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Abstract—Network Functions Virtualization (NFV) has
emerged as a paradigm for efficient, flexible and agile network
function provisioning. In such NFV-based networks, ensuring net-
work performance and cost efficiency is an important challenge to
tackle when network traffic is steered through a chain of virtual
network functions (VNF). In this work, we consider the dynamics
of traffic demand in different time periods, and multipath routing
for minimizing the routing cost in NFV. We focus primarily
on optimization models and algorithms for finding a traffic
steering solution that effectively splits a demand volume into
several flows and selects appropriate links and nodes for these
flows. We formulate the problem as a mixed linear integer
programming model for obtaining an optimal solution taking
into account the dynamics of service demand, multipath routing
and service function chaining. For the large scale problem,
we propose a heuristic algorithm to find an approximation
solution. Particularly, our proposed model and algorithm allows a
controller to update a link weight system for effectively steering
traffic demand to appropriate nodes in a NFV infrastructure.
The evaluation results show that our approach to traffic steering
significantly improves a number of major performance metrics
including the routing cost, the maximum link utilization, and
the accepted demands. In addition, the approximation solution
is very close to the optimal solution.

Index Terms—Network Functions Virtualization, traffic steer-
ing, integer programming, dynamic service demand, service
function chaining

I. INTRODUCTION

Today’s network infrastructures and services are built almost
on specialized appliances. To reduce capital and operational
expenditures, network operators have been exploring network
softwarization and cloudification to build efficient, flexible and
agile networks, and to have them offered as a cloud service.
Network Functions Virtualization (NFV) has emerged as a
new network architecture concept where the network functions
can be deployed on the commodity server as software, and
chained together to create a communication service. NFV
enables network operators to rapidly create, destruct on-
demand network services in a flexible way. In NFV, data traffic
is processed by a service function chain (SFC) composed of
several network functions (e.g., WAN accelerators, Intrusion
detection system (IDS), firewall) in a given sequence [1].

As a virtual network function (VNF) is located dispersedly
through a NFV infrastructure (NFVI), it is challenging to steer
network traffic through a SFC while maintaining high network
performance and cost efficiency, especially in the dynamics of
service demand in different time periods.

In this paper, we aim at finding a traffic steering solution that
minimizes the routing cost by effectively splitting a demand
volume into multiple flows and routing these flows through
appropriate paths. Several practical factors are taken into
account. Particularly, the traffic volume of a service demand is
different in successive time periods. We focus on optimizing
the link weight system over multiple time periods in a traffic
steering solution when considering the dynamics of service
demand. We also consider the Equal-cost Multipath (ECMP)
routing protocol and NFV characteristics including SFC and
resource constraints at NFV infrastructure. ECMP is a com-
mon multipath routing scheme which splits equally the total
traffic passing through one network node for the minimum-
cost paths of a source-destination pair. We investigate both an
optimization model and approximation algorithm for the traffic
steering problem in NFV that takes into account the dynamic
service demand, ECMP, and SFC.

The major contributions of this paper are as follows:
• We formulate the traffic steering problem as a mixed

linear integer programming model (MILP) considering
several practical aspects including the dynamics of traffic
demands in different time periods, the ECMP routing
strategy, and NFV characteristics under resource con-
straints at NFVI nodes and links.

• We propose an efficient heuristic algorithm for the large
scale problem. The algorithm produces a link metric
vector and a traffic splitting solution regarding the dy-
namics of traffic demand and available system resources
for minimizing the total network routing cost.

• We evaluate our proposed model and algorithm in two
real network datasets. We compare our solution consid-
ering multiple time periods with the non-period scheme in
three important performance metrics including the routing
cost, the number of accepted demands, and the maximum



link utilization. The evaluation results show that our
approach to traffic steering performs better than a traffic
steering scheme without taking into account the dynamics
of service demand. Moreover, the results obtained by the
heuristic algorithm are very close to the optimal solution.

The rest of this paper is organized as follows. We review
previous researches in Section II. We formally state the traffic
steering problem under our consideration in Section III. The
heuristic algorithm is described in Section IV for solving the
large scale problem. Section V presents evaluations of our
solution. Conclusions are stated in Section VI.

II. RELATED WORK

NFV performance has been being investigated in several
related aspects such as VNF placement, SFC routing, re-
source management and orchestration. In [2], authors present
a scalable SFC orchestrator that can deploy VNF chains and
orchestrate the runtime phase by rerouting the flow to an
alternative path when a certain instance of service function
is overload. Eramo et al. propose three algorithms capable of
addressing NFVI placement, SFC routing and VNF Instance
migration in response to workload changes [3]. Some other
platforms are also developed to improve packet processing
on standardized servers [4], [5]. The NFVnice framework is
proposed to schedule resource fairly, efficiently and dynami-
cally as well as to improve NF performance (throughput and
loss) on NFV platforms [6]. NFV performance improvement
is also investigated by enabling network function parallelism
[7]. In [8], the authors present an adaptive multipath routing
scheme for improving the NFV performance, in which the
different traffic volumes of demands in multiple time periods
have not been taken into account, and an optimization model
has not been investigated. More research results about the NFV
performance are presented in [9]–[12].

