Turker Ince

Turker Ince
GIU Berlin · Data Science and Engineering

PhD
Machine Learning, Signal Processing, Remote Sensing

About

132
Publications
94,086
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,054
Citations
Additional affiliations
July 2012 - September 2012
Tampere University
June 2006 - present
July 1994 - August 1996
Middle East Technical University

Publications

Publications (132)
Article
Full-text available
Robust and real-time detection of faults has become an ultimate objective for predictive maintenance on rotating machinery. Vibration-based Deep Learning (DL) methodologies have become the de facto standard for bearing fault detection as they can produce state-of-the-art detection performances under certain conditions. Despite such particular foc...
Article
Full-text available
With the increase in customer expectations in online fashion sales, greater integration of fashion recommender systems (RSs) allows more personalization. Design decisions rely on personal taste, as well as many other external influences, such as trends and social media, making it challenging to adapt intelligent systems for the fashion industry. Di...
Article
Full-text available
Continuous long-term monitoring of motor health is crucial for the early detection of abnormalities such as bearing faults (up to 51% of motor failures are attributed to bearing faults). Despite numerous methodologies proposed for bearing fault detection, most of them require normal (healthy) and abnormal (faulty) data for training. Even with the r...
Preprint
Full-text available
Robust and real-time detection of faults has become an ultimate objective for predictive maintenance on rotating machinery. Studies have indicated that around half of all motor failures are attributed to bearing faults alone. Vibration-based Deep Learning (DL) methodologies have become the de facto standard for bearing fault detection as they can p...
Conference Paper
Hyperspectral image (HSI) classification is an important task in many applications, such as environmental monitoring, medical imaging, and land use/land cover (LULC) classification. Due to the significant amount of spectral information from recent HSI sensors, analyzing the acquired images is challenging using traditional Machine Learning (ML) meth...
Preprint
Full-text available
Automatic sensor-based detection of motor failures such as bearing faults is crucial for predictive maintenance in various industries. Numerous methodologies have been developed over the years to detect bearing faults. Despite the appearance of numerous different approaches for diagnosing faults in motors have been proposed, vibration-based methods...
Preprint
As a consequence of global warming and climate change, the risk and extent of wildfires have been increasing in many areas worldwide. Warmer temperatures and drier conditions can cause quickly spreading fires and make them harder to control; therefore, early detection and accurate locating of active fires are crucial in environmental monitoring. Us...
Preprint
Full-text available
Hyperspectral image (HSI) classification is an important task in many applications, such as environmental monitoring, medical imaging, and land use/land cover (LULC) classification. Due to the significant amount of spectral information from recent HSI sensors, analyzing the acquired images is challenging using traditional Machine Learning (ML) meth...
Chapter
A structural damage detection system specifically designed to monitor multiple structures at a network level is introduced in this paper. Such a monitoring system improves resiliency and helps manage the operation and maintenance of structures in an optimum way. The authors have focused on stadia-type laboratory structures for this network. Health...
Article
Full-text available
Self-Organized Operational Neural Networks (Self-ONNs) have recently been proposed as new-generation neural network models with nonlinear learning units, i.e., the generative neurons that yield an elegant level of diversity; however, like its predecessor, conventional Convolutional Neural Networks (CNNs), they still have a common drawback: localiz...
Preprint
Full-text available
Objective: Despite numerous studies proposed for audio restoration in the literature, most of them focus on an isolated restoration problem such as denoising or dereverberation, ignoring other artifacts. Moreover, assuming a noisy or reverberant environment with limited number of fixed signal-to-distortion ratio (SDR) levels is a common practice. H...
Preprint
Full-text available
Continuous long-term monitoring of motor health is crucial for the early detection of abnormalities such as bearing faults (up to 51% of motor failures are attributed to bearing faults). Despite numerous methodologies proposed for bearing fault detection, most of them require normal (healthy) and abnormal (faulty) data for training. Even with the r...
Conference Paper
Application of domain adaptation techniques to predictive maintenance of modern electric rotating machinery (RM) has significant potential with the goal of transferring or adaptation of a fault diagnosis model developed for one machine to be generalized on new machines and/or new working conditions. The generalized nonlinear extension of convention...
Data
Appendix for the study: Blind ECG Restoration by Operational Cycle-GANs
Article
Full-text available
Objective: ECG recordings often suffer from a set of artifacts with varying types, severities, and durations, and this makes an accurate diagnosis by machines or medical doctors difficult and unreliable. Numerous studies have proposed ECG denoising; however, they naturally fail to restore the actual ECG signal corrupted with such artifacts due to...
Article
Full-text available
Electric motors are widely used in many industrial applications on account of stability, solidity and ease of use. Mechanical bearing faults have the highest statistical occurrence percentage among all of the motor fault types. Accurate and advance detection of the bearing faults is critical to avoid unpredicted breakdowns of electric motors. Throu...
Article
Full-text available
Although numerous R-peak detectors have been proposed in the literature, their robustness and performance levels may significantly deteriorate in low-quality and noisy signals acquired from mobile electrocardiogram (ECG) sensors, such as Holter monitors. Recently, this issue has been addressed by deep 1-D convolutional neural networks (CNNs) that h...
