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ABSTRACT
In next generation 5G intra-macrocell deployment due to the
high number of small cells existing in the network, one of the
main concerns is the increased handover rate, followed by
frequent, unnecessary and ping-pong handover challenges.
That can also lead to high packet loss, dropped and blocked
calls. Moreover, in 5G intra-macrocell deployments, due to
the control and data channel separation handover operation
must be executed in two tiers (both data and control chan-
nels). For these reasons, handover management in this spe-
cific 5G deployment becomes a challenging issue. We believe
that,having an optimal and accurate eNodeB estimation,
handover overhead in these deployments can be dramatically
decreased. In this paper, we propose an optimal eNodeB se-
lection mechanism for 5G intra-macrocell handovers based
on spatio-temporal estimations. In this approach, Kriging
Interpolator with Semivariogram Analysis is supported by
the Autoregressive model for selecting the optimal eNodeB
before the connection setup. The stochastic and statistical
behaviors of Kriging Interpolation provide better modeling
performance. These operations are performed by the pro-
posed EnodeB Estimation Entity. Also, these estimations
are applied to both the data and control channels indepen-
dently. As a result of the proposed management scheme,
unnecessary, frequent and ping-pong handover rates are de-
creased by %35, %37 and %17 respectively compared to the
traditional handover method.
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1. INTRODUCTION
In the next generation 5G networks, a huge number of

connected devices will generate massive amounts of data.
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According to Cisco’s index report results, in 2020, there
will be roughly 11.6 billion of mobile connected devices and
mobile data traffic will reach 30.6 exabytes per month [1].
Therefore, network capacity must be remarkably increased
to satisfy these high data rates and meet excessive demands
of the users without reducing the service quality. Small-
cells can be used as a solution to solve this capacity crunch
in addition to the macrocell deployments. Moreover, in 5G
technology, macrocells are used in the control plane for han-
dling control channel traffic while a high number of the small
cell are used in the data plane to operate massive amount
of data channel traffic.

The existence of a large number of small cells in 5G intra-
macrocell deployments enables high data rates and capac-
ity, but on the other hand, they have posed some challenges
from different aspects. The first challenge is the unneces-
sary and frequent handovers causing packet losses, dropped
and blocked calls in high rates. Additionally, if these fre-
quent handovers are executed between the target and serv-
ing cells continuously, then Ping-Pong handover problem oc-
curs. Also, according to [2], these problems will accumulate
with increasing number of deployed small cells. More specifi-
cally, executed handovers between the high number of small
cells in the range of the same macrocell are called as the
intra-macrocell handovers and the small cell selection is the
more challenging issue in this special deployment. The sec-
ond challenge is associated with the separated control and
data planes architecture of the specific 5G deployment. Ac-
cordingly, control and data channels are connected to the
macrocells and small cells, respectively. Thus, handover op-
eration is executed for both channels in the two tiers. For
these reasons, handover management becomes a problematic
issue in this specific 5G deployment.

In the literature, there have been many handover algo-
rithms proposed for optimizing the handover process by us-
ing different approaches. In [3], mobility management al-
gorithm for 5G Technology was presented in the proposed
Functionality as a Service platform and shown to decrease
package loss percentage of 5G networks. In [4], handover ap-
proach was proposed for control/data channel separated ar-
chitecture to handle mobility in 5G networks. Accordingly,
user mobility and eNodeB location are modeled with random
waypoint model and Poisson point process, respectively. On
the other hand, in these works, the channel separation of the
5G architecture was not considered and only one channel is
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used promisingly. Moreover, the authors in [5], [6] and [7]
respectively present an energy efficient handover approach,
fuzzy-logic based handover decision algorithm and handover
decision function, yet without considering Ping-Pong han-
dover effect of the proposed methods. Handover mechanism
presented in the survey [8] can decrease the number of Ping-
Pong handover, however, fixed weights used in the algorithm
are not suitable for changeable system requirements. Unnec-
essary handover probability which is one of the most impor-
tant performances indicator are not taken into account in
the cost based handover decision mechanisms presented in
[9] and [10]. Also, in [11], estimation method similar to our
proposed method is used to solve the problems of femtocell
deployments. But, this work only focuses on the location
estimation and accordingly, the variation of the attributes
in timescale is not observed. Thus, selected femtocell cannot
be the best choice for the user. So, this situation leads the
growth in the handover number. In addition to the above
works, handover mechanisms presented in [12], [13] and [14]
decrease the Ping-Pong handover number by using reference
signal received power, signal to interference noise ratio and
reference signal received quality values. But, because of the
rapidly changeable characteristic of the signal level, these
works do not solve the mentioned challenges accurately.

