+ 𝑦𝑘 = 𝜆

𝑥𝑘 − 𝑥𝑘−1

𝑇𝑠

𝑦𝑘 = 𝜆 (
𝑥𝑘 − 𝑥𝑘−1

𝑇𝑠
−

𝑦𝑘 − 𝑦𝑘−1

𝑇𝑠
)

(1 +
𝜆

𝑇𝑠
) 𝑦𝑘 = 𝜆 (

𝑥𝑘 − 𝑥𝑘−1

𝑇𝑠
+

𝑦𝑘−1

𝑇𝑠
)

𝑦𝑘 =
𝑇𝑠

𝑇𝑠𝜆 + 1
(
𝑥𝑘 − 𝑥𝑘−1

𝑇𝑠
+

𝑦𝑘−1

𝑇𝑠
)

Now, defining , 𝜶 ≡
𝟏

𝑻𝒔𝝀+𝟏
 gives the form of the digital high pass filter:

𝒚𝒌 = 𝜶𝒚𝒌−𝟏 + 𝜶(𝒙𝒌 − 𝒙𝒌−𝟏), 𝜶 ≡
𝟏

𝑻𝒔𝝀 + 𝟏

Consider the same sinusoid as shown with the discrete low pass filter, but now instead apply a high pass

filter. It can be seen that for the lower cutoff frequencies, more of the original low frequency signal is

Last Revision: 2/13/2020 5:30 PM

137

retained, and as the cutoff frequency is moved upwards the output converges to the same magnitude as the

noise in the original measured signal.

Figure 43. Digital first order high-pass filter example acting on noisy sinusoid

Last Revision: 2/13/2020 5:30 PM

138

Butterworth Filters

A Butterworth filter is a type of signal processing filter that was explicitly designed to have a frequency

response that is as flat as mathematically possible in the passband. Because of this, it is often referred to as

a maximally flat magnitude filter. Because of this design criterion, Butterworth filters are typically used

when all frequencies in the passband have the same gain. The flat passband and monotonic nature if a

Butterworth filter come at the cost of roll-off steepness. When the smooth nature of a Butterworth response

is not necessary, elliptic or Chebyshev filters generally provide steeper roll off with a lower filter order.

Phase response is non-linear and phase shift (time delay) varies nonlinearly with frequency.

Without derivation, the magnitude response for the Butterworth filter of order N is given by:

𝐻(𝑗𝜔) =
1

√1 + (
𝑗𝜔
𝑗𝜔𝑐

)
2𝑁

Last Revision: 2/13/2020 5:30 PM

139

Figure 44. Butterworth filter magnitude and phase response for various N

All Butterworth filters can be expressed as a transfer function in the s-domain such that:

𝐻(𝑠) =
1

𝐵𝑁(𝑠)

Last Revision: 2/13/2020 5:30 PM

140

The number of poles in the transfer function reflect the order of the Butterworth filter, but without

derivation the polynomials 𝐵𝑁(𝑠) are given below:

In order to design a filter using this architecture in the time-domain for use in a microcontroller, the

polynomial 𝐻(𝑠) must be converted to the z-domain by use of the bilinear transform and then converted to

the time domain.

Last Revision: 2/13/2020 5:30 PM

141

Chebyshev Filters

A Chebyshev filter of the first kind, also referred to synonymously as Chebyshev I, or Chebyshev

Type I filters, has a response characterized by equal ripple attenuation in the passband and monotonically

increasing attenuation in the stopband. The tradeoff for faster stopband roll off is increased passband ripple.

The steepness of the stopband roll off is directly proportional to magnitude of passband ripple. Chebyshev

I filters have a sharper passband-stopband transition than Butterworth filters. The equation defining a

Chebyshev Type I filter is:

𝐻(𝑗𝜔) =
1

√1 + 휀2𝐶𝑁 (
𝑗𝜔
𝑗𝜔𝑐

)

where 휀 is the “ripple factor” and 𝐶𝑁 is the Chebyshev polynomial or order N which is a function of

(
𝑗𝜔

𝑗𝜔𝑐
). Chebyshev polynomials are a sequence of orthogonal polynomials, which can be recursively

generated using the recurrence relation:

The polynomials are, in order:

Last Revision: 2/13/2020 5:30 PM

142

The poles for a Chebyshev filter or order N are given by:

The normalized transfer function of a Chebyshev filter is:

The performance of a Chebyshev filter shines when steep roll-off is a requirement and excessing ripple in

the passband is acceptable, as evidenced by the magnitude response shown:

Last Revision: 2/13/2020 5:30 PM

143

Figure 45. Magnitude response of a Chebyshev Type I Filter

Bessel Filters

A Bessel filter is a filter with a maximally linear phase response. This is useful when the waveform in

the passband needs to be preserved. These types of filters are used in audio based projects, but are much

more niche than the other IIR filters mentioned. A Bessel low-pass filter is defined by the transfer function:

𝐻(𝑠) =
𝜃𝑁(0)

𝜃𝑁 (
𝑠
𝜔0

)

where 𝜃𝑁 is the reverse Bessel polynomial of order N. Unlike the other two filters, it is inappropriate to

use a bilinear transform to convert this to the z-domain. This is because the bilinear transform only

conserves the magnitude response of the continuous transfer function and not the phase response due to

frequency warping, and instead it is appropriate to use the digital equivalent of a Bessel filter, the Thiran

filter, in the event that this filter is desired.

Conclusions

What can easily be seen is that simple first order IIR filters do not require excessive effort to implement,

but as the order increases, the mathematical rigor does as well. To move these filters into the discrete time

domain is often too mathematically rigorous and often not worth the time; but ultimately this depends on

what you need from your filter response. An alternative to these types of filters are the nonlinear FIR

(Finite Impulse Response) filters, which are fairly intuitive and easy to use.

Last Revision: 2/13/2020 5:30 PM

144

FIR (Finite Impulse Response) Filters

 A Finite Impulse Response filter is one that does not asymptotically approach a steady state value,

but exactly approaches it in finite time. There are many types of finite impulse response filters, and only a

few of the rudimentary examples are presented here.

Moving Average Filter

A moving average filter simply takes n samples and averages them for the recorded measurement 𝑦𝑘.

𝑦𝑘 =
𝑥𝑘 + 𝑥𝑘−1 + ⋯+ 𝑥𝑘−𝑛

𝑛

This type of filter tends to have a low-pass response, but at high frequencies some frequencies are

attenuated better than others (some are completely attenuated and others are not attenuated very well, which

leads to a general consensus that as a pure low-pass filter the moving average does not give great

performance). Without derivation, the frequency response of an n point moving average filter is given by:

𝐻[𝑓] =
sin (𝜋𝑓𝑛)

𝑛 sin(𝜋𝑓)

Over-Sampling

If the ADC speed is much greater than the sample time and the signal noise is greater than the

discretization error, then a helpful approach is to quickly sample the measurement several times and use a

single recorded measurement as the average of these rapid samples. This would be given by:

𝑦𝑘 =
𝑥𝑘

(1) + 𝑥𝑘
(2) + ⋯+ 𝑥𝑘

(𝑛)

𝑛

The ADC.h library includes a series of functions to be called in the setup() loop, among them is

setAveraging(num_avg), which gives the ability to easily over-sample data. The ADC is sometimes by

default set up to oversample, (e.g. the number of samples taken per call to analogRead() being 4 for the

Teensy 3.2). This filters noise and effectively increases the resolution of the ADC if there is enough signal

noise. In some cases, noise can be intentionally added to ensure that this works (“dithering”). One way to

add uniformly distributed noise is to simply heat up the circuit (see Nyquist-Johnson noise which states that

noise is proportional to resistance and temperature). Another approach is to use random numbers as noise

in software (see this page on details on the random() function in Arduino)

https://forum.pjrc.com/threads/25532-ADC-library-update-now-with-support-for-Teensy-3-1
https://en.wikipedia.org/wiki/Johnson%E2%80%93Nyquist_noise
https://www.arduino.cc/en/Reference/Random

Last Revision: 2/13/2020 5:30 PM

145

Median Filter

A median filter simply rejects noise by taking the median of n samples. This simple filter can work quite

well and is given by:

𝑦𝑘 = median(𝑥𝑘, 𝑥𝑘−1, … , 𝑥𝑘−𝑛)

This method rejects large excursions with a single sample delay. A median filter can be constructed by

storing measurements in an array and using a bubblesort algorithm to sort the values in order from highest

to lowest, then taking the middle value of that array.

Velocity Filters

A velocity filter restricts how quickly parameters can change in time, typically based on some physical

knowledge of the actual model being measured. One way to represent this would be to use the maximum

increment of change as dy and then using max() and min() as bounds:

𝑦𝑘 = max (𝑦𝑘 − 𝑑𝑦,min(𝑦𝑘 + 𝑑𝑦, 𝑥𝑘))

Kalman Filters and State Estimators

There exist several complex filtering schemes not covered here, notably Kalman filters. This is because

these filters begin to become more advanced, and require knowledge and mathematics beyond the scope of

this document. To read up more on Kalman filters in particular, An Introduction to Kalman Filters by Greg

Welch and Gary Bishop is a good place to start. For a brief summary, a Kalman filter integrates sensor data

with a mathematical system model (with systems of equations derived for ideal system and sensor behavior)

and acts as a state estimator. If sensor noise and unmodelled system dynamics can be considered Gaussian

distributions, the Kalman filter is an optimal state estimator for linear systems. For nonlinear systems,

variants such as the Extended Kalman Filter and the Unscented Kalman Filter can be used with varying

degrees of success. Because the math behind of Kalman filter involves extensive use of matrices, it is not

always appropriate to use with a microcontroller due to computational limitations, but for complex systems

with multiple sensors, it can still be appropriate. Kalman filters and other associated types of algorithms

(e.g. alpha beta filters) are usually termed state estimators because they take in both a system model and

sensor data and merge them to act as a predictor to estimate the current states of a system.

https://en.wikipedia.org/wiki/Bubble_sort
http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

Last Revision: 2/13/2020 5:30 PM

146

C++ Libraries

A C++ class is a user made library that gives an Arduino sketch a “hidden toolbox” that is easy to access.

Classes provide two main benefits to the user:

1. Protect methods (functions) from user (functions in a class are termed methods)

2. Make generalized methods instead of writing new functions (i.e. a class can be created that

debounces a button instead of writing a new function for each button that needs to be debounced)

A class consists of two portions: the header file (.h) and the C++ source (.cpp). These files must have

the same name and be in the same directory. The header file is typically used for initializing the class and

prototyping all methods and variables to be used within the class. These methods and variables can either

be public (can be referenced in the main sketch) or private (only referenced from within the class itself).

As a matter of consistency, private parameters are usually prefaced with an underscore (“_”). Using the

simple example of using the LED to blink Morse code, the syntax for the header file would be:

A class is simply a collection of functions and variables that are all kept together in one place. These

functions and variables can be public, meaning that they can be accessed by people using your library; or

private, meaning they can only be accessed from within the class itself. Each class has a special function

known as a constructor, which is used to create an instance of the class. The constructor has the same name

as the class, and no return type.