Preprint
Full-text available
Continuous long-term monitoring of electrocardiography (ECG) signals is crucial for the early detection of cardiac abnormalities such as arrhythmia. Non-clinical ECG recordings acquired by Holter and wearable ECG sensors often suffer from severe artifacts such as baseline wander, signal cuts, motion artifacts, variations on QRS amplitude, noise, an...
Chapter
In this chapter, recent state-of-the-art techniques in biosignal time-series analysis will be presented. We shall start with the problem of patient-specific ECG beat classification where the objective is to discriminate the arrhythmic beats from the normal (healthy) beats of an individual patient. So, we will answer the ultimate question of how to...
Article
Full-text available
Objective: Despitethe proliferation of numerous deep learning methods proposed for generic ECG classification and arrhythmia detection, compact systems with the real-time ability and high accuracy for classifying patient-specific ECG are still few. Particularly, the scarcity of patient-specific data poses an ultimate challenge to any classifier. R...
Article
Full-text available
Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detect...
Article
Full-text available
Preventive maintenance of modern electric rotating machinery (RM) is critical for ensuring reliable operation, preventing unpredicted breakdowns and avoiding costly repairs. Recently many studies investigated machine learning monitoring methods especially based on Deep Learning networks focusing mostly on detecting bearing faults; however, none of...
Preprint
Full-text available
Preventive maintenance of modern electric rotating machinery (RM) is critical for ensuring reliable operation, preventing unpredicted breakdowns and avoiding costly repairs. Recently many studies investigated machine learning monitoring methods especially based on Deep Learning networks focusing mostly on detecting bearing faults; however, none of...
Preprint
Full-text available
Despite the proliferation of numerous deep learning methods proposed for generic ECG classification and arrhythmia detection, compact systems with the real-time ability and high accuracy for classifying patient-specific ECG are still few. Particularly, the scarcity of patient-specific data poses an ultimate challenge to any classifier. Recently, co...
Preprint
Full-text available
Although numerous R-peak detectors have been proposed in the literature, their robustness and performance levels may significantly deteriorate in low quality and noisy signals acquired from mobile ECG sensors such as Holter monitors. Recently, this issue has been addressed by deep 1D Convolutional Neural Networks (CNNs) that have achieved state-of-...
Preprint
Full-text available
Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detect...
Preprint
Full-text available
Operational Neural Networks (ONNs) are new generation network models that can perform any (non-linear) transformation with a proper combination of "nodal" and "pool" operators. However, they still have a certain restriction, which is the sole usage of a single nodal operator for all (synaptic) connections of each neuron. The idea behind the "genera...
Article
Full-text available
The recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs) that are homogenous only with a linear neuron model. As a heterogenous network model, ONNs are based on a generalized neuron model that can encapsulate any set of non-linear operators to boost diversity and t...
Article
Full-text available
Objective: Noise and low quality of ECG signals acquired from Holter or wearable devices deteriorate the accuracy and robustness of R-peak detection algorithms. This paper presents a generic and robust system for R-peak detection in Holter ECG signals. While many proposed algorithms have successfully addressed the problem of ECG R-peak detection,...
Article
Full-text available
During the last decade, Convolutional Neural Networks (CNNs) have become the de facto standard for various Computer Vision and Machine Learning operations. CNNs are feed-forward Artificial Neural Networks (ANNs) with alternating convolutional and subsampling layers. Deep 2D CNNs with many hidden layers and millions of parameters have the ability to...
Article
Full-text available
Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron model. ONNs are heterogeneous networks with a generalized neuron model. However the operator search method in ONNs is not only...
Preprint
Full-text available
Noise and low quality of ECG signals acquired from Holter or wearable devices deteriorate the accuracy and robustness of R-peak detection algorithms. This paper presents a generic and robust system for R-peak detection in Holter ECG signals. While many proposed algorithms have successfully addressed the problem of ECG R-peak detection, there is sti...
Article
Full-text available
Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing highly discriminative features to improve the classification performance, but this task is complicated...
Preprint
Full-text available
Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing highly discriminative features to improve the classification performance, but this task is complicated...
Preprint
Full-text available
The recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs) that are homogenous only with a linear neuron model. As a heterogenous network model, ONNs are based on a generalized neuron model that can encapsulate any set of non-linear operators to boost diversity and t...
Article
Full-text available
Feed-forward, fully connected artificial neural networks or the so-called multi-layer perceptrons are well-known universal approximators. However, their learning performance varies significantly depending on the function or the solution space that they attempt to approximate. This is mainly because of their homogenous configuration based solely on...
Article
Full-text available
The heart sound signals (Phonocardiogram - PCG) enable the earliest monitoring to detect a potential cardiovascular pathology and have recently become a crucial tool as a diagnostic test in outpatient monitoring to assess heart hemodynamic status. The need for an automated and accurate anomaly detection method for PCG has thus become imminent. To d...
Preprint
Full-text available
Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron model. ONNs are heterogenous networks with a generalized neuron model that can encapsulate any set of non-linear operators to...
