Tuomas Virtanen

Tuomas Virtanen
Tampere University | UTA · Department of Signal Processing

About

350
Publications
86,418
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14,594
Citations

Publications

Publications (350)
Conference Paper
Full-text available
We introduce the novel task of continuous-valued speaker distance estimation which focuses on estimating non-discrete distances between a sound source and microphone, based on audio captured by the microphone. A novel learning-based approach for estimating speaker distance in reverberant environments from a single omnidi-rectional microphone is pro...
Preprint
Distance estimation from audio plays a crucial role in various applications, such as acoustic scene analysis, sound source localization, and room modeling. Most studies predominantly center on employing a classification approach, where distances are discretized into distinct categories, enabling smoother model training and achieving higher accuracy...
Preprint
Full-text available
Privacy preservation has long been a concern in smart acoustic monitoring systems, where speech can be passively recorded along with a target signal in the system's operating environment. In this study, we propose the integration of two commonly used approaches in privacy preservation: source separation and adversarial representation learning. The...
Preprint
Full-text available
This paper explores grading text-based audio retrieval relevances with crowdsourcing assessments. Given a free-form text (e.g., a caption) as a query, crowdworkers are asked to grade audio clips using numeric scores (between 0 and 100) to indicate their judgements of how much the sound content of an audio clip matches the text, where 0 indicates no...
Preprint
While direction of arrival (DOA) of sound events is generally estimated from multichannel audio data recorded in a microphone array, sound events usually derive from visually perceptible source objects, e.g., sounds of footsteps come from the feet of a walker. This paper proposes an audio-visual sound event localization and detection (SELD) task, w...
Preprint
Full-text available
Many multi-source localization and tracking models based on neural networks use one or several recurrent layers at their final stages to track the movement of the sources. Conventional recurrent neural networks (RNNs), such as the long short-term memories (LSTMs) or the gated recurrent units (GRUs), take a vector as their input and use another vect...
Preprint
Full-text available
Audio question answering (AQA) is the task of producing natural language answers when a system is provided with audio and natural language questions. In this paper, we propose neural network architectures based on self-attention and cross-attention for the AQA task. The self-attention layers extract powerful audio and textual representations. The c...
Preprint
Full-text available
New classes of sounds constantly emerge with a few samples, making it challenging for models to adapt to dynamic acoustic environments. This challenge motivates us to address the new problem of few-shot class-incremental audio classification. This study aims to enable a model to continuously recognize new classes of sounds with a few training sampl...
Preprint
Full-text available
Sound event detection systems are widely used in various applications such as surveillance and environmental monitoring where data is automatically collected, processed, and sent to a cloud for sound recognition. However, this process may inadvertently reveal sensitive information about users or their surroundings, hence raising privacy concerns. I...
Preprint
Audio source separation is often achieved by estimating the magnitude spectrogram of each source, and then applying a phase recovery (or spectrogram inversion) algorithm to retrieve time-domain signals. Typically, spectrogram inversion is treated as an optimization problem involving one or several terms in order to promote estimates that comply wit...
Article
Research work on automatic speech recognition and automatic music transcription has been around for several decades, supported by dedicated conferences or conference sessions. However, while individual researchers have been working on recognition of more general environmental sounds, until ten years ago there were no regular workshops or conference...
Article
This paper proposes neural networks for compensating sensorineural hearing loss. The aim of the hearing loss compensation task is to transform a speech signal to increase speech intelligibility after further processing by a person with a hearing impairment, which is modeled by a hearing loss model. We propose an interpretable model called dynamic p...
Preprint
Full-text available
This paper investigates negative sampling for contrastive learning in the context of audio-text retrieval. The strategy for negative sampling refers to selecting negatives (either audio clips or textual descriptions) from a pool of candidates for a positive audio-text pair. We explore sampling strategies via model-estimated within-modality and cros...
Preprint
Full-text available
Recent data- and learning-based sound source localization (SSL) methods have shown strong performance in challenging acoustic scenarios. However, little work has been done on adapting such methods to track consistently multiple sources appearing and disappearing, as would occur in reality. In this paper, we present a new training strategy for deep...