All of the above works do not enable an accurate solu-
tion for the mentioned handover problems. However, we be-
lieve that these problems can be decreased by selecting an
optimal eNodeB with correct estimation algorithm. There-
fore, in this paper, we propose an optimal eNodeB selection
approach for 5G intra-macrocell handovers by using spatio-
temporal estimations. Details of this approach and our con-
tributions can be explained as follows:

• For the optimal eNodeB selection, call drop rate, call
block rate, packet loss rate, ping-pong, frequent and
unnecessary handover rates are used as quality indi-
cators in the proposed gain function with dynamic
weights. By calculating this gain function, a certain
number of the cell with the low gain value is selected
as candidate cells.

• In spatial estimation phase of the proposed scheme,
Kriging Interpolator is used with Semivariogram Anal-
ysis. With this stochastic approach unknown indica-
tor values of the mobile user equipment (UE) are esti-
mated by using certain values of the neighbor UEs.

• In temporal estimation phase by using autoregressive
model, indicator values of the each candidate cell are
monitored in a certain timescale. Thus, more stable
eNodeB that has less fluctuation on indicator values is
selected.

• All operations are implemented in the proposed eN-
odeB Estimation Entity which has a connection with
all of the network nodes. The estimated optimal eN-
odeB information is sent to the mobility management
entity for sending UEs.

• All of these procedures are executed for data and con-
trol channels separately to select the connected small
cell and macrocell respectively. Also, in this scheme,
quality indicator values are estimated before the con-
nection setup. Accordingly, unnecessary, frequent and

ping-pong handover risks are reduced. Moreover, packet
losses, dropped and blocked calls are declined.

The rest of the paper organized as follows: In Section II,
general system overview, considered network topology and
quality indicators are presented. In Section III, the proposed
optimal eNodeB estimation approach is investigated with
details. The proposed mechanism is evaluated in section
IV. Lastly, we conclude the paper in Section V.

2. THE PROPOSED SYSTEM
In this section, we first present our general system overview.

Then, the considered network topology and eNodeB quality
indicators are explained with details.

2.1 General System Overview
In our proposed system, as shown in the Fig. 1, new loca-

tion information and eNodeB quality indicators are collected
from the mobile UEs and eNodeBs respectively by the eN-
odeB estimation entity in the data acquisition phase. Then,
in data processing phase, this received information is used
in the spatio-temporal estimations for selecting the optimal
macrocell and small cell during intra-macrocell handovers.
In our topology, optimal eNodeB refers to the eNodeB with
low gain value and less fluctuation in the eNodeB quality
indicator values.

Figure 1: Proposed Optimal eNodeB Estimation
Scheme Overview

By using this proposed scheme, any frequent, unnecessary
and ping-pong handover risk is reduced. Also, a number of
packet losses, dropped and blocked calls are decreased as
expected outcomes.

2.2 Proposed Network Topology
In our proposed topology, control, and data channels are

connected the macrocell and small cell respectively accord-
ing to the specific 5G architecture. Furthermore, all op-
erations related with the optimal eNodeB selection during
the intra-macrocell handovers are executed in the proposed
eNodeB estimation entity.

As shown in Fig. 2, this entity can communicate with all
of the eNodeBs and UEs to collect quality indicators and
location information. By using the collected information in
the proposed scheme, optimal eNodeB is selected.
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Figure 2: The Proposed Network Topology

2.3 eNodeB Quality Indicators
For generating the gain value for each eNodeB, quality

indicators which are explained in the sequel are used in the
gain function with dynamic weights. Details of this function
are presented in Section 3.2.