However, none of these studies has focused on traffic
steering taking into account the dynamics of service demand,
multipath routing and fundamental characteristics of NFV,
while these practical factors have a major impact on the
NFV performance. It is our motivation to study a traffic
steering solution for NFV considering the dynamics of traffic
demand in different time periods, ECMP multipath routing,
and SFC. Specifically, our work focuses on the difference
of workload in different time periods to minimize the total
network routing cost. Furthermore, we provide an evaluation
of important performance metrics of an NFV system in real
network datasets for a traffic steering solution in scenarios of
dynamic and non-dynamic service demands.

III. SYSTEM DESCRIPTION AND MILP MODEL

We study a NFV system that provides network functions as a
service. The system is composed of three primary components:
NFVI, a set of VNFs and NFV MANO [13]. In NFVI, the
software implementation of a network function is referred
to as a VNF. A service demand in NFV is a request from
users for a network service that may include several VNFs.
To serve a service demand, NFV MANO decides the location

TABLE I: Summary of notations

Sets
D Service demands
E Links on NFVI
V Nodes on NFVI
F VNFs available on NFVI
P Possible paths on NFVI
Pd Possible paths for demand d
T Time periods

Demand parameters
hdt The traffic volume of d ∈ D at time period t ∈ T
sd The source of demand d
td The destination of demand d
Fd The SFC of demand d, Fd ⊂ F

Network parameters
C1,e Bandwidth capacity of link e ∈ E
Cet Network routing cost of link e ∈ E at time period t ∈ T
C2,v Processing capacity of node v ∈ V
Mz The maximum link capacity
kvdit A parameter indicates that node v supports the ith VNF of

demand d at time period t if Kvdit = 1, otherwise Kvdit =
0

Binary variables
bepdt A binary variable indicates that flow p of demand d uses link

e at time period t if bepdt = 1, otherwise bepdt = 0
uev A binary variable indicates that link e is on a minimum-cost

path to node v if uev = 1, otherwise uev = 0
Continuous variables

xepdt The traffic rate on link e of a data flow p of demand d at
time period t

luv A non-negative integer variable indicates the smallest length
of the paths from node u to node v

yet Total of traffic data flows going through link e at time period
t ∈ T

guvt A non-negative continuous variable whose value is traffic
volume assigned to outgoing links of node v that belongs
to the minimum-cost paths from node u to node v at time
period t

Metric vector variables
w A link weight system on NFVI, w = (we : e ∈ E)
x A traffic splitting vector for all demands at all time periods,

x =
(
xepdt : e ∈ E, p ∈ P, d ∈ D, t ∈ T

)

required to deploy a VNF and how to route its traffic through
a given sequence of VNFs. As the data traffic of demands may
change in different time periods because of user requirements,
we consider the variation of traffic demand volume and cost
structure in multiple time periods for minimizing the total rout-
ing cost. We aim to find the optimal link metric system over
multiple time periods under constraints on NFVI resources and
the requirements of the service demand. We shall refer to the
problem under our consideration as the multi-period case or
the dynamic case interchangeably.

We model NFVI as a directed graph G = (V,E) composed
of a set of n virtual nodes V , and a set of k directed links
E. Let T = {ti|i = 1, 2, ...r} be a set of r time periods. The
traffic volume of a service demand can change dynamically
in different time periods. A node v represents a commodity
hardware device where one or more VNF can be instantiated
flexibly to serve demands. A node has a limited capacity for
instantiating VNFs. We use C2,v to denote the processing
capacity of node v ∈ V . Each link e ∈ E is a physical
connection between the starting node ie and the terminating



node je. Let C1,e and Cet denote the bandwidth capacity and
routing cost for each data traffic unit at time period t of link
e ∈ E, respectively. Let F = {fi|i = 1, 2, ...m} be all VNFs
available in the system. We use D to represent a set of l
service demands requested by tenants. Each demand d ∈ D
is defined as a customer request that requires a SFC from a
source sd to a destination td with different traffic volumes
hdt at different time period t. Note that we do not put any
constraint on a number of VNF instances, e.g., a multiple use
of a single VNF in a SFC.