Article
Full-text available
Learning from audio-visual data offers many possibilities to express correspondence between the audio and visual content, similar to the human perception that relates aural and visual information. In this work, we present a method for self-supervised representation learning based on audio-visual spatial alignment (AVSA), a more sophisticated alignm...
Preprint
Full-text available
Language-based audio retrieval is a task, where natural language textual captions are used as queries to retrieve audio signals from a dataset. It has been first introduced into DCASE 2022 Challenge as Subtask 6B of task 6, which aims at developing computational systems to model relationships between audio signals and free-form textual descriptions...
Preprint
Full-text available
Subjective evaluation results for two low-latency deep neural networks (DNN) are compared to a matured version of a traditional Wiener-filter based noise suppressor. The target use-case is real-world single-channel speech enhancement applications, e.g., communications. Real-world recordings consisting of additive stationary and non-stationary noise...
Preprint
Automatic estimation of domestic activities from audio can be used to solve many problems, such as reducing the labor cost for nursing the elderly people. This study focuses on solving the problem of domestic activity clustering from audio. The target of domestic activity clustering is to cluster audio clips which belong to the same category of dom...
Preprint
Full-text available
In this report, we introduce the task setup and the baseline system for the sub-task B of the DCASE 2022 Challenge Task 6: language-based audio retrieval subtask. For this subtask, the Clotho v2 dataset is utilized as the development dataset, and an additional dataset consisting of 1,000 audio-caption pairs as the evaluation dataset. We train the b...
Preprint
Supervised learning methods can solve the given problem in the presence of a large set of labeled data. However, the acquisition of a dataset covering all the target classes typically requires manual labeling which is expensive and time-consuming. Zero-shot learning models are capable of classifying the unseen concepts by utilizing their semantic i...
Preprint
Full-text available
This paper analyzes the outcome of the Low-Complexity Acoustic Scene Classification task in DCASE 2022 Challenge. The task is a continuation from the previous years. In this edition, the requirement for low-complexity solutions were modified including: a limit of 128 K on the number of parameters, including the zero-valued ones, imposed INT8 numeri...
Preprint
Full-text available
This report presents the Sony-TAu Realistic Spatial Soundscapes 2022 (STARS22) dataset for sound event localization and detection, comprised of spatial recordings of real scenes collected in various interiors of two different sites. The dataset is captured with a high resolution spherical microphone array and delivered in two 4-channel formats, fir...
Preprint
Full-text available
Learning from audio-visual data offers many possibilities to express correspondence between the audio and visual content, similar to the human perception that relates aural and visual information. In this work, we present a method for self-supervised representation learning based on audio-visual spatial alignment (AVSA), a more sophisticated alignm...
Preprint
Full-text available
Audio question answering (AQA) is a multimodal translation task where a system analyzes an audio signal and a natural language question, to generate a desirable natural language answer. In this paper, we introduce Clotho-AQA, a dataset for Audio question answering consisting of 1991 audio files each between 15 to 30 seconds in duration selected fro...
Article
Full-text available
COVID-19 infection’s recent outbreak triggered by the SARS-CoV-2 Corona virus had already led to more than two million reported infected individuals when we first addressed the community by our call – by now, the number sadly rose to roughly half a billion cases worldwide. The outbreak of COIVD-19 has also re-shaped and accelerated the scientific p...
Preprint
Full-text available
Data-based and learning-based sound source localization (SSL) has shown promising results in challenging conditions, and is commonly set as a classification or a regression problem. Regression-based approaches have certain advantages over classification-based, such as continuous direction-of-arrival estimation of static and moving sources. However,...
Preprint
Full-text available
We investigate unsupervised learning of correspondences between sound events and textual phrases through aligning audio clips with textual captions describing the content of a whole audio clip. We align originally unaligned and unannotated audio clips and their captions by scoring the similarities between audio frames and words, as encoded by modal...
Article
The paper addresses acoustic vehicle speed estimation using single sensor measurements. We introduce a new speed-dependent feature based on the attenuation of the sound amplitude. The feature is predicted from the audio signal and used as input to a regression model for speed estimation. For this research, we have collected, annotated, and publishe...
Conference Paper
Full-text available
Joint sound event localization and detection (SELD) is an integral part of developing context awareness into communication interfaces of mobile robots, smartphones, and home assistants. For example, an automatic audio focus for video capture on a mobile phone requires robust detection of relevant acoustic events around the device and their directio...