Last Revision: 2/13/2020 5:30 PM

147

Now, the source file could look like:

First comes a couple of #include statements. These give the rest of the code access to the standard

Arduino functions, and to the definitions in your header file. Then comes the constructor. Again, this

explains what should happen when someone creates an instance of your class. In this case, the user specifies

which pin they would like to use. The pin is configured as an output save it into a private variable for use

in the other functions. There are a couple of strange things in this code. First is the Morse:: before the name

of the function. This says that the function is part of the Morse class. You'll see this again in the other

methods in the class. The second unusual thing is the underscore in the name of our private variable, _pin.

This variable can actually have any name you want, as long as it matches the definition in the header file.

Adding an underscore to the start of the name is a common convention to make it clear which variables are

private, and also to distinguish the name from that of the argument to the function (pin in this case).

Last Revision: 2/13/2020 5:30 PM

148

To incorporate this into a sketch, just be sure to include the newly created library:

Last Revision: 2/13/2020 5:30 PM

149

Hardware Considerations

Mechanical Switches and Switch Debouncing

Mechanical switches are some of the most common interfaces to a microcontroller. They come in many

forms, but the form many are familiar with are simple buttons. In theory, when the button is pressed down,

it will complete an electrical connection between two terminals and when it is lifted up, the electrical

connection will be broken and there will be an open circuit. The circuit could be as simple as a push-button

switch being used to light up an LED, as shown. The resistor is placed to limit current, as an LED has a

very low resistance.

Now is a good time to introduce the idea of a pull-up resistor. As shown in the following schematic, a

pull-up resistor will simply make sure that the output voltage reads out HIGH when the switch is open, and

the output voltage is moved LOW as the switch closes.

Often, a user wants to enable something like an LED that lights up when a button is pushed, with the

button being attached to a digital pin on one side and ground on the other. This is a possibility because all

digital pins on a Teensy 3.2 microcontroller have built in pull-up resistors that can be used to pull the signal

Last Revision: 2/13/2020 5:30 PM

150

HIGH when the button is released, and move it LOW when the button is pressed. This is enabled by using

pinMode(pin, INPUT_PULLUP).

The problem with mechanical switches is that they are asynchronous to the microcontroller and that they

are not electrically clean. This means that they are not likely to be pressed at the exact moment they are

being checked on, so the user will have to hold the button down for some time, and sparks that fly as the

button is pressed/let go cause the signal to be messy. For example, the act of letting go of a button could

generate the following response:

Figure 46. Raw signal from pushbutton

The microcontroller is likely to interpret this as the button being pushed several times, when all that

really happened is that the button was released once. To resolve this, there are few options for what is

known as switch debouncing. One such option that involves hardware is to incorporate a low pass filter,

as shown (𝑉𝑡ℎ is the threshold voltage):

Last Revision: 2/13/2020 5:30 PM

151

However, this issue can be addressed in software as well and without the level of tediousness needed to

select a resistor and capacitor that will correctly debounce the switch. Take the following schematic of a

button wired up to a digital pin on an Arduino:

Last Revision: 2/13/2020 5:30 PM

152

The general idea is to create some small amount of time and once a change in the state of the button

(pressed or not pressed) occurs, wait that small amount of time and check the button again. If the change

remains, register is as a true change. If the change has not remained, disregard it as noise. Note the use of

millis(), which is the number of milliseconds the program has run (micros() could also be used which

returns the number of microseconds that the program has run). The code that accomplishes this is listed

below:

Last Revision: 2/13/2020 5:30 PM

153

Last Revision: 2/13/2020 5:30 PM

154

Analog Sensors (ex. Accelerometers)

An analog sensor is a sensor that outputs an analog voltage that is in some way related to the

measurement the sensor is supposed to take. Analog Devices sells many of these types of sensors. While

analog sensors are, for the most part, obsolete to their digital successors, they can still frequently find use

due to ease of use and low price.

An accelerometer is a device that measures acceleration in the Cartesian coordinates relative to free-

fall (“proper acceleration”). Conceptually, the sensor behaves like a mass on a spring with damping. Upon

accelerating, the mass is displaced a distance proportional to the net acceleration (in reality, the piezoelectric

effect converts displacement directly into voltage which is then converted into an analog signal). The

ADXL327 model, for example, has the following layout:

Figure 47. ADXL327 Block Diagram

As one can see, there are several components on this board. COM denotes the circuit common ground,

and is represented with a triangle on this diagram. The three-axis sensor contains the piezoelectric

component. The sensor output is fed into an AC amplifier, which is then demodulated. Demodulation

means that the effects of the measurement of one axis is separated from the effects of the other two axes.

The resultant three signals are then amplified and passed through a low-pass filter where the user chooses

the sizing of the filter’s capacitor. The acceleration for each axis is then provided as an analog signal.

The ST pin reflects a test voltage that can be used instead of the sensor. The accelerometer itself can be

supplied anywhere between 1.8 V and 3.6 V at approximately 350 μA to function. However, for analog

sensors it is imperative to note that the output is ratiometric, which means it scaled relative to the supply

voltage.

http://www.analog.com/en/index.html
http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL327.pdf

Last Revision: 2/13/2020 5:30 PM

155

The capacitor located on the outside of the chip is what is known as a decoupling capacitor. Because

the current draw into the sensor varies and the sensor and the wiring that connects to it all have an native

inductance, back voltages will impede the proper amounts of power from getting to the sensor. The presence

of the capacitor bypass the effects of the inductance of the wire, because it acts as an energy storage unit

that will supply the sensor with power even if a induced back electromotive force is present.

Accelerometers measure acceleration is g’s (where 1 𝑔 ≡ 9.81 𝑚
𝑠2⁄). This specific model claims to

have a minimum sensitivity of 378
𝑚𝑉

𝑔
 and a maximum sensitivity of 462

𝑚𝑉

𝑔
, depending on the supply

voltage (again, it is scaled because the output is ratiometric). The measuring range is given to be ±2 g.

Table 6. ADXL327 Accelerometer Datasheet Excerpt

Last Revision: 2/13/2020 5:30 PM

156

This accelerometer, like most analog devices, also has some zero offset bias. This means that as the

actual acceleration is zero, the output reflects some non-zero voltage. This means that the acceleration in

g’s could be computed as:

𝑎 = [(
𝑉𝑟𝑒𝑓

2𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
) (𝑉𝑟𝑒𝑎𝑑 − 𝛼𝑉𝑠𝑢𝑝𝑝𝑙𝑦𝛾)] (𝛽𝑉𝑠𝑢𝑝𝑝𝑙𝑦𝛿)

 𝛼 is the zero offset bias’ dependence on the supply voltage

𝛽 is the signal sensitivity dependence on the supply voltage

𝛾 is the mean offset bias across the range of voltage supplies

𝛿 is the mean sensitivity across the range of voltage supplies

Zero offset bias is a parameter that can also be effected by the temperature of the sensor. This is mostly

a factor as the sensor initially turns on and moves from cold to hot. By reading the temperature with a

temperature sensor, this bias could be accounted for if it’s a problem.

A tutorial on wiring this specific sensor and making code for it is provided on Arduino’s website here.

NOTE: As far as accelerometers go, they are not able to measure certain types of angular rotation.

Because of this, the inclusion of gyroscopes to help with this problem with this type of sensor lead to what

is known as an Inertial Measurement Unit (IMU). Analog IMUs are sold and a list of Analog Devices

IMUs is provided here.

https://www.arduino.cc/en/Tutorial/ADXL3xx
http://www.analog.com/en/products/mems/inertial-measurement-units.html

Last Revision: 2/13/2020 5:30 PM

157

Rotary Encoders

A rotary encoder is one of the most common means to measure the rotational position and rotational

velocity of a shaft. There are two main types of encoders: absolute encoders and incremental encoders. An

absolute encoder will remember the position of the shaft after losing and regaining power, and measures

the position to some common reference point on every run. An incremental encoder will simply keep track

of the motion once the program begins and will not store the information for later use.

Figure 48. Incremental Rotary Encoder

An incremental rotary encoder provides cyclical outputs (only) when the encoder is rotated. They can

be either mechanical, optical or magnetic. The mechanical encoders require debouncing, and are typically

used as digital potentiometers on equipment including consumer devices. Most modern home and car

stereos use mechanical rotary encoders for volume control. Due to the fact the mechanical switches require

debouncing, the mechanical type are limited in the rotational speeds they can handle. The incremental rotary

encoder is the most widely used of all rotary encoders due to its low cost and ability to provide signals that

can be easily interpreted to provide motion related information such as velocity.

The fact that incremental encoders use only two sensors does not compromise their resolution. One can

find in the market incremental encoders with up to 10,000 counts per revolution, or more. There can be an

optional third output: reference or "index", which happens once every turn. This is used when there is the

need of an absolute reference, such as positioning systems. The index output is usually labeled Z. The

optical type is used when higher speeds are encountered or a higher degree of precision is required.

Last Revision: 2/13/2020 5:30 PM

158

Incremental encoders are used to track motion and can be used to determine position and velocity. This can

be either linear or rotary motion. Because the direction can be determined, very accurate measurements can

be made. They employ two outputs called A and B, which are called quadrature outputs, as they are 90

degrees out of phase. The state diagram for these outputs is given by:

The two output waveforms are 90 degrees out of phase, which is what quadrature means. These signals

are decoded to produce a count-up pulse or a countdown pulse. For decoding in software, the A and B

outputs are read by software, either via an interrupt on any edge or polling, and the above table is used to

decode the direction. For example, if the last value was 00 and the current value is 01, the device has moved

one-half step in the clockwise direction. The resolution of the encoder would then reveal how far this half

step is in degrees of rotation. The mechanical types would be debounced first by requiring that the same

(valid) value be read a certain number of times before recognizing a state change.

An example encoder output for clockwise rotation is given by:

The Encoder.h library is extremely useful for reading data from a rotary encoder. For best performance

with this library, both outputs A and B should be connected to interrupt pins (and on the Teensy 3.2 all

digital pins have interrupt capability). It can be used (albeit with some sacrifice in performance) if only one

Last Revision: 2/13/2020 5:30 PM

159

pin has interrupt ability, or if neither of them do. Keep in mind that if the pins do not have interrupt

capability, this performance sacrifice comes in the form of not being able to accurately measure higher

speeds.

The basic usage of the library is covered with the following expressions:

Encoder myEnc(pin1, pin2)

Purpose: Create an Encoder object myEnc, using 2 pins. You may create multiple Encoder objects,

where each uses its own 2 pins. The first pin should be capable of interrupts. If both pins

have interrupt capability, both will be used for best performance. Encoder will also work in

low performance polling mode if neither pin has interrupts.

Parameters: pin1: Channel A output

pin2: Channel B output

myEnc.read()

Purpose: Returns the accumulated position as an integer. This number can be positive or negative.