1. Ping-Pong Handover Rate (QPP ): To find the ping-
pong handover rate, ping-pong handover number of
the UE is divided into the total handover number of
the UE.

2. Unnecessary Handover Rate (QUH): By dividing the
unnecessary handover number of the UE with total
number of handovers, unnecessary handover rate is
reached.

3. Frequent Handover Rate (QFH): Frequent handover
rate of the UE is found by dividing the number of
frequent handovers by the total number of handovers
of the UE.

4. Call Drop Rate (QDR): This parameter gives the drop-
ping call ratio of the specific UE to the connected eN-
odeB. To find this parameter, the number of the drop-
ping calls of the UE to the certain eNodeB is divided
by the total number of calls of the UE.

5. Call Block Rate (QBR): This parameter is found sim-
ilarly to the call drop rate and the number of blocked
calls is divided by the total call number. In this way,
the blocked call ratio of the UE to the specific eNodeB
is calculated.

6. Packet Loss Rate (QLR): This parameter is found by
dividing the number of lost packets by the total num-
ber of sending packets from UE to the certain eNodeB.

3. THE PROPOSED APPROACH
In our proposed scheme, the optimal eNodeB is selected

by using spatio-temporal based estimation approach during
the intra-macrocell handovers in 5G. Moreover, the required
operations for the optimal eNodeB selection are executed by
the proposed eNodeB estimation entity as shown in the Fig.

3. The collected information from eNodeBs and UEs are
used in this entity and selected optimal eNodeB is reported
to the mobility management entity for sending the UE. De-
tails of this entity can be explained as follows in stages:

Figure 3: eNodeB Estimation Entity Procedure

• Stage 1: For the optimal eNodeB selection of the mo-
bile UE in the new location (Xnew,Ynew), quality in-
dicator values (QPP , QUH , QFH , QDR, QBR, QPL)
of the UEs that have a connection with neighbor eN-
odeBs are collected.

• Stage 2: In the spatial estimation phase, these col-
lected values are used in the Kriging Interpolator with
Semivariogram Analysis. Thus, by using certain val-
ues of the neighbor UEs, unknown indicator values
(Q̃PP , Q̃UH , Q̃FH , Q̃DR, Q̃BR, Q̃PL) of the mobile
UE is estimated for each eNodeB in the new location
(Xnew,Ynew) before connecting the eNodeB.

• Stage 3: Estimated parameter values are used in the
proposed gain function (G(x)) for generating a gain
value for each eNodeB as selection criteria. In this
way, comparison between eNodeBs are executed and
according to the comparison results, certain number of
cells with lower gain values are selected as candidate
cells.

• Stage 4: Estimated parameter values of these can-
didate cells are monitored in timescale in the tempo-
ral estimation phase with the k-order autoregressive
model as AR(1), AR(2),...,AR(k). In this way, indi-
cator value alterations are observed and more stable
eNodeB that has less fluctuation on indicator values is
selected. Then, this selected optimal eNodeB is sent
to the mobility management entity for transfering the
UE.

• The above stages are performed for control and data
channels separately for macrocell and small cell selec-
tions.

Details of the spatial estimation, gain function, and tempo-
ral estimation are described in the below subsections.
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3.1 Spatial Estimation
In the new location (Xnew,Ynew) of the mobile UE, qual-

ity indicator values which will be taken from eNodeBs are
estimated spatially before the connection setup. To obtain
this spatial estimation, the special type of statistical model
ordinary kriging interpolation method is used with semivar-
iogram analysis. In this way, each of the unknown quality
indicator value (Q̃PP , Q̃UH , Q̃FH , Q̃DR, Q̃BR, Q̃PL) of the
mobile UE is estimated by using spatial correlation among
certain quality values (QPP , QUH , QFH ,QDR, QBR, QPL)
of the number of neighbors UEs, N. Kriging formula can be
defined as follows:



Q̃PP

Q̃UH

Q̃FH

Q̃DR

Q̃BR

Q̃PL

 =

N∑
i=1

λi


QPPi

QUHi

QFHi

QDRi

QBRi

QPLi

 , ∀ i (1)