Article
Imagine standing on a street corner in the city. With your eyes closed you can hear and recognize a succession of sounds: cars passing by, people speaking, their footsteps when they walk by, and the continuous falling of rain. The recognition of all these sounds and interpretation of the perceived scene as a city street soundscape comes naturally t...
Preprint
The goal of automatic sound event detection (SED) methods is to recognize what is happening in an audio signal and when it is happening. In practice, the goal is to recognize at what temporal instances different sounds are active within an audio signal. This paper gives a tutorial presentation of sound event detection, including its definition, sig...
Preprint
Full-text available
Joint sound event localization and detection (SELD) is an integral part of developing context awareness into communication interfaces of mobile robots, smartphones, and home assistants. For example, an automatic audio focus for video capture on a mobile phone requires robust detection of relevant acoustic events around the device and their directio...
Preprint
Full-text available
Time-frequency masking or spectrum prediction computed via short symmetric windows are commonly used in low-latency deep neural network (DNN) based source separation. In this paper, we propose the usage of an asymmetric analysis-synthesis window pair which allows for training with targets with better frequency resolution, while retaining the low-la...
Preprint
Full-text available
This report presents the dataset and baseline of Task 3 of the DCASE2021 Challenge on Sound Event Localization and Detection (SELD). The dataset is based on emulation of real recordings of static or moving sound events under real conditions of reverberation and ambient noise, using spatial room impulse responses captured in a variety of rooms and d...
Preprint
Full-text available
This paper presents the details of the Audio-Visual Scene Classification task in the DCASE 2021 Challenge (Task 1 Subtask B). The task is concerned with classification using audio and video modalities, using a dataset of synchronized recordings. Here we describe the datasets and baseline systems. After the challenge submission deadline, challenge r...
Preprint
This paper presents the details of Task 1A Acoustic Scene Classification in the DCASE 2021 Challenge. The task consisted of classification of data from multiple devices, requiring good generalization properties, using low-complexity solutions. The provided baseline system is based on a CNN architecture and post-training parameters quantization. The...
Article
In this article, we propose a new method for joint cochannel speaker separation and recognition called adaptive-dictionary non-negative matrix deconvolution (DANMD). This method is an extension of non-negative matrix deconvolution (NMD) which models spectrogram matrix as a linear combination of dictionary elements (atoms). We propose a dictionary w...
Article
In this paper, we study zero-shot learning in audio classification via semantic embeddings extracted from textual labels and sentence descriptions of sound classes. Our goal is to obtain a classifier that is capable of recognizing audio instances of sound classes that have no available training samples, but only semantic side information. We employ...
Article
Full-text available
Sound event localization and detection is a novel area of research that emerged from the combined interest of analyzing the acoustic scene in terms of the spatial and temporal activity of sounds of interest. This paper presents an overview of the first international evaluation on sound event localization and detection, organized as a task of the DC...
Preprint
Full-text available
In this paper, we study zero-shot learning in audio classification through factored linear and nonlinear acoustic-semantic projections between audio instances and sound classes. Zero-shot learning in audio classification refers to classification problems that aim at recognizing audio instances of sound classes, which have no available training data...
Preprint
Full-text available
In this paper, we study zero-shot learning in audio classification via semantic embeddings extracted from textual labels and sentence descriptions of sound classes. Our goal is to obtain a classifier that is capable of recognizing audio instances of sound classes that have no available training samples, but only semantic side information. We employ...
Article
Full-text available
This paper proposes an active learning system for sound event detection (SED). It aims at maximizing the accuracy of a learned SED model with limited annotation effort. The proposed system analyzes an initially unlabeled audio dataset, from which it selects sound segments for manual annotation. The candidate segments are generated based on a propos...
Preprint
Full-text available
This paper introduces a curated dataset of urban scenes for audio-visual scene analysis which consists of carefully selected and recorded material. The data was recorded in multiple European cities, using the same equipment, in multiple locations for each scene, and is openly available. We also present a case study for audio-visual scene recognitio...
Preprint
Full-text available
Self-supervised audio representation learning offers an attractive alternative for obtaining generic audio embeddings, capable to be employed into various downstream tasks. Published approaches that consider both audio and words/tags associated with audio do not employ text processing models that are capable to generalize to tags unknown during tra...