Parameters: none

myEnc.write(newPosition)

Purpose: Set the new accumulated position as an integer. This is useful for zeroing out the encoder

reading at any stage in the code.

Parameters: newPosition: new myEnc position as an integer

Last Revision: 2/13/2020 5:30 PM

160

Some example code is provided below that returns the position of two knobs connected to the

microcontroller:

Last Revision: 2/13/2020 5:30 PM

161

Load Cells

A load cell is a device that can measure the tensile or compressive forces on it. Often this is

accomplished via the use of a Wheatstone Bridge. A Wheatstone bridge is an electrical circuit used to

measure an unknown electrical resistance by balancing two legs of a bridge circuit, one leg of which

includes the unknown component as shown (Figure 49).

Figure 49. Wheatstone Bridge Schematic

The main idea is that if the two resistances on the left side of the circuit are equivalent to the two

resistances on the right side of the circuit, then no current will pass through the center of the circuit (as

current will only want to pass through the path of least resistance). Therefore, by adjustment of the resistor

R2 the resistance of Rx can be found. The primary benefit of a Wheatstone bridge is its ability to provide

extremely accurate measurements.

With a load cell, this unknown resistance varies with the load linearly, and the measurement of this

resistance reveals the load after calibration. Load cells come in a variety of different forms, and can be set

up to be mounted in several ways and be set up for significantly different loads. A very small example of

this wide variety are displayed below (Figure 50):

Last Revision: 2/13/2020 5:30 PM

162

Figure 50. Example of Load Cell Appearances

A load cell amplifier, such as the HX711 is compatible with any such load cell that utilizes a bridge

and uses SPI protocol for communication. The attached link has links to the library, which has functions

for taring the load cell and calibrating the output. The amplifier takes in four inputs from the load cell (the

two excitation voltages and the load cell output).

Figure 51. Load Cell Wiring

Because this is a load cell, each of the resistors in the Wheatstone Bridge is actually a strain gauge.

Knowledge of the voltage of all four locations reveals everything about the loading of the load cell because

the resistance of each strain gauge is known. The convention for wire coloring coming off a load cell can

vary greatly, but generally follows a format:

 Excitation+ (E+) or VCC is red

 Excitation- (E-) or ground is black.

 Output+ (O+), Signal+ (S+)+ or Amplifier+ (A+) is white

 O-, S-, or A- is green or blue

https://www.sparkfun.com/products/13879

Last Revision: 2/13/2020 5:30 PM

163

The amplifier requires only two pins to be connected to the microcontroller, Data Out (DOUT) and

Serial Clock (CLK). Oddly enough, these can be connected to any GPIO (General Purpose Input/Output)

pin and still function.

The library has some of the following useful functions and expressions:

HX711 scale(DOUT, CLK)

Purpose: Create a scale object to interact with the load cell with the two pins specified.

Parameters: DOUT: pin for the output of the load cell amplifier

CLK: pin for the serial clock

scale.set_scale(calibration_factor)

Purpose: Sets the scale object’s calibration factor. Run the code at least once with a scaling factor of

1 and test with a known weight. Then divide the number 10.0 by the output value gotten to

calibrate the reading.

Parameters: calibration_factor: factor that transforms resistance measurements to load reading

scale.tare(num_samples)

Purpose: Tare (zero) the scale object. Can be used without an input, but if an input is chosen, the

number of samples specified will be taken and averaged to find the zero position.

Parameters: num_samples: number of samples to average for load cell reading

scale.get_units(num_samples)

Purpose: Returns a floating point number corresponding to the computed load. If an input is given,

then the number of samples specified is averaged to return the load.

Parameters: num_samples: number of samples to average for load cell reading

Piezoelectric Load Cells and Pressure Transducers

As mentioned earlier in this document, piezoelectric transducers are suitable for robust dynamic load

measurements. PCB Piezotronics has an extensive selection of piezoelectric transducers suitable for a

variety of applications. These sensors can be used to capture blast wave phenomena including peak static

pressures and overpressures and can be calibrated for hundreds of pounds per square inch in blast wave

overpressures through the use of specialized blast probes. It should be noted that the usage of these devices

benefits from the usage of specialized low noise cables which must be routed into a specialized amplifier

(a source follower in theory, but in practice the usage of special PCB Signal Conditioner units is standard).

http://www.pcb.com/Home

Last Revision: 2/13/2020 5:30 PM

164

Logic Level Conversion and H-Bridges

This entire document has focused on using microcontrollers predicated on utilizing either 5 V logic

(such as the Arduino Uno) or 3.3 V logic (such as the Teensy microcontroller family). There are several

situations that might arise where a certain sensor requires interfacing with a 3.3 V logic signal or some

motor driver requires 5 V logic to function. To get over this obstacle you need a device that can shift 3. 3V

up to 5 V, or 5 V down to 3.3 V. This is called logic level shifting. Level shifting is a dilemma so common

that a board has been created that solves the issue: the Bi-Directional Logic Level Converter. The actual

circuit to accomplish this is quite simple, requiring two pull-up resistors (discussed in Mechanical Switches

and Switch Debouncing) and an N-channel MOSFET. The circuit is provided below for the SparkFun

BSS138:

Figure 52. Bi-Directional Logic Level Converter

LV and HV are constant voltages at the low level and high level, respectively. LV1 and HV1 are the

logic levels (one of which will be the input and one the output). The method of operation is simple, as LV1

is input LOW, the MOSFET will connect LV1 and HV1 so that HV1 is then LOW. As LV1 is input HIGH,

the MOSFET separates the two legs and HV1 is pulled up to HV.

As HV1 moves LOW, the drain substrate diode pulls LV1 low and the MOSFET again becomes

conducting and allows for level converting. Lastly, as HV1 in input HIGH, the MOSFET is not conductive

and LV1 remains HIGH. Hence, the level can be converted in both directions. This is one very convenient

https://cdn.sparkfun.com/assets/f/3/3/4/4/526842ae757b7f1b128b456f.png

Last Revision: 2/13/2020 5:30 PM

165

way to convert digital 3.3 V signals to 5 V signals or vice versa. The SparkFun Bi-Directional Level

Converter takes on the following appearance, with four distinct data channels for conversion:

Figure 53. SparkFun Bi-Directional Level Converter

These types of level converters are limited to how much current they can pass and also cannot perform

a task such as moving a DC motor in two directions. This type of task is better accomplished by a bit of

circuitry known as an H-Bridge. An H bridge is an electronic circuit that enables a voltage to be applied

across a load in either direction and is composed of nothing but MOSFETs and diodes.

In general, an H-bridge is a rather simple circuit, containing four switching elements, with the load at

the center, in an H-like configuration:

https://www.sparkfun.com/products/12009?_ga=1.36698983.613474307.1487794078
https://www.sparkfun.com/products/12009?_ga=1.36698983.613474307.1487794078
https://cdn.sparkfun.com/assets/f/d/5/8/4/526842ae757b7f5c108b456b.png

Last Revision: 2/13/2020 5:30 PM

166

Figure 54. H-Bridge Circuit

The basic operating mode of an H-bridge is simple: if Q1 and Q4 are turned on, the left lead of

the motor will be connected to the power supply, while the right lead is connected to ground.

Current starts flowing through the motor, which energizes the motor in the forward direction, and

the motor shaft starts spinning.

Figure 55. H-Bridge Driving Motor Forward

If Q2 and Q3 are turned on, the reverse will happen, the motor is energized in the reverse

direction, and the shaft will start spinning backwards.

http://modularcircuits.com/blog/wp-content/uploads/2011/10/image8.png

Last Revision: 2/13/2020 5:30 PM

167

Figure 56. H-Bridge Driving Motor Backwards

In a bridge, both Q1 and Q2 (or Q3 and Q4) should never be closed at the same time. If you did

that, you just have created a really low-resistance path between power and GND, effectively short-

circuiting your power supply. This condition is called shoot-through and will almost assuredly

destroy either the H-Bridge or some other part of the circuit.

Figure 57. H-Bridge Short Cicuit (Shoot-through)

An H-Bridge that is designed to draw larger amounts of current and comes with a dedicated heat sink

may be termed a motor driver.

http://modularcircuits.com/blog/wp-content/uploads/2011/10/image9.png
http://modularcircuits.com/blog/wp-content/uploads/2011/10/image10.png

Last Revision: 2/13/2020 5:30 PM

168

Figure 58. L298 Motor Driver

A motor driver such as the L298 shown above will be powered by a high voltage source (typically on

the order of 12-24 V but can be much higher depending on the specific driver ordered) and takes in either

3.3 V or 5 V microcontroller PWM logic on four pins (typically labelled IN1, IN2, IN3, and IN4). These

inputs activate the transistors that act as the switches in the H-Bridge. The motors to be driven, which can

be anything from a DC motor to a Peltier cooler, will have their inputs placed on the outputs of the motor

driver. The above model has two separate screw terminals for these outputs. The PWM output from the

microcontroller dictates the voltage outputs such that fifty percent duty on IN1 and zero percent duty on

IN2 might give half of the supply voltage to the motor in one direction. Placing fifty percent duty on IN2

and zero percent duty on IN1 might result in the same voltage differential, just in the opposite direction. It

should be noted that the L298 and its derivatives, while simple and a good introduction to the hardware of

a motor driver, is a fairly archaic design that is not thermally efficient when passing larger amounts of

current, so for higher current needs more modern motor drivers should be purchased.

Last Revision: 2/13/2020 5:30 PM

169

Electric Motors

Stepper Motors

A stepper motor is a brushless DC electric motor that divides a full rotation into a number of equal

steps. The motor's position can then be commanded to move and hold at one of these steps without any

feedback sensor (an open-loop controller), as long as the motor is carefully sized to the application in respect

to torque and speed. The common appearance of a stepper motor is something as is shown below:

Figure 59. Example Stepper Motor

A stepper motor is a motor controlled by a series of electromagnetic coils. The center shaft has a series

of magnets mounted on it, and the coils surrounding the shaft are alternately given current or not, creating

magnetic fields which repulse or attract the magnets on the shaft, causing the motor to rotate.

This design allows for very precise control of the motor: by proper pulsing, it can be turned in very

accurate steps of set degree increments (for example, two-degree increments, half-degree increments, etc.).

They are used in printers, disk drives, and other devices where precise positioning of the motor is necessary.

There are two basic types of stepper motors, unipolar steppers and bipolar steppers.

Unipolar Stepper Motors

The unipolar stepper motor has five, six, or eight wires and four coils (actually two coils divided by

center connections on each coil). The center connections of the coils are used as the power connection, and

for the five wire configuration they are tied together. These stepper motors are termed unipolar steppers

because power always comes in on this one pole. The other two wires on each coil are then switches HIGH

or LOW in order to reverse the polarity of the current across the coil and switch stepper motor direction.

The inherent advantage of the unipolar stepper motor is ease of use. However, it takes twice as much

wire per coil when compared to a bipolar stepper motor. Because only half of the coil is used, a unipolar

stepper motor will generate less torque than a bipolar stepper motor.