In this formula, Q̃PP , Q̃UH , Q̃FH , Q̃DR, Q̃BR, Q̃PL are
the estimated quality indicator values, QPP , QUH , QFH ,
QDR, QBR, QPL are the known indicator values of the neigh-
bor UEs and λi is the unknown kriging coefficient. Here,
this Kriging formula is executed for each quality indicator
separately. For example, firstly, Ping-Pong handover rate
is estimated by using Eq. 1, then the same formula is exe-
cuted with unnecessary handover rate and other parameters,
respectively. Therefore, this summation is applied for each
entry of the given vector separately to estimate the corre-
sponding indicator value. Furthermore, the sum of Kriging
coefficient values in Eq. 1 must be equal to the 1 as given
in Eq. 2.

N∑
i=1

λi = 1, ∀ i (2)

These unknown kriging coefficients (λi) of N neighbor UEs
(1,2,...,N) are calculated by using Eq. 3.

λ1

λ2

...
λN

µ

 =


γ11 · · · γ1N 1
...

...
...

...
γN1 · · · γNN 1

1 · · · 1 0


−1 

γ10
γ20
...

γN0

 (3)

In the Eq. 3, µ is the Lagrange multiplier. γij is the
semivariogram value between (xi, yi) and (xj , yj) locations.
Accordingly, λ1, λ2, ..., λN values depend on this semivar-
iogram value, semivariogram model and the hij distances
between (xi, yi) and (xj , yj) locations.

hij =
√

(xi − xj)2 + (yi − yj)2 , ∀ i, j (4)

hij distances between (xi, yi) and (xj , yj) locations are
found as given in the Eq. 4. These distances are used in Eq.
5 for calculating the semivariogram values (γij) of the se-
lected model. There are many semivariogram models in the
literature as exponential, linear, spherical. In this paper, we
choose exponential semivariogram model for kriging estima-
tion of handover procedure as given in Eq. 5. Because, the
mobile user moves away from the eNodeB coverage, indica-
tor values are decreased exponentially.

γij =

{
c0 + c ∗ (1− exp(

−hij

r
)) if hij > 0

0 if hij = 0
(5)

In Eq. 5, c0, c and h are the sill, nugget and range val-
ues of the semivariogram model. Value of the variogram
increases continuously until the range and reaches the max-
imum at that point. Accordingly, the sill is the reached
maximum value of the semivariogram and variance remains
constant on this sill value. Also, sill can be defined as the
limit or upper bound for the semivariogram. Moreover, the
nugget is the height from the origin and used for showing
the measurement errors.

3.2 Gain Function
Gain function is defined by using eNodeB quality indi-

cators as a parameter with dynamic weights. Accordingly,
each spatially estimated indicator value is multiplied with
corresponding weight and results of these multiplications are
added as given in Eq. 6. In this way, gain values are calcu-
lated for each eNodeB as a comparison value.

G(x) = (W1 ∗ Q̃PP ) + (W2 ∗ Q̃UH) + (W3 ∗ Q̃FH)

+(W4 ∗ Q̃DR) + (W5 ∗ Q̃BR) + (W6 ∗ Q̃PL)
(6)

Also, W1, W2, W3, W4, W5, W6 are the dynamic weights
and summation of these must be equal to the 1 as a normal-
ization criteria as given in the Eq. 7. In this equation, M
shows the number of quality indicators in the system.

M∑
i=1

Wi = 1 , ∀ i (7)

Different weights can be chosen according to the priority
levels of the quality indicators in the defined system. Ac-
cording to the priority, system can be designed to decrease
the call drops or ping-pong handovers [12]. By consider-
ing these conditions, we define six cases by giving different
priority levels for each quality indicator. Accordingly, ping-
pong handover rate has high priority in case 1 and W1 is
chosen greater than the other weights. Similarly, W2 has
the greatest value in case 2 because of the unnecessary han-
dover rate priority. Also, other four cases are defined in
the same manner. Thus, high priority quality indicators
have greatest weight value in each case. Furthermore, eN-
odeB quality indicators have highest values for non-optimal
eNodeBs. Therefore, eNodeBs which have low gain values
must be selected as candidate cells for temporal estimation.