We define w = (we : e ∈ E) to be the link weight system
on NFVI. The system applies the ECMP routing scheme to
decide a traffic splitting vector x(w) = (xepdt : e ∈ E, d ∈
D, p ∈ Pd, t ∈ T ) where Pd is all available paths on NFVI of
demand d, and xepdt is the amount of data on link e at time
period t of flow p of demand d according to the link metric
vector w.

Let kvdit be a parameter indicates that node v can provide
the ith VNF of demand d if kvdit = 1, otherwise kvdit = 0.
Next, we assume that rvf is the computing resources required
to process function f with one unit of traffic rate at node v.

The objective aims at obtaining a link metric vector w and a
solution of traffic splitting x(w) for minimizing the maximum
total network routing cost of data flows over all time periods
while satisfying all service demands as well as NFVI resource
constraints. The system determines x(w) based on the ECMP
routing strategy for each link metric vector w.

We use some following variables in our model:

• bepdt is a binary variable indicates that flow p of demand
d uses link e at time period t if bepdt = 1, otherwise
bepdt = 0.

• guvt is a non-negative continuous variable whose value is
traffic assigned to outgoing links of node v that belongs
to the minimum-cost paths of a source-destination pair
(u, v) at time period t. The cost of a routing path is the
total weight of links on the path.

• luv is a non-negative integer variable that is the smallest
length of all paths from node u to node v (u 6= t).

• uev is a binary variable indicates that link e is on a
minimum-cost path to node v if uev = 1, otherwise
uev = 0.

• xepdt is a non-negative continuous variable that denotes
the traffic on link e of flow p of service demand d at time
period t.

• yet is the total traffic through link e at time period t.

Table I provides a summary of notations that we use to
formulate the traffic steering problem in a NFV system.

Our objective is to find a solution having the minimal total
routing cost. The objective function is given by

F = maxt∈T
∑

e Cetyet

where yet =
∑

d,p xepdt.

We now present the constraints of our model. First, to ensure
that total traffic incoming a link equals to total traffic outgoing
that link, we use constraint (1):

∑
p,e:ie=v

xepdt−
∑

p,e:je=v

xepdt = 0, ∀d,∀v,∀t, v 6= sd, v 6= td

(1)
Constraint (2) and (3) make sure that the total traffic

outgoing from the source node of demand d and the total traffic
incoming the destination node of demand d are the same as the
traffic volume of demand d for each time period, respectively.
It means that service demand d is served fully by the system.∑

p,e:ie=sd

xepdt = hdt, ∀d, ∀t (2)

∑
p,e:ie=td

xepdt = hdt, ∀d,∀t (3)

Next, we need to ensure that the total traffic passing through
a link is not over the link capacity. This constraint is expressed
as follows: ∑

d,p

xepdt ≤ C1,e, ∀e, ∀t (4)

In addition, it is essential to make sure that the VNF
deployment does not violate the computing capacity of nodes.
We use constraint (6) to present it where equation (5) computes
resources required to process functions f with one unit of
traffic at node v.

Rv(x, f) = xrvf (5)

∑
d,i

Rv(kvdit.
∑

p,e:je=v

xepdt, Fdi) ≤ C2,v (6)

Each VNF in the service function chain of demand d must
be deployed to one node, and any flow of demand d must go
through a sequence of VNFs specified in the SFC of demand
d. We represent these constraints as follows:∑

e

xepdt(kiedit + kjedit) > 0, ∀d, i, t, hdt (7)

∑
e

xepdt > 0, ∀d, p, hdt > 0 (8)

0 ≤ xepdt ≤Mzbepdt, ∀d, p, e, t (9)

Next, we formulate the flow constraint to ensure that the
in-flow and out-flow of each node is equal where Mz is the
maximum link capacity over all links.

xepdt ≥
∑

{e′ :j
e
′ =ie}

xe′pdt −Mz(1− bepdt), ∀d, e, p, t (10)

xepdt ≤
∑

{e′ :j
e
′ =ie}

xe′pdt, ∀d, e, p, t (11)



Finally, we use constraint (12), (13), (14) to represent the
constraint on traffic splitting according to the ECMP routing
scheme.

0 ≤ gievt −
∑

p,d:td=v

xepdt ≤ (1− uev)
∑

d:td=v

hdt, ∀t, v, e

(12)∑
p

xepdt ≤ uetdhdt, ∀d, e, t (13)

1− uetd ≤ ljetd + we − lietd ≤ (1− uetd)Mz,∀d, e (14)

Our MILP formulation presented above can be effectively
solved by a MILP solver such as CPLEX for a moderate
number of service demands and network size. We propose
a heuristic algorithm to find an approximation solution for the
large scale problem in the next section.