Last Revision: 2/13/2020 5:30 PM

170

Figure 60. Unipolar Stepper Motor Schematic (5 Wire)

Figure 61. Unipolar Stepper Motors (Various Lead Types)

Bipolar stepper motors

The bipolar stepper motor usually has four wires coming out of it. Unlike unipolar steppers, bipolar

steppers have no common center connection. They have two independent sets of coils instead. Because

there is only a single winding per phase, a more complicated circuit is needed to switch the polarity. This

is usually accomplished externally with an H-Bridge attached to each coil.

Bipolar stepper motors can be distinguished from unipolar steppers by measuring the resistance between

the wires. You should find two pairs of wires with equal resistance. If the leads of a multimeter connected

to two wires that are not electrically connected (i.e. not attached to the same coil), you should see infinite

resistance (or no continuity).

Last Revision: 2/13/2020 5:30 PM

171

Like other motors, stepper motors require more power than a microcontroller can give them, so a

separate power supply is required for it. Ideally, the voltage will be known, but if not, get a variable DC

power supply, apply the minimum voltage (hopefully 3V or so), apply voltage across two wires of a coil

(e.g. 1 to 2 or 3 to 4) and slowly raise the voltage until the motor is difficult to turn. It is possible to damage

a motor this way, so do not go too far. Typical voltages for a stepper might be 5V, 9V, 12V, 24V. Higher

than 24V is less common for small steppers.

Figure 62. Bipolar Stepper Motor Schematic

To control the stepper, apply voltage to each of the coils in a specific sequence. The sequence would go

like this:

A comparison between the two types of stepper motors is provided below:

Figure 63. Comparison of Unipolar to Bipolar Stepper Motors

Last Revision: 2/13/2020 5:30 PM

172

For convenience, instead of making your own circuit of transistors and diodes to power a stepper motor,

a user can take advantage of premade boards known as stepper motor drivers such as the EasyDriver

developed by SparkFun, shown below:

Figure 64. SparkFun EasyDriver

This provided four inputs for the four wires connected to the coils, and two additional inputs for

microstepping (MS1 and MS2). Microstepping uses sinusoidal waveforms applied to the coils to increase

angular resolution of the motor. After hooking up the motor, the circuit would look something like the

image on the following page:

https://www.sparkfun.com/products/12779
https://www.sparkfun.com/products/12779

Last Revision: 2/13/2020 5:30 PM

173

Last Revision: 2/13/2020 5:30 PM

174

The Stepper.h library is useful for controlling stepper motors and includes the following functions:

Stepper myStepper = Stepper(steps, pin1, pin2, pin3, pin4)

Purpose: This function creates a new instance of the Stepper class that represents a particular stepper

motor attached to your Arduino board. Use it at the top of your sketch, before the setup

loop. The number of parameters depends on how you've wired your motor - either using

two or four pins of the Arduino board.

Parameters: steps: the number of steps in one revolution of your motor. If your motor gives the number

of degrees per step, divide that number into 360 to get the number of steps as an integer

pin1, pin2: pins that connect to the stepper motor

pin3, pin4 (optional): optional pins that connect to the stepper motor for a four-

wire configuration

myStepper.step(steps)

Purpose: Turns the motor a specific number of steps, at a speed determined by the most recent call to

setSpeed(). This function is blocking; that is, it will wait until the motor has finished

moving to pass control to the next line in your sketch. For example, if you set the speed to,

say, 1 RPM and called step(100) on a 100-step motor, this function would take a full

minute to run. For better control, keep the speed high and only go a few steps with each call

to step().

Parameters: steps: the number of steps to turn the motor - positive to turn one direction, negative to

turn the other as an integer.

myStepper.setSpeed(rpms)

Purpose: Sets the motor speed in rotations per minute (RPMs). This function doesn't make the motor

turn, just sets the speed at which it will when you call step().

Parameters: rpms: a positive long type number that reflects the speed of the motor in rotations per

minute.

https://www.arduino.cc/en/Reference/Stepper

Last Revision: 2/13/2020 5:30 PM

175

DC Motors

A DC motor (Direct Current Motor) is any of a class of rotary electrical machines that converts direct

current electrical energy into mechanical energy. The most common types rely on the forces produced by

magnetic fields. Nearly all types of DC motors have some internal mechanism, either electromechanical or

electronic, to periodically change the direction of current flow in part of the motor. DC motors come in two

major varieties: brushed DC motors and brushless DC motors.

A simple brushed electric motor will have six major components:

 Armature or rotor

 Commutator

 Brushes

 Axle

 Field magnet

 DC power supply of some sort

Figure 65. Brushed DC Motor Schematic

The axle holds the armature and the commutator. The armature is a set of electromagnets. The armature

in a small DC motor like one would find in a toy could be a simple as thin metal plates stacked together,

with thin copper wire coiled around each of the three poles of the armature. The two ends of each wire (one

wire for each pole) are soldered onto a terminal, and then each of the terminals is wired to one plate of the

commutator. The final piece of any DC electric motor is the field magnet. The field magnet in this motor is

formed by the motor container itself plus two curved permanent magnets.

Last Revision: 2/13/2020 5:30 PM

176

The motor turns because as electricity passes through the coils, the coils become magnetized and rotate

in accordance with the magnetic field generated by the field magnet. Because the motor would stop once

the coil north pole is oriented towards the field magnet’s south pole and vice versa, the brushes serve the

purpose or reversing the polarity of the current passing through the coils as the motor rotates.

Brushed DC motors are simple and quite easy to manufacture, but they have a litany of problems that

plague them, including:

 The brushes eventually wear out.

 Because the brushes are making/breaking connections, there is sparking and electrical noise.

 The brushes limit the maximum speed of the motor.

 Convection is limited due to presence of electromagnet in the center of the motor, leading to

overheating.

 The use of brushes puts a limit on how many poles the armature can have.

In a brushless DC motor, the permanent magnets are moved to the rotor and the electromagnets are

moved to the stator. External transistors can then be used to power the electromagnets as the motor turns.

While this operation required additional hardware and is more expensive than a brushed DC motor, it is

much more reliable and can more accurately turn the motor.

Figure 66. Brushless DC Motor

Last Revision: 2/13/2020 5:30 PM

177

Worth noting is that method of operation is pretty similar to that of AC motors, except that the

transistors are replaced with the naturally oscillating signal of the AC power supply that drives the motor.

DC motors can be easily included in a circuit analysis of a system. The DC motor's counter emf (𝐸𝑏) is

proportional to the product of the machine's total flux strength (Φ) and armature speed in rpm (n):

𝐸𝑏 = 𝑘𝑏Φ𝑛

where 𝑘𝑏 is the counter emf constant of proportionality. The DC motor's input voltage must overcome

the counter emf as well as the voltage drop created by the armature current across the motor resistance, that

is, the combined resistance across the brushes, armature winding and series field winding (𝑅𝑚), if any:

𝑉𝑚 = 𝐸𝑏 + 𝑅𝑚𝐼𝑎

The DC motor's torque (T) is proportional to the product of the armature current and the

machine's total flux strength:

𝑇 =
1

2𝜋
𝑘𝑏𝐼𝑎Φ = 𝑘𝑇𝐼𝑎Φ

where 𝑘𝑇 is the torque constant, which is itself directly proportional to the counter emf constant. The

motor speed is given by the first equation to be:

𝑛 =
𝐸𝑏

𝑘𝑏Φ

Knowing the expression for 𝑉𝑚, it can then be seen that:

𝑛 =
𝑉𝑚 − 𝑅𝑚𝐼𝑎

𝑘𝑏Φ
= 𝑘𝑛

𝑉𝑚 − 𝑅𝑚𝐼𝑎

Φ

where 𝑘𝑛 is the speed constant.

Because the total resistance of a DC motor is often less than one Ohm, there is large current draw as the

motor begins to rotate and there is no inductance creating a back emf. When DC motors were first invented,

this was accommodated by manually adjusting the input power as the motor would start up. In modern

technology, a protection circuit known as a four-point-starter is frequently used to accommodate for this.

Last Revision: 2/13/2020 5:30 PM

178

Thermocouples

A thermocouple is a type of temperature sensor. Unlike semiconductor temperature sensors such as the

TMP36 , thermocouples have no active electronics inside of them but instead are passive systems. They are

constructed by welding together two metal wires (although if necessary, tightly twisting the wires together

can also suffice) and keeping at least one reference junction of constant temperature for the two metals

away from the measurement point. Because of a physical effect of two joined metals known as the Seebeck

effect, there is a slight but measurable voltage across the wires that increases with temperature. This is

usually expressed as a linear relationship such that:

𝑉𝑇𝐶 = 𝑆∇𝑇

 where 𝑆 is the Seebeck coefficient and ∇𝑇 is the temperature gradient. The type of metals used affect

the voltage range, cost, and sensitivity, which is why there are multiple types of thermocouples. The main

improvement of using a thermocouple over a semiconductor sensor or thermistor is that the temperature

range is very much increased. For example, the TMP36 can go from -50 to 150°C, after that the chip itself

can be damaged. Common thermocouples on the other hand, can go from -200°C to 1350°C (K type) and

there are even thermocouples that can go above 2300°C. The different types of thermocouples and their

color codes are provided below:

http://learn.adafruit.com/tmp36-temperature-sensor
http://learn.adafruit.com/tmp36-temperature-sensor

Last Revision: 2/13/2020 5:30 PM

179

Table 7. Thermocouple Types

One end of a thermocouple sensor comprises the junction, which is placed on the object whose

temperature is to be measured. At the other end of the wire pair, the thermocouple voltage is measured.

However, additional thermocouple junctions are formed when connecting to the wire ends, so the total

potential measured depends on the temperatures of those junctions as well as the junction at the

measurement end of the thermocouple. Consequently, thermocouple voltages are relative values, which

must be measured with respect to a junction at a known temperature, called the cold junction or reference

junction.

The following diagram shows a K-type thermocouple used to measure the temperature at its hot junction,

and the influence of the cold junction on the measurement.

Last Revision: 2/13/2020 5:30 PM

180

Figure 67. Thermocouple Method of Operation

This voltage is a roughly linear function of the hot junction temperature inside of the range of

temperatures for which the thermocouple is rated. It is worth noting that depending on the mechanical

structure of the probe, the time constant of the temperature response of the hot junction will change. It is

also worth noting that grounding the hot junction (which can happen accidentally) will cause the

thermocouple data to be useless.