Preprint
This paper addresses acoustic vehicle counting using one-channel audio. We predict the pass-by instants of vehicles from local minima of a vehicle-to-microphone distance predicted from audio. The distance is predicted via a two-stage (coarse-fine) regression, both realised using neural networks (NNs). Experiments show that the NN-based distance reg...
Preprint
Full-text available
The paper presents a method for audio-based vehicle counting (VC) in low-to-moderate traffic using one-channel sound. We formulate VC as a regression problem, i.e., we predict the distance between a vehicle and the microphone. Minima of the proposed distance function correspond to vehicles passing by the microphone. VC is carried out via local mini...
Preprint
Full-text available
Automated audio captioning (AAC) is a novel task, where a method takes as an input an audio sample and outputs a textual description (i.e. a caption) of its contents. Most AAC methods are adapted from from image captioning of machine translation fields. In this work we present a novel AAC novel method, explicitly focused on the exploitation of the...
Article
Full-text available
It has been suggested that early cry parameters are connected to later cognitive abilities. The present study is the first to investigate whether the acoustic features of infant cry are associated with cognitive development already during the first year, as measured by oculomotor orienting and attention disengagement. Cry sounds for acoustic analys...
Preprint
Full-text available
Sound event localization and detection is a novel area of research that emerged from the combined interest of analyzing the acoustic scene in terms of the spatial and temporal activity of sounds of interest. This paper presents an overview of the first international evaluation on sound event localization and detection, organized as a task of DCASE...
Preprint
Full-text available
Sound event detection (SED) is the task of identifying sound events along with their onset and offset times. A recent, convolutional neural networks based SED method, proposed the usage of depthwise separable (DWS) and time-dilated convolutions. DWS and time-dilated convolutions yielded state-of-the-art results for SED, with considerable small amou...
Preprint
Audio captioning is a multi-modal task, focusing on using natural language for describing the contents of general audio. Most audio captioning methods are based on deep neural networks, employing an encoder-decoder scheme and a dataset with audio clips and corresponding natural language descriptions (i.e. captions). A significant challenge for audi...
Preprint
Full-text available
Audio captioning is the task of automatically creating a textual description for the contents of a general audio signal. Typical audio captioning methods rely on deep neural networks (DNNs), where the target of the DNN is to map the input audio sequence to an output sequence of words, i.e. the caption. Though, the length of the textual description...
Preprint
Full-text available
Recent approaches for music source separation are almost exclusively based on deep neural networks, mostly employing recurrent neural networks (RNNs). Although RNNs are in many cases superior than other types of deep neural networks for sequence processing, they are known to have specific difficulties in training and parallelization, especially for...
Preprint
Full-text available
Audio representation learning based on deep neural networks (DNNs) emerged as an alternative approach to hand-crafted features. For achieving high performance, DNNs often need a large amount of annotated data which can be difficult and costly to obtain. In this paper, we propose a method for learning audio representations, aligning the learned late...
Preprint
Full-text available
This report presents the dataset and the evaluation setup of the Sound Event Localization & Detection (SELD) task for the DCASE 2020 Challenge. The SELD task refers to the problem of trying to simultaneously classify a known set of sound event classes, detect their temporal activations, and estimate their spatial directions or locations while they...
Preprint
Full-text available
This paper presents the details of Task 1: Acoustic Scene Classification in the DCASE 2020 Challenge. The task consists of two subtasks: classification of data from multiple devices, requiring good generalization properties, and classification using low-complexity solutions. Here we describe the datasets and baseline systems. After the challenge su...
Preprint
This paper proposes an active learning system for sound event detection (SED). It aims at maximizing the accuracy of a learned SED model with limited annotation effort. The proposed system analyzes an initially unlabeled audio dataset, from which it selects sound segments for manual annotation. The candidate segments are generated based on a propos...
Preprint
Full-text available
State-of-the-art sound event detection (SED) methods usually employ a series of convolutional neural networks (CNNs) to extract useful features from the input audio signal, and then recurrent neural networks (RNNs) to model longer temporal context in the extracted features. The number of the channels of the CNNs and size of the weight matrices of t...