3.3 Temporal Estimation
By using the spatially estimated values in gain function

candidate cells are selected for temporal estimation. In
temporal estimation, k-order autoregressive model AR(k) is
used for observing indicator value alteration in timescale.
By starting the spatially estimated quality indicator value,
future values are estimated for each indicator of the candi-
date eNodeBs as AR(1), AR(2),...,AR(k). Thus, by using
the Eq. 8, first order auto-regression AR(1) is calculated.

Q̃t = φ0 + φ1 ∗ Q̃t−1 + εt

∀ Q̃t, Q̃t−1 ∈ {Q̃PP , Q̃UH , Q̃FH , Q̃DR, Q̃BR, Q̃PL}
(8)
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Spatially estimated value and result of Eq. 8 are used in
Eq. 9 for the second order auto-regression AR(2).

Q̃t = φ0 + φ1 ∗ Q̃t−1 + φ2 ∗ Q̃t−2 + εt

∀ Q̃t, Q̃t−1, Q̃t−2 ∈ {Q̃PP , Q̃UH , Q̃FH , Q̃DR, Q̃BR, Q̃PL}
(9)

According to the observing timescale, k-order auto-regression
AR(k) which is given by Eq. 10 in the general form is used
for temporal estimation.

Q̃t = φ0 +

k∑
j=1

φj ∗ Q̃t−j + εt

∀ Q̃t, Q̃t−j ∈ {Q̃PP , Q̃UH , Q̃FH , Q̃DR, Q̃BR, Q̃PL}

(10)

In these equations, εt is defined as the random error and
this value can be taken as 0. Moreover, φ0, φ1 and φk are the
regression coefficients and these coefficient values are found
with least squares estimation (LSE) by using Eq. 11 and
Eq. 12.

φk =

∑k
i=1(Q(t− i)Q(t)− kE[Q(t− i)Q(t)])∑k

i=1 n(Q2(t− i)− nE[Q2(t− i)])
(11)

φ0 = E[Q(t)]−
k∑

i=1

φi ∗ E[Q(t− i)]

∀ Q(t) ∈ {Q̃PP , Q̃UH , Q̃FH , Q̃DR, Q̃BR, Q̃PL}

(12)

With these operations, the eNodeB which has less fluctua-
tion on indicator values in the certain time range is selected
for connection establishment during the intra-macrocell han-
dovers.

4. PERFORMANCE EVALUATION

Figure 4: Example Scenario

The proposed optimal eNodeB estimation scheme is evalu-
ated on Matlab environment with example scenario as given

Table 1: Simulation Parameters

Time to Trigger (TTT) 200 ms

Simulation Time 600 ms

Receiving Bandwidth 4096 MHz

Noise Rise 6 dB

Maximum/Minimum UE Tx power 21 dBm / -44 dBm

Tx power for macrocells/small cells 30 dBm /20 dBm

Transmission power for macrocells 30 dBm

Transmission power for small cells 20 dBm

Small-cell Range 25 m

Macro-cell Coverage Distance 1 km

in Fig. 4. In this scenario, 1 macrocell, 50 small cells, and
100 UEs are deployed on the network randomly. The cer-
tain number of small cells, UEs, and data channel connec-
tions which belong to this scenario are shown in Fig. 4 to
eliminate the complexity of the figure. Here, all of the UEs
move randomly in the coverage of the macrocell and one of
the movement is showed in Fig. 4. During this movements,
intra-macrocell handovers are executed and mobile UEs are
connected to the different small cells. Details of the other
simulator parameters are given in Table 1.

In the implementation of the proposed approach as ex-
plained in Section 3, firstly, we implement Kriging interpo-
lation with semivariogram analysis for estimating the indi-
cator values spatially. Then, these estimated values are used
in the gain function for candidate cell selection. Lastly, we
use the autoregressive model in temporal estimation for se-
lecting the optimal eNodeB among the candidate cells. Also,
numbers of the Ping-Pong, unnecessary and frequent han-
dovers, dropped and blocked calls are assigned to zero at
the starting of the simulation. Then, the value of the each
indicator is updated at the end of the each simulation. After
that, these reached values are divided by the related total
numbers to find the required eNodeB quality indicators. For
example, to find the Ping-Pong handover rate quality (QPP )
indicator, reached Ping-Pong handover number is divided by
the total handover number as a result of all of the simula-
tions.