This read voltage is typically very small, and so a thermocouple amplifier is required to interface with

something like a microcontroller. As mentioned before, these amplifiers frequently use OneWire as a data

transmission protocol, but they exist in all forms (the MAX31855, for example, uses SPI protocol). The

MAX31850K is a very useful breakout board for reading K type thermocouples with OneWire protocol

(and can be used with parasitic power mode thanks to an on-board capacitor so only two wires total are

needed). The use of this breakout board also requires the use of the DallasTemp.h library as well as the

OneWire.h library. This library creates some very useful and easy to use functions for use in interacting

with the thermocouple over the OneWire Bus (including the getTempC() and getTempF() functions

that explicitly return the temperature with no math required by the user except for filtering). A tutorial

demonstrating how to use both libraries is available on Adafruit's website.

https://www.adafruit.com/products/269
https://www.adafruit.com/products/1727
https://github.com/adafruit/MAX31850_DallasTemp
https://learn.adafruit.com/adafruit-1-wire-thermocouple-amplifier-max31850k/wiring-and-test

Last Revision: 2/13/2020 5:30 PM

181

Telemetry and Wireless Data Transmission

Telemetry is an automated communications process by which measurements and other data are

collected at remote or inaccessible points and transmitted to receiving equipment for monitoring. In other

words, telemetry is the wireless transmission of data. The simplest devices capable of telemetry are radio

frequency (RF) modules consisting of a dedicated transmitter and receiver. The transmitter (such as the

RF Link Transmitter – 434 MHz) broadcasts data and the receiver (such as the RF Link Receiver – 434

MHz) can receive the data. The benefit of using such a pair is that compared to the alternatives, they are

very cheap (the linked products cost less than ten dollars for the pair). The downsides, however, is that they

are only capable of one-way communication, and can only send digital data which is subject to non-

negligible noise, and using multiple transmitters and receivers can be difficult and may require multiple

transmitter receiver pairs operating on different frequencies.

Commonly used transmitter/receiver pairs come in the form of radio modules such as the Digi XBee

which transmits data using UART using Zigbee wireless protocols. An example of some XBee modules

is provided below:

Figure 68. XBEE Modules with External Antennas

This type of module has one distinct advantage in that it is easy to use and can transmit data between

two microcontrollers fairly easily. There exist several XBee modules that cover a range of form factors,

antenna types, and radio frequencies. Unfortunately, they tend to be more expensive and often they do not

easily fit into a breadboard, so adapters are available for this purpose and for interfacing with a

microcontroller easily (for example, the Sparkfun XBee Explorer Regulated).

Bluetooth (BT) is a wireless technology standard for exchanging data over short distances with

frequencies in the range of 2.4-2.485 GHz at a maximum range of about 30 feet. An easy way to view BT

is the radio frequency (RF) equivalent to Serial communication.

https://www.sparkfun.com/products/10534
https://www.sparkfun.com/products/10532
https://www.sparkfun.com/products/10532
https://www.sparkfun.com/products/11373

Last Revision: 2/13/2020 5:30 PM

182

Bluetooth is a packet-based protocol with a master-slave structure. One master may communicate with

up to seven slaves in what is called a piconet. All devices share the master's clock. Packet exchange is

based on the basic clock, defined by the master, which ticks at 312.5 µs intervals. Two clock ticks make up

a slot of 625 µs, and two slots make up a slot pair of 1250 µs. In the simple case of single-slot packets the

master transmits in even slots and receives in odd slots. The slave, conversely, receives in even slots and

transmits in odd slots. Packets may be 1, 3 or 5 slots long, but in all cases the master's transmission begins

in even slots and the slave's in odd slots.

Every single Bluetooth device has a unique 48-bit address, commonly abbreviated BD_ADDR. This

will usually be presented in the form of a 12-digit hexadecimal value. The most-significant half (24 bits) of

the address is an organization unique identifier (OUI), which identifies the manufacturer. The lower 24-

bits are the unique part of the address.

Creating a Bluetooth connection between two devices is a multi-step process involving three progressive

states:

1. Inquiry – If two Bluetooth devices know absolutely nothing about each other, one must run an

inquiry to try to discover the other. One device sends out the inquiry request, and any device listening for

such a request will respond with its address, and possibly its name and other information.

2. Paging (Connecting) – Paging is the process of forming a connection between two Bluetooth

devices. Before this connection can be initiated, each device needs to know the address of the other (found

in the inquiry process).

3. Connection – After a device has completed the paging process, it enters the connection state. While

connected, a device can either be actively participating or it can be put into a low power sleep mode.

 Active Mode – This is the regular connected mode, where the device is actively transmitting or

receiving data.

 Sniff Mode – This is a power-saving mode, where the device is less active. It will sleep and only

listen for transmissions at a set interval (e.g. every 100ms).

 Hold Mode – Hold mode is a temporary, power-saving mode where a device sleeps for a defined

period and then returns back to active mode when that interval has passed. The master can

command a slave device to hold.

 Park Mode – Park is the deepest of sleep modes. A master can command a slave to “park”, and

that slave will become inactive until the master tells it to wake back up.

When two Bluetooth devices share a special affinity for each other, they can be bonded together.

Bonded devices automatically establish a connection whenever they are close enough. For example, a phone

can be synced up to a car’s BT system such that whenever the car starts up, the phone immediately syncs

Last Revision: 2/13/2020 5:30 PM

183

up without any user input required. Bonds are created through one-time a process called pairing. When

devices pair up, they share their addresses, names, and profiles, and usually store them in memory. The also

share a common secret key, which allows them to bond whenever they are together in the future. Pairing

usually requires an authentication process where a user must validate the connection between devices. The

flow of the authentication process varies and usually depends on the interface capabilities of one device or

the other. Sometimes pairing is a simple operation, where the click of a button is all it takes to pair (this is

common for devices with no UI, like headsets). Other times pairing involves matching six digit numeric

codes. Older, legacy (v2.0 and earlier), pairing processes involve the entering of a common PIN code on

each device. The PIN code can range in length and complexity from four numbers (e.g. “0000” or “1234”)

to a 16-character alphanumeric string.

The transmit power, and therefore range, of a Bluetooth module is defined by its power class. There

are three defined classes of power:

Table 8. Bluetooth Power Classes

Some modules are only able to operate in one power class, while others can vary their transmit power.

Bluetooth profiles are additional protocols that build upon the basic Bluetooth standard to more clearly

define what kind of data a Bluetooth module is transmitting. While Bluetooth specifications define how the

technology works, profiles define how it is used. The profile(s) a Bluetooth device supports determine(s)

what application it is geared towards. A hands-free Bluetooth headset, for example, would use headset

profile (HSP), while a Nintendo Wii Controller would implement the human interface device (HID) profile.

For two Bluetooth devices to be compatible, they must support the same profiles.

For replacing a serial communication interface (like RS-232 or a UART) with Bluetooth, Serial Port

Profile (SPP) is the suggested profile. SPP is great for sending bursts of data between two devices. It is one

of the more fundamental Bluetooth profiles (Bluetooth’s original purpose was to replace RS-232 cables

after all).

Using SPP, each connected device can send and receive data just as if there were RX and TX lines

connected between them. Two Arduinos, for example, could converse with each other from across rooms,

instead of from across the desk.

Several Bluetooth modules are available for interfacing with microcontrollers. Among them are the HC-

05 Transceiver, which can act as either the master or the slave. An identical module that can only act as the

Class Number Max Output Power (dBm) Max Output Power (mW) Max Range

Class 1 20 dBm 100 mW 100 m

Class 2 4 dBm 2.5 mW 10 m

Class 3 0 dBm 1 mW 10 cm

http://yourduino.com/sunshop/index.php?l=product_detail&p=444
http://yourduino.com/sunshop/index.php?l=product_detail&p=444

Last Revision: 2/13/2020 5:30 PM

184

slave is the HC-06. These small (~3 cm long) modules run on 3.3V power with 3.3V signal levels. They

have no pins and usually solder to a larger board. Often, larger boards are sold with pins that incorporate

these modules, such as the board shown on the following page:

Note that the green HC-05 sub-module is soldered on top of the blue BT Board. The HC-05 module

includes the Radio and Memory chips, 26 MHz crystal, antenna and RF matching network. The right section

of the BT Board has connection pins for power and signals as well as a 5V to 3.3V Regulator, LED, and

level shifting.

The pin-out of this board is shown below:

Pin Notes

KEY If brought HIGH before power is applied, forces AT Command Setup Mode. LED blinks slowly (2 seconds)

VCC Power Supply (+5 V)

GND Microcontroller Ground

TXD Transmit Serial Data from HC-05 to microcontroller Serial Receive. (NOTE: 3.3V HIGH level)

RXD Receive Serial Data from microcontroller Serial Transmit

STATE Reports if connected or not

Figure 69. HC05 Bluetooth Module

Last Revision: 2/13/2020 5:30 PM

185

 The module has two modes of operation, Command Mode where we can send AT commands (an AT

Command is short for Attention Command, which are used to initiate the beginning of a command prompt)

to it and Data Mode where it transmits and receives data to another bluetooth module.

The default mode is Data Mode, and the default configuration is given by:

Device Name HC-05

BAUD Rate 9600 bps

Data 8 bits

Stop Bits 1 bit

Parity Bits None

Handshake None

Passkey 1234

In some cases, you may want to change some of the configuration setup values. There are two ways to

get into Command Mode:

(1) Connect the KEY pin high before applying power to the module. This will put the module into

command mode at 38400 baud. This is commonly used, and needed if you do not know the baud

rate the module is set to. You can use the BlueToothCommandUtility for this.

(2) Apply power to the module then pull the KEY pin high. This will enter command mode at the

currently configured baud rate. This is useful if you want to send AT commands from a

microcontroller as the KEY pin can be controlled from one of the microcontroller pins, but you need

to know the currently configured Baud Rate.

Commands are sent to the module in UPPERCASE and are terminated with a CR/LF pair (otherwise known

as the newline or line break) from the Arduino IDE. An example sketch that will allow these commands to

be entered is provided below using the SoftwareSerial library (code was written for an Arduino UNO

pinout):

#include <SoftwareSerial.h>

const int txPin = 9;

const int rxPin = 10;

SoftwareSerial BTSerial(rxPin, txPin); // RX, TX

void setup() {

 Serial.begin(9600);

 Serial.println("Enter AT commands:");

 BTSerial.begin(38400);

}

void loop() {

 if (BTSerial.available())

 Serial.write(BTSerial.read());

 if (Serial.available())

 BTSerial.write(Serial.read());

}

Last Revision: 2/13/2020 5:30 PM

186

The format of commands is:

Always starts with "AT", then "+" followed by <ParameterName>.

Then either:

 ? (returns current value of parameter)

 = (New Value of parameter)

A few specific examples are provided here:

 AT

Purpose: AT Test command. Should respond with OK

 AT+VERSION?

Purpose: Shows the firmware version

 AT+UART=9600,0,0

Purpose: Sets BAUD rate to 9600, 0 stop bits, no parity bit

Bluetooth Master Mode:

To configure the module as Bluetooth Master and to pair with another Bluetooth module follow these

steps. The module must first be put command mode as above by pulling the CMD pin high before power

on.