Article
Full-text available
Accurate land use/land cover classification of synthetic aperture radar (SAR) images plays an important role in environmental, economic, and nature related research areas and applications. When fully polarimetric SAR data is not available, single- or dual-polarization SAR data can also be used whilst posing certain difficulties. For instance, tradi...
Article
Full-text available
Application of advanced fault diagnosis and monitoring techniques allows more efficient, reliable and safe operation of many complex industrial systems. Recently, there has been a significant increase in application of various data-driven deep learning models for motor fault detection and diagnosis problems. Due to high computational complexity and...
Conference Paper
In this work, we propose to use learned features for terrain classification of Polarimetric Synthetic Aperture Radar (PolSAR) images. In the proposed classification framework, the learned features are extracted from sliding window regions using Convolutional Neural Networks (CNNs), and then they are used for the classification with the linear Suppo...
Preprint
Full-text available
During the last decade, Convolutional Neural Networks (CNNs) have become the de facto standard for various Computer Vision and Machine Learning operations. CNNs are feed-forward Artificial Neural Networks (ANNs) with alternating convolutional and subsampling layers. Deep 2D CNNs with many hidden layers and millions of parameters have the ability to...
Conference Paper
Full-text available
Abstract—1D Convolutional Neural Networks (CNNs) have recently become the state-of-the-art technique for crucial signal processing applications such as patient-specific ECG classification, structural health monitoring, anomaly detection in power electronics circuitry and motor-fault detection. This is an expected outcome as there are numerous advan...
Preprint
Full-text available
Computer-aided diagnosis (CAD) based on histopathological imaging has progressed rapidly in recent years with the rise of machine learning based methodologies. Traditional approaches consist of training a classification model using features extracted from the images, based on textures or morphological properties. Recently, deep-learning based metho...
Preprint
Full-text available
The heart sound signals (Phonocardiogram - PCG) enable the earliest monitoring to detect a potential cardiovascular pathology and have recently become a crucial tool as a diagnostic test in outpatient monitoring to assess heart hemodynamic status. The need for an automated and accurate anomaly detection method for PCG has thus become imminent. To d...
Preprint
Full-text available
Feed-forward, fully-connected Artificial Neural Networks (ANNs) or the so-called Multi-Layer Perceptrons (MLPs) are well-known universal approximators. However, their learning performance varies significantly depending on the function or the solution space that they attempt to approximate. This is mainly because of their homogenous configuration ba...
Article
Full-text available
Timely and accurate bearing fault detection and diagnosis is important for reliable and safe operation of industrial systems. In thisstudy, p erformance of a generic real-time induction bearing fault diagnosis system employing compact adaptive 1DConvolutional Neural Network (CNN) classifier is extensively studied. In the literature, although many s...
Article
Full-text available
Integration of intelligent systems in fashion and design related field is a relatively new concept. The aim of this research was to evaluate the performance of an intelligent fashion styling recommendation system for non-standard female body shapes. As a recommender strategy, the intelligent fashion styling system employs a two-stage genetic search...
Article
Full-text available
Each year more than 7 million people die from cardiac arrhythmias. Yet no robust solution exists today to detect such heart anomalies right at the moment they occur. The purpose of this study was to design a personalized health monitoring system that can detect early occurrences of arrhythmias from an individual’s electrocardiogram (ECG) signal. We...
Conference Paper
Full-text available
In this study, in order to find out the best ECG classification performance we realized comparative evaluations among the state-of-the-art classifiers such as Convolutional Neural Networks (CNNs), multi-layer perceptrons (MLPs) and Support Vector Machines (SVMs). Furthermore, we compared the performance of the learned features from the last convolu...
Conference Paper
Full-text available
In this study, the most commonly used polarimetric SAR features including the complete coherency (or covariance) matrix information, features obtained from several coherent and incoherent target decompositions, the backscattering power and the visual texture features are compared in terms of their classification performance of different terrain cla...
Article
In benthic macroinvertebrate biomonitoring systems, the target is to determine the status of ecosystems based on several biological indices. To increase cost-efficiency, computer-based taxa identification for image data has recently been developed. Taxa identification errors can, however, have strong effects on the indices and thus on the determina...
Article
Full-text available
Early detection of the motor faults is essential and Artificial Neural Networks (ANNs) are widely used for this purpose. The typical systems usually encapsulate two distinct blocks: feature extraction and classification. Such fixed and hand-crafted features may be a sub-optimal choice and require a significant computational cost that will prevent t...
Article
There are well-known limitations and drawbacks on the performance and robustness of the feed-forward, fully-connected Artificial Neural Networks (ANNs), or the so-called Multi-Layer Perceptrons (MLPs). In this study we shall address them by Generalized Operational Perceptrons (GOPs) that consist of neurons with distinct (non-)linear operators to ac...
Article
Full-text available
In this paper, the performance of the phase space representation in interpreting the underlying dynamics of epileptic seizures is investigated and a novel patient-specific seizure detection approach is proposed based on the dynamics of EEG signals. To accomplish this, the trajectories of seizure and non-seizure segments are reconstructed in a high...