Table 2: Selected Weight Values

W1 W2 W3 W4 W5 W6

Case 1 0.65 0.09 0.08 0.02 0.10 0.06

Case 2 0.10 0.55 0.07 0.05 0.20 0.03

Case 3 0.10 0.09 0.60 0.05 0.10 0.06

Case 4 0.15 0.10 0.06 0.50 0.10 0.09

Case 5 0.03 0.05 0.20 0.04 0.60 0.08

Case 6 0.07 0.10 0.03 0.10 0.05 0.65

Moreover, all implementations are performed according to
the Case 3, so frequent handover is the most important cri-
teria in eNodeB selection. Therefore, W3 takes the highest
weight value in all implementations as given in Table 2.
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In the new locations of the UEs, optimal eNodeBs are
selected by using the proposed mechanism and traditional
handover methods. Accordingly, the performance of the pro-
posed mechanism is compared with the traditional handover
mechanism results. In traditional handover method, Time
to Trigger (TTT) and hysteresis values are used for handover
decision. In this scheme, if the signal level of the target cell
is greater than the serving cell up to the hysteresis value
during the Time to Trigger duration, then this target cell is
selected to establish a connection. Accordingly, any estima-
tion method is not used for selecting the optimal eNodeB.

With all of these in mind, in our proposed mechanism,
unnecessary, frequent, and Ping-Pong handover rates are de-
creased. Due to these parameter values of the eNodeBs are
considered during the selection as given in the Eq. 1 and Eq.
10. These equations are used for estimating and observing
the long-term behaviors of these quality indicators of the
eNodeBs and in this way, most optimal eNodeB is selected.

Figure 5: Ping-Pong Handover Rate Comparison

Figure 6: Unnecessary and Frequent Handover Rate
Comparison

Comparison results of the traditional and proposed han-
dover mechanisms in terms of unnecessary, frequent and
ping-pong handover rates are given in the Fig. 5 and Fig. 6.

Figure 7: Dropped and Blocked Calls Rates Com-
parison

Figure 8: Packet Loss Rate Comparison

In these figures, unnecessary, frequent, ping-pong handover
numbers are decreased by %35, %37 and %17 respectively
compared to the traditional handover mechanism. Further-
more, the rate of the packet losses, dropped and blocked calls
are investigated for the two mechanisms as shown in the Fig.
7 andd 8. As shown in these figures, packet loss, dropped
and blocked call rates are reduced by the %7, %9 and %14
respectively for medium-scale networks in our proposed ap-
proach. Similar to the above mentioned, by using Eq. 1
and Eq. 10, eNodeB with fewer packet losses, dropped and
blocked calls are preferred in the selection, therefore rate
of these problems are decreased. Also, the best improve-
ment results are obtained from the frequent handover rate,
because, it is assumed that this parameter has the highest
priority (Case 3) in the implementation scenario as a selec-
tion criterion.

5. CONCLUSION
The high number of small cells is one of the main fea-

tures of the 5G technology, which can improve the network
capacity. Yet, together with that, the probability of fre-
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quent, unnecessary and ping-pong handover problems also
increases. In 5G networks, handover operation must be ex-
ecuted in two tiers architecture because of the control and
data channel separation. To solve these problems, in this pa-
per, we were proposed optimal eNodeB selection mechanism
by using spatio-temporal estimation methods. In spatial es-
timation, Kriging Interpolator was used with Semivariogram
Analysis because of the stochastic behavior. Then, this spa-
tial estimation was followed by temporal estimation by using
autoregressive model. All of these operations are executed
by the EnodeB estimation entity for two channels before
the connection setup and thus; any unnecessary, frequent
and ping-pong handover risk were reduced by the %35, %37
and %17 respectively.
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