Enter these commands in order:

(1) AT+RMAAD

Purpose: Clears any paired devices

(2) AT+ROLE=1

Purpose: Sets mode to Master

(3) AT+RESET

Purpose: After changing role, reset is required

(4) AT+CMODE=1

Purpose: Allows connection to any address

(5) AT+INQM=0,5,5

Purpose: Enters Inquire mode - Standard, stops after 5 devices found or after 5 seconds

(6) AT+PSWD=1234

Purpose: Sets PIN. Should be same as slave device

(7) AT+INIT

Purpose: Starts Serial Port Profile (SPP) (If Error(17) returned - ignore as profile already loaded)

Last Revision: 2/13/2020 5:30 PM

187

(8) AT+INQ

Purpose: Starts searching for devices

A list of devices found will be displayed, one of which is the slave module. The format of the output

is:

+INQ:address,type,signal

The address of the module is what we need and is in the format 0123:4:567890 (NOTE: The colons

must be replaced with commas when we use the address with the following commands.) If you get more

than one device listed and do not know which one is the slave module, you can query the module for its

name using:

AT+RNAME? <address>

Once the correct slave address if found, the microcontroller needs to pair with it, which requires the

next set of commands.

(1) AT+PAIR=<address>,<timeout>

Purpose: The timeout is in seconds and if you need to type in the pin on the slave device, you

need to give enough time to do this.

(2) AT+BIND=<address>

Purpose: Sets bind address to the slave address

(3) AT+CMODE=0

Purpose: Allows master to connect to bound address (slave). This allows the master to connect to

the slave when switched on automatically

(4) AT+LINK=<address>

Purpose: Connects to slave at the specified address.

Last Revision: 2/13/2020 5:30 PM

188

Slave Mode:

The HC-05 Bluetooth module can also act as a slave. There are fewer commands to set this up:

(1) AT+ORGL

Purpose: Resets to defaults

(2) AT+RMAAD

Purpose: Clears any paired devices

(3) AT+ROLE=0

Purpose: Sets mode to SLAVE

(4) AT+ADDR

Purpose: Displays SLAVE address

Last Revision: 2/13/2020 5:30 PM

189

Data Storage

Data that is taken in by a microcontroller can be displayed onto the Serial monitor or it can use a program

such as the streaming serial plotter to display data in real time and store it in a program such as MATLAB

listed under Additional Resources. Microcontrollers can store non-volatile data by themselves, however,

using what is known as EEPROM (Electrically Erasable Programmable Read-only Memory).

EEPROMs are organized as arrays of floating-gate transistors. EEPROMs can be programmed and erased

in-circuit, by applying special programming signals. Originally, EEPROMs were limited to single byte

operations which made them slower, but modern EEPROMs allow multi-byte page operations. It also has

a limited life for erasing and reprogramming, now reaching a million operations in modern EEPROMs. In

an EEPROM that is frequently reprogrammed while the computer is in use, the life of the EEPROM is an

important design consideration.

Essentially, EEPROM allows you to permanently store small amounts of data, which is very useful for

saving settings, collecting small data sets, or any other use where you need to retain data even if the power

is turned off. EEPROM is included with the Arduino IDE and is built in to most microcontrollers, so no

additional hardware is required. For example, every Teensy microcontroller has a different amount of

EEPROM available for use:

Table 9. EEPROM memory for different microcontroller models

Board EEPROM Size

Teensy 3.6 4096 bytes

Teensy 3.5 4096 bytes

Teensy 3.2 2048 bytes

Teensy 3.1 2048 bytes

Teensy 3.0 2048 bytes

Teensy LC 128 bytes

Teensy++ 2.0 4096 bytes

Teensy 2.0 1024 bytes

Teensy++ 1.0 2048 bytes

Teensy 1.0 512 bytes

Arduino UNO 1024 bytes

Arduino MEGA 4096 bytes

Last Revision: 2/13/2020 5:30 PM

190

The supported micro-controllers on the various Arduino and Genuino boards have different amounts of

EEPROM: 1024 bytes on the ATmega328, 512 bytes on the ATmega168 and ATmega8, 4 KB (4096 bytes)

on the ATmega1280 and ATmega2560. The Arduino and Genuino 101 boards have an emulated EEPROM

space of 1024 bytes.

Worth noting is that the Teensy 3.6 cannot write to EEPROM memory when running faster than 120

MHz. In addition, for all Teensy microcontrollers, the EEPROM library will automatically reduce the

processor's speed during the time EEPROM data is written. If using Serial1 or Serial2, communication may

be disrupted due to BAUD rate changes. Other serial ports are not affected by the temporary speed change

during EEPROM writing.

The data is stored as bytes located at the EEPROM address. Address can range from 0 to the EEPROM

size minus 1. For a Teensy 2.0, the address can be 0 to 1023, for 1024 unique bytes that can be stored in

the EEPROM. The EEPROM is specified with a write endurance of 100,000 cycles. Each time data is

written to EEPROM, the memory is stressed, and eventually it will become less reliable. Each EEPROM

address is guaranteed to work for at least 100,000 write cycles, and will very likely work for many more.

During these first 100,000 cycles, an EEPROM write cycle will clock at 3.3 milliseconds to complete.

Normally this limit is not an issue if you write to the EEPROM infrequently. Reading data from an address

does not stress the EEPROM, only writes count for the write endurance.

The functions for usage of EEPROM are simple enough and are listed below:

EEPROM.read(address)

Purpose: Read a byte (0 to 255) from the EEPROM.

Parameters: address: the location within the EEPROM to read from.

EEPROM.write(address, data)

Purpose: Write a byte (0 to 255) from the EEPROM.

Parameters: address: the location within the EEPROM to store the byte.

data: the value to store
EEPROM.update(address, data)

Purpose: Write a byte (0 to 255) from the EEPROM. The value is only written if it differs from the

value that is already saved at the specified address. This is useful for not needlessly writing

to EEPROM and shortening its life.

Parameters: address: the location within the EEPROM to store the byte.

data: the value to store
EEPROM.put(address, data)

Purpose: Write any data type or object to the EEPROM starting at the address and can consist of

multiple bytes

Parameters: address: the location within the EEPROM to store the data.

data: the value to store
EEPROM.get(address, data)

Purpose: Reads any data type or object from the EEPROM

Parameters: address: the location within the EEPROM to get the data.

data: the data to read (required to know how many bytes are being read)

Last Revision: 2/13/2020 5:30 PM

191

SD Cards

A very popular way to permanently store data is through the use of SD Cards (Secure Digital Cards).

SD Cards are data storage circuits that interface using SPI, but there exist adapters and libraries for

streamlining this process when interacting with a microcontroller. PJRC directly sells SD card adapters

here on their website, but there exist several vendors for such adapters and an SD shield exists for Arduino

that serves the same purpose. The SD library allows for reading from and writing to SD cards, e.g. on the

Arduino Ethernet Shield. This library is built on sdfatlib developed by William Greiman. The library

supports FAT16 and FAT32 file systems on standard SD cards and SDHC cards. It uses short 8.3 names

for files. The file names passed to the SD library functions can include paths separated by forward-slashes,

/, e.g. "directory/filename.txt". Because the working directory is always the root of the SD card, a name

refers to the same file whether or not it includes a leading slash (e.g. "/file.txt" is equivalent to "file.txt").

As of version 1.0, the library supports opening multiple files.

The communication between the microcontroller and the SD card uses SPI, which takes place on digital

pins 11, 12, and 13 (on most Arduino boards) or 50, 51, and 52 (Arduino Mega). Additionally, another pin

must be used to select the SD card. This can be the hardware SS pin - pin 10 (on most Arduino boards) or

pin 53 (on the Mega) - or another pin specified in the call to SD.begin(). Note that even if you do not use

the hardware SS pin, it must be left as an output or the SD library will not work.

The functions pertaining to the use of SD cards and the data contained on them is given below:

SD.begin(cspin)

Purpose: Initializes the SD library and card. This begins use of the SPI bus (digital pins 11, 12, and

13 on most Arduino boards; 50, 51, and 52 on the Mega) and the chip select pin, which

defaults to the hardware SS pin (pin 10 on most Arduino boards, 53 on the Mega). Note that

even if you use a different chip select pin, the hardware SS pin must be kept as an output or

the SD library functions will not work. This call will return true upon success and false upon

failure.

Parameters: cspin(optional): the pin connected to the chip select line of the SD card; defaults to the

hardware SS line of the SPI bus

SD.exist(filename)

Purpose: Tests whether a file or directory exists on the SD card. Returns true if the file does exist

and false if the file does not.

Parameters: filename: the name of the file to test for existence, which can include directories

(delimited by forward-slashes, /)

SD.mkdir(filename)

Purpose: Create a directory on the SD card. This will also create any intermediate directories that

don't already exists; e.g. SD.mkdir ("a/b/c") will create a, b, and c. Returns true if

the creation of the directory succeeded and false if not

Parameters: filename: the name of the directory to create, with sub-directories separated by forward-

slashes, /

https://www.pjrc.com/store/wiz820_sd_adaptor.html
https://www.arduino.cc/en/reference/SD
https://github.com/greiman/SdFat

Last Revision: 2/13/2020 5:30 PM

192

SD.open(filepath, mode)

Purpose: Opens a file on the SD card. If the file is opened for writing, it will be created if it does not

already exist (but the directory containing it must already exist). Returns a File object

referring to the opened file; if the file could not be opened, this object will evaluate to false

in a boolean context (i.e. you can test the return value with "if (f)").

Parameters: filepath: the name the file to open, which can include directories (delimited by forward

slashes, /) – inputted as type char *
mode(optional): the mode in which to open the file, defaults to FILE_READ but can also

be set to FILE_WRITE

SD.remove(filepath)

Purpose: Remove a file from the SD card. Returns true if the file removal was successful and false if

not (if the file didn’t exist, the return value is unspecified)

Parameters: filepath: the name of the file to remove, which can include directories (delimited by

forward-slashes, /)

SD.rmdir(filepath)

Purpose: Remove a directory from the SD card. The directory must be empty. Returns true if the file

removal was successful and false if not (if the directory didn’t exist, the return value is

unspecified)

Parameters: filepath: the name of the directory to remove (delimited by forward-slashes, /)

For reading and writing to specific files on an SD card, the File class is included with the SD library.

Calls to the functions associated with this class require a file object be stored from a call to SD.open(.

The functions available with this class include (with the italicized file representing the name of the file

object):

file.name()

Purpose: Returns the file name

Parameters: None

file.available()

Purpose: Check if there are any bytes available for reading from the file. Returns the number of

available bytes as an integer.

Parameters: None

file.name()

Purpose: Returns the file name

Parameters: None

file.close()

Purpose: Close the file, and ensure that any data written to it is physically saved to the SD card.

Parameters: None

Last Revision: 2/13/2020 5:30 PM

193

file.flush()

Purpose: Ensures that any bytes written to the file are physically saved to the SD card. This is done

automatically when the file is closed.

Parameters: None

file.peek()

Purpose: Read a byte from the file without advancing to the next one. That is, successive calls to

peek()will return the same value, as will the next call to read(). Returns the next byte

in the file, or -1 if none is available.

Parameters: None

file.position()

Purpose: Get the current position within the file (i.e. the location to which the next byte will be read

from or written to). Returns the position within the file as an unsigned long type.

Parameters: None

file.print(data, BASE)

Purpose: Print data to the file, which must have been opened for writing. Prints numbers as a sequence

of digits, each an ASCII character (e.g. the number 123 is sent as the three characters '1', '2',

'3'). Returns the number of bytes written, although reading this number is optional.

Parameters: data : the data to print (char, byte, int, long, or string types accepted)

 BASE: the base in which to print numbers: BIN for binary (base 2), DEC for decimal (base

10), OCT for octal (base 8), HEX for hexadecimal (base 16).

file.println(data, BASE)

Purpose: Print data followed by a carriage return and newline to the file, which must have been

opened for writing. Prints numbers as a sequence of digits, each an ASCII character (e.g.

the number 123 is sent as the three characters '1', '2', '3'). Returns the number of bytes

written, although reading this number is optional.

Parameters: data : the data to print (char, byte, int, long, or string types accepted)

 BASE: the base in which to print numbers: BIN for binary (base 2), DEC for decimal (base

10), OCT for octal (base 8), HEX for hexadecimal (base 16).

file.seek(pos)

Purpose: Seek to a new position in the file, which must be between 0 and the size of the file

(inclusive).

Parameters: pos : the position to which to seek (unsigned long type)

file.size()

Purpose: Returns the size of the file in bytes as an unsigned long type

Parameters: None

Last Revision: 2/13/2020 5:30 PM

194

file.read(buf, len)

Purpose: Reads from the file and returns the next byte (or character), or -1 if none is available

Parameters: buf (optional): an array of characters or bytes to read

len (optional): the number of elements in buf

file.write(buf, len)

Purpose: Writes data to the file. Returns the number of bytes written.

Parameters: buf (optional): an array of characters or bytes or strings to write

len (optional): the number of elements in buf

file.isDirectory()

Purpose: Directories (or folders) are special kinds of files, this function reports if the current file is a

directory or not. Returns true if the file is a directory and false if it is not.

Parameters: None

Last Revision: 2/13/2020 5:30 PM

195

Oscilloscopes

Oftentimes when it comes to troubleshooting and sifting through data, the use of an oscilloscope can be

very helpful. An oscilloscope (sometimes colloquially just called scope) is an electronic testing instrument

that allows observation of constantly varying voltage signals, usually as a function of time. For projects

involving the measurement of vibrations, these instruments are particularly useful because the vibrations

can be turned into voltages through the use of an accelerometer and then read. An example oscilloscope

output is provided below:

Figure 70. Oscilloscope Display

There are several key aspects to selecting an oscilloscope that quantify its performance:

 Bandwidth – Oscilloscopes are most commonly used to measure waveforms, which have a defined

frequency. No scope is perfect though: they all have limits as to how fast they can see a signal change. The

bandwidth of a scope specifies the range of frequencies it can reliably measure.

 Digital vs. Analog – As with most everything electronic, oscilloscopes can be either analog or

digital. Analog scopes use an electron beam to directly map the input voltage to a display. Digital scopes

incorporate microcontrollers, which sample the input signal with an analog-to-digital converter and map

that reading to the display. Generally, analog scopes are older, have a lower bandwidth, and less features,

but they may have a faster response (and look much cooler).

Last Revision: 2/13/2020 5:30 PM

196

 Channel Amount – Many scopes can read more than one signal at a time, displaying them all on

the screen simultaneously. Each signal read by a scope is fed into a separate channel. Two to four channel

scopes are very common.

 Sampling Rate – This characteristic is unique to digital scopes, it defines how many times per

second a signal is read. For scopes that have more than one channel, this value may decrease if multiple

channels are in use.

 Rise Time – The specified rise time of a scope defines the fastest rising pulse it can measure. The

rise time of a scope is very closely related to the bandwidth. It can be approximated with 𝑡𝑟 =
0.35

𝐵𝑊
.

 Maximum Input Voltage – Every piece of electronics has its limits when it comes to high

voltage. Scopes should all be rated with a maximum input voltage. If your signal exceeds that voltage,

there’s a good chance the scope will be damaged.

 Resolution – The resolution of a scope represents how precisely it can measure the input voltage.

This value can change as the vertical scale is adjusted.

 Vertical Sensitivity – This value represents the minimum and maximum values of your vertical,

voltage scale. This value is listed in volts per div.

 Time Base – Time base usually indicates the range of sensitivities on the horizontal, time axis.

This value is listed in seconds per div.

 Input Impedance – When signal frequencies get very high, even a small impedance (resistance,

capacitance, or inductance) added to a circuit can affect the signal. Every oscilloscope will add a certain

impedance to a circuit it’s reading, called the input impedance. Input impedances are generally represented

as a large resistive impedance (>1 MΩ) in parallel (||) with small capacitance (in the pF range). The impact

of input impedance is more apparent when measuring very high frequency signals, and the probe you use

may have to help compensate for it.

Oscilloscopes offer you the ability (through the use of knobs traditionally) to adjust the number of

divisions on the time scale (horizontal) or the voltage scale (vertical) by adjusting the value of ∆𝑡 or ∆𝑉 for

those divisions. They also allow for the horizontal and vertical axis to be offset by some bias amount

specified by the user.

One of the more useful features of the oscilloscope comes in the form of triggers. A trigger is an

indication set by the user that tells the oscilloscope when to start measuring the data. This is very useful for

getting a still-shot image of the waveform on the oscilloscope display. Triggers come in several trigger

types, such as:

Last Revision: 2/13/2020 5:30 PM

197

 An edge trigger is the most basic form of the trigger. It will key the oscilloscope to start measuring

when the signal voltage passes a certain level. An edge trigger can be set to catch on a rising or falling edge

(or both).

 A pulse trigger tells the scope to key in on a specified “pulse” of voltage. You can specify the

duration and direction of the pulse. For example, it can be a tiny blip of 0V -> 5V -> 0V, or it can be a

seconds-long dip from 5V to 0V, back to 5V.

 A slope trigger can be set to trigger the scope on a positive or negative slope over a specified

amount of time.

You can also usually select a triggering mode, which, in effect, tells the scope how strongly you feel

about your trigger. In automatic trigger mode, the scope can attempt to draw your waveform even if it

doesn’t trigger. Normal mode will only draw your wave if it sees the specified trigger. And single mode

looks for your specified trigger, when it sees it will draw your wave then stop.

The last note on oscilloscopes is that the probes that collect the data may appear simple, but they are

actually specially calibrated circuits that enable the inductance present in the wires to be negated by the

presence of a resistor and capacitor. Courtesy of SparkFun, an example circuit showing the probe of a

oscilloscope is given below:

Figure 71. Oscilloscope Probe Circuit

In general, oscilloscopes are bulky instruments that can cost several thousand dollars. However, the

Digilent Analog Discovery 2 is a device that includes not only an oscilloscope, but a waveform generator

and several digital I/O’s and can interface directly with a computer via a micro USB cable. This device is

small enough to be easily transportable and only cost a few hundred dollars.

https://www.digikey.com/en/product-highlight/d/digilent/analog-discovery-2?WT.srch=1&gclid=CLL6-u_irNQCFU4vgQodelsCjg

Last Revision: 2/13/2020 5:30 PM

198

Soldering

Solder is a fusible metal alloy used to create permanent bonds between electrical components. The

most commonly available solders are tin-lead solders, although due to health concerns lead free solders

are becoming more prominent, especially in Europe. Solder comes in several forms, but can be commonly

bought on a spool, as shown:

Figure 72. Spool of 1.6 mm Tin-Lead Solder

Solder is often sold with a flux core which has three primary purposes:

1. It removes any oxidized metal from the bonding surface

2. It seals out air from the bonding surface to prevent oxidation while the metals are hot.

3. It aids in the solders ability to maintain a contact surface (improves wettability)

The amount of solder types that exist can be somewhat overwhelming, but a general rule of thumb is

that the greater the tin content, the higher the yield strength of the joint and the lower the melting point.

Other metals can be alloyed to change properties such as the thermal conductivity, melting point, etc.

The tool used to melt the solder is typically a soldering iron. An example soldering iron is shown

below:

Figure 73. Example of a Soldering Iron

Last Revision: 2/13/2020 5:30 PM

199

In order to solder something like pin headers into a PCB, a breadboard can be used to ensure everything

is aligned and levelled, and a soldering iron and solder can be used to create the permanent bonds between

the pin headers and the board. In order to properly solder in this fashion, there are some basic steps:

1. The tip of the soldering iron and whatever is being soldered must be tinned (some solder must be

melted and deposited onto the surfaces)

2. The tip of the soldering iron must simultaneously be touching the copper plating of the through

hole as well as the pin header so that both components heat up (in the case where pin headers are being

soldered into a PCB).

3. The solder must be brought in so that it touches both the copper plating and the pin header.

4. Move the solder close to the soldering iron tip until it begins to melt. As it gets hot enough, capillary

action will “suck” the solder into the through hole.

5. Clean the tip of the soldering iron using a wet sponge and move on to the next thing to be soldered.

The following image illustrates this basic idea:

Figure 74. Illustration of Soldering Pin Headers to PCB

Upon completion, the solder joint should have a distinct look about it, illustrated below:

Figure 75. Anatomy of a Good Solder Joint

If the pin gets significantly hotter than the pad, then the solder tends to “bubble up” and not move

through the through hole.

Last Revision: 2/13/2020 5:30 PM

200

Soldering wires together is also a fairly rudimentary task. Simply fray the wires and wrap the two frayed

portions together to maximize electrical contact and then apply both the solder and the soldering iron to the

contact point.

Last Revision: 2/13/2020 5:30 PM

201

Electronic Packaging

Electronic packaging is a major discipline within the field of electronic engineering, and includes a

wide variety of technologies. It refers to enclosures and protective features built into the product itself, and

not to shipping containers. It applies both to products and to components. Packaging of an electronic system

must consider protection from mechanical damage, cooling, radio frequency noise emission, protection

from electrostatic discharge, maintenance, operator convenience, and cost. Prototypes and industrial

equipment made in small quantities may use standardized commercially available enclosures such as card

cages or prefabricated boxes. Mass-market consumer devices may have highly specialized packaging to

increase consumer appeal. The same electronic system may be packaged as a portable device or adapted

for fixed mounting in an instrument rack or permanent installation.

The primary functions of electronic packaging are:

 Signal Distribution

 Power Distribution

 Heat Dissipation

 Protection of Components

The current trends among electronic packages in the market are that they are:

 Smaller

 Lighter

 Faster

 Increased Circuit Density

 Higher Power Density

 More Complicated Functionalities

 More Inputs/Outputs

 More Reliable

 Less Expensive

These current trends provide a litany of challenges for mechanical and electrical engineers to face when

designing circuits.

Last Revision: 2/13/2020 5:30 PM

202

Figure 76. Circuitry inside of a Lenovo Thinkpad

Integrated circuits such as microcontrollers are what are termed electronic packages. Electronic

packages consist of one or more chips (also called dies) that perform very specific tasks for the

microcontroller. These chips are usually made of silicon.

A first level electronic package, or chip carrier, serves the purpose of protecting the chip and providing

these interconnection points. It accomplishes this by attaching the chip to the leads on the package through

some chip interconnection and covering the chip with an epoxy for protection. This epoxy cover is called

overmolding, or simply an encapsulant for plastic packages.

Last Revision: 2/13/2020 5:30 PM

203

Figure 77. Silicon Chip attached to Copper Leads (Overmolding shown in Green)

Ceramic packages exist as an alternative to plastic packages. These packages provide hermeticity

(protection from moisture) and are much more expensive than their plastic counterparts. For this reason,

they are typically only used in military or high performance applications. Although plastic packages

outnumber ceramic packages, dollar for dollar the ceramic package controls two thirds of the electronic

package market. The predominant ceramic material is alumina, and most ceramic processing formulations

and procedures are extremely proprietary. There are two varieties of ceramic packages: Cofired Multilayer

Ceramic Packages and Pressed Ceramic Packages. Cofired packages are formed by casting a slurry of

alumina powder, glass powder, and organic binders which are sintered together. Pressed packages sinter

the top and bottom portions of the ceramic package separately and press them together under heating

conditions to get a seal.

Last Revision: 2/13/2020 5:30 PM

204

First level electronic packages come in several form factors. A few of these and their names are provided

below:

Figure 78. Form Factors of First Level Electronic Packages

Last Revision: 2/13/2020 5:30 PM

205

From this diagram, it is easily seen that packages such as the Teensy family of microcontroller qualifies

as a Dual Inline Package (DIP). Packages such as these mount to a PCB with plated through-holes (PTH).

Packages that incorporate J-Leads or Gull-Leads (which bend underneath the package or outward from it,

respectively) are called Surface Mount Technology (SMT), because they mount directly to solder pads

on the surface of the PCB. A first level electronic package does not need to consist of one chip, because so-

called multi-chip modules (MCM) do exist.

A second level package would a PCB or a card. Chips that directly solder to a second level package are

called a Chip-on-Board (COB). The solder that connects chip carriers to the second level package is

usually connected to a copper pad and protected with an epoxy known as underfill. Underfill helps protect

the solder and allows for a higher level of thermal conductivity between the chip and the substrate than air

would. Solder mask is a typically green lacquer that is also present between solder pads that makes it very

difficult for solder to flow between solder pads, preventing any unwanted bridging between solder pads that

are geometrically close together. A silicon passivation layer also exists on the chip that acts as an additional

protective layer. The underfill provides a strong bond with this passivation layer.

A series of these PCBs are cards connected together would be called a third level package, and an

example of this would be a motherboard.

Last Revision: 2/13/2020 5:30 PM

206

Figure 79. Hierarchy of Electronic Packages

Last Revision: 2/13/2020 5:30 PM

207

Chips are connected to packages through chip interconnection technologies, of which the primary

methods are

 Wirebonding (uses a perimeter array of pads on the chip)

 Flip Chip Solder Bumps (uses an area or perimeter array of “bumped” pads)

 Tape Automated Bonding (TAB) (uses a perimeter array of pads on the chip)

Figure 80. Chip Interconnection Technologies

Last Revision: 2/13/2020 5:30 PM

208

Wire bonding is the dominant chip connection technology of today. Unlike TAB and Flip Chip

bonding, wire bonds are formed one at a time rather than in bulk. Wire bonding has the benefit of being a

flexible process, because wiring changes are easily done without retooling or die changes. There are two

primary wire-bonding techniques: Ball Bonding and Wedge Bonding. Ball Bonding accounts for over 90%

of wire bonds seen today, and involves the use of a gold wire and required an operating temperature of

about 150-200 degrees Celsius. Wedge Bonding is mostly used with aluminum wires, but can also be used

with gold wires, and can be done at room temperature. Both procedures require significant amounts of force

and oscillatory motion between 60-120 Hz.

Aluminum wires provide a more reliable bond to the aluminum pads that are located on the chip, but

when exposed to humidity it is a risk of corrosion so gold wires are preferred, despite the increase in cost.

Flip chips have connects placed throughout the face of the chip (but could be used only as perimeter

connects). They are typically regarded as a strong technology for the future because of their spatial

efficiency. The solder bumps are placed onto the die through a process known as solder reflow and

controlled collapse:

Flip chips are different than Ball Grid Arrays (BGA) because BGA packages are chips that are bonded

to a substrate such as FR-4, which carries the solder ball on its bottom face. A flip chip has the solder balls

placed directly onto the chip itself. The solder balls on a flip chip range in height between 15-50 mills,

which is about 10% of the height of BGA solder balls.

Last Revision: 2/13/2020 5:30 PM

209

Typical failure modes of an electronic package include solder joint fatigue; die fracture, severing of

interconnections, wire bond failure, delamination of material interfaces, encapsulant fractures, etc. Pictures

of these failures on a standard flip chip electronic package are provided below:

Figure 81. Failure Modes on an Electronic Package

One of the biggest problems with solder joint fatigue comes from a big mismatch in thermal expansion

coefficients during the thermal cycling of a component. Take the following SMT resistor:

Last Revision: 2/13/2020 5:30 PM

210

Stresses will occur as the resistor heats up and the substrate will try to expand significantly more than

the resistor itself. Over time, the cycling of this can lead to a failure due to fatigue, as shown:

For chips, which are very stiff and brittle, the great difference between expansion coefficients between

the chip and substrate can lead to die cracking.

For chips with underfill, delamination of that underfill from the passivation layer will lead to heating

issues on the chip. Delamination can be seen with C-Mode Scanning Acoustic Microscopy (C-SAM). C-

SAM provides a nondestructive test for finding air gaps in electronic packages. Using this technology,

delamination can be seen as:

Last Revision: 2/13/2020 5:30 PM

211

Another type of failure is called popcorn failure, which occurs when humidity causes water to become

trapped in a component of the package, which rapidly expands upon heating during operation.

One analytical method for analyzing solder joints that exists is called the Distance to Neutral Point

(DNP) approach. This approach makes three key assumptions:

1. Solder joints can be represented as cubes

2. Solder offers no resistance to deformation (the cube has an elastic modulus of zero).

3. The chip and the printed wiring board are considered to be freely expanding.

Free expansion implies that the strain is only related to the temperature difference using some

reference temperature such that:

Last Revision: 2/13/2020 5:30 PM

212

This analysis brings forth three key observations:

1. A bigger chip results in higher strains.

2. Taller solder joints result in lower strains (indicates that leadless chips have higher strains).

3. Bigger differences between expansion coefficients give bigger strains.

The DNP Formula explicitly states:

Typically, the number of cycles until failure from thermal cycling is given as a function of plastic shear

strain per cycle. Perhaps the most useful of these equations is the Coffin-Manson relationship:

As a general note, for compliant leads, the leg will absorb some of the mismatch between thermal

coefficients and the DNP solution will overestimate the strain. When no underfill is present for something

like a flip chip, the DNP is actually very good at predicting trends. However, the presence of underfill

causes the predictions to be inaccurate. The DNP provides good solutions for passive chip components like

SMT resistors and capacitors and Leadless Chip Carriers as well as Ceramic Ball Grid Arrays.

Other failure modes also exist that are not of a mechanical nature, some of which are shown below:

Last Revision: 2/13/2020 5:30 PM

213

Figure 82. Non-Mechanical Failures of Electrical Components

The substrate that a die will bond to is often called a Printed Circuit Board (PCB) or Printed Wiring

Board (PWB). These typically have the following composition:

Figure 83. PCB Diagram

The base material, or substrate, is usually fiberglass. Historically, the most common designator for this

fiberglass is FR4 (Flame Retardant 4). This solid core gives the PCB its rigidity and thickness. There are

also flexible PCBs built on flexible high-temperature plastic (Kapton or the equivalent). The next layer is a

thin copper foil, which is laminated to the board with heat and adhesive. On common, double sided PCBs,

copper is applied to both sides of the substrate. In lower cost electronic gadgets, the PCB may have copper

on only one side. Soldermask is placed on top of the copper, and is most commonly green in color, but

nearly any color is possible. The white silkscreen layer is applied on top of the soldermask layer. The

silkscreen adds letters, numbers, and symbols to the PCB that allow for easier assembly and indicators for

humans to better understand the board.

Usually, a PCB will have several copper layers that are connected to through holes and other layers

through points called vias. Tented vias are covered by soldermask to protect them from being soldered to.

Vias where connectors and components are to be attached are often untented (uncovered) so that they can

be easily soldered.

Last Revision: 2/13/2020 5:30 PM

214

Conclusions

This document is by no means a complete overview of every single aspect of microcontrollers, but it

does provide a very firm introduction that will allow a new user to utilize almost all features of a

microcontroller. A more complex understanding of microcontrollers can be obtained by searching through

the code that comprises some of these more commonly used libraries and seeing exactly how they function.

As the author of this document, I do hope that it finds you as a senior design student at Auburn University

and assists you. If you are not a senior design student, or even a student at Auburn University, I sincerely

hope that you also find some value within these pages.

Credit for many of the figures shown here goes to SparkFun and Adafruit as well as Auburn University

and their various courses found in the Mechanical Engineering curriculum. Specific credit is also due to

Dr. Austin Gurley and Dr. Jordan Roberts for teaching material that directly influenced the creation of this

document.

Last Revision: 2/13/2020 5:30 PM

215

Additional Resources

Adafruit Website – sells sensors with associated code and libraries needed to make them work (all

open source, including the circuitry on the boards)

SparkFun Website – sells a variety of useful electronic components

Omega Website – great for load cells and pressure transducers

GitHub Website – location where many upload user-made libraries for public use

EAGLE Board Designer Tutorial – tutorial on the program EAGLE, which enables the user to

prototype their own PCBs (Printed Circuit Boards)

Arduino Shields – page on Arduino’s website dedicated to Arduino shields (PCBs that plug on top

of the Arduino board to provide additional functionality)

Tutorial on Oscilloscopes – tutorial on how to use an oscilloscope, which is a device that is useful

for seeing fast changes in voltages over time that cannot be found with a multimeter

MATLAB Streaming Plotter – tool for real-time plotting of data to a computer monitor from a

microcontroller using a GUI created in MATLAB

https://www.adafruit.com/?gclid=CPGlzJCx19ECFUg2gQodicEP3Q
https://www.sparkfun.com/
http://www.omega.com/
https://github.com/
https://learn.sparkfun.com/tutorials/using-eagle-board-layout
https://www.arduino.cc/en/Main/ArduinoShields
http://www.instructables.com/id/Oscilloscope-How-To/
https://www.mathworks.com/matlabcentral/answers/87466-real-time-plot-from-streaming-data