IV. HEURISTIC ALGORITHM

We propose a resource allocation algorithm for traffic steer-
ing, called RAP, which finds a weight system vector and a
routing solution for minimizing the total network routing cost
in NFV. The heuristic includes two primary components: (i)
optimizing link metric vector while considering the change of
traffic volume of demands at different time periods as well
as available NFVI resources, (ii) deciding a traffic splitting
vector by applying the ECMP routing scheme based on service
demands, the weight system vector and available system
resources.

A. Optimizing the link metric vector

To find the optimal link metric vector, we use an approxi-
mation algorithm based on Simulated Annealing heuristic [14]
with our proposal for neighborhood selection (Algorithm 1).
Firstly, the algorithm initializes a metric vector by setting
all link weights as 1. Then, the algorithm optimizes the link
weight system in two loops. In the neighborhood selection
(i.e., line 9), the algorithm finds links whose routing cost is
largest, and increases these link weights by 1 for each time
period. The algorithm decides a traffic splitting vector, and
calculates the objective function U(z) by using Algorithm 2
with the new obtained link metric vector z. The details of
Algorithm 2 are described in the next section. The algorithm
chooses the new link metric vector z if the value of U(z)
is not worse and it does not lead to a decrease of the
minimum accepted demands. Otherwise, z will be chosen with
probability e−∆U/Q to overcome a local optimization. Finally,
we obtain the best link metric vector for updating the system.

B. Deciding the traffic splitting vector

With each link weight system on NFVI, Algorithm 2
computes the maximum total network routing cost and the
minimum number of accepted demands over time periods after
determining the traffic splitting vector. The first step in the

Algorithm 1 Optimizing the link metric vector
Input: G, D, F, T
Output: Traffic splitting solution x, link metric vector w

1: Initialize w
2: wbest ← w, Ubest ← Uwbest

, Abest ← Awbest

3: Q← Qo

4: while Q > 1 do
5: l← 0
6: while l < L do
7: z ← generate a neighbor vector
8: ∆U ← Uz - Uw, ∆A← Az - Aw
9: if ∆U ≤ 0 and ∆A ≥ 0 then

10: w ← z
11: if Uz < Ubest then
12: wbest ← z, Ubest ← Uz, Abest ← Az
13: end if
14: else
15: if random(0,1) < e−∆U/Q then
16: w ← z
17: end if
18: end if
19: l← l + 1
20: end while
21: reduce temperature Q
22: end while

algorithm is to find all minimum-cost paths for the source-
destination pair of each demand. Then, the algorithm uses the
ECMP routing scheme to decide how to split the traffic volume
of each demand on these paths. The procedure loops over all
demands for each time period.

Algorithm 2 Deciding the traffic splitting vector
Input: G, D, F, T, w
Output: Traffic splitting solution x,
minimum accepted demand A

1: for all time period t ∈ T do
2: Sort decreasingly demands by these demand volumes
3: for all d ∈ D do
4: Pd ← all minimum-cost paths from sd to td
5: x ← split flow traffic for Pd according to ECMP
6: if has no overload links then
7: map VNFs of demand d with nodes of Pd

8: end if
9: if satisfy all constraints then

10: update resource constraints
11: end if
12: end for
13: U ← calculate the maximum total network routing

cost
14: A← calculate the minimum accepted demand
15: end for
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Fig. 1: Comparison between the multi-period solution and the non-period solution

V. EVALUATION

A. Parameter setting

We use two datasets of real network traffic and network
topologies in our evaluation. The first dataset is the Internet2
research network including a topology of 12 nodes, 15 links
and traffic matrices with 130 demands [15]. In the Internet2
network, we consider three time periods. The demand volumes
in the first time period are tracked from the real traffic. The
others are generated randomly between the minimum and
maximum traffic volume of all demands. The second dataset
is the Geant dataset that contains a topology of 22 nodes,
36 links, 250 service demands with four time periods [15].
The traffic volumes of demands are recorded from the Geant
network in the first time period and randomly generated in
the others. We consider four VNFs available on NFVI. The
computing capacity, the resource requirements of a VNF, and
the SFC of each demand are randomly generated.

B. Experimental results

First, we evaluate the efficiency of our approach by compar-
ing results achieved by the case of multiple time periods and
the non-period case. We perform RAP in the same network
scenarios and demands for two cases. In the non-period case,
there is only one demand volume for each service demand
and this value is the maximum demand volume over all
time periods in the multi-period case. We compute three
performance metrics including the total network routing cost,
the maximum link utilization, and the minimum acceptance
ratio of service demand.

We can observe that the multi-period solution outperforms
the non-period solution in term of the three metrics. For the
evaluation using the Internet2 dataset, Fig. 1a and Fig. 1c show
that the multi-period solution can save at least 27% the total
network routing cost and 10% the maximum link utilization
as compared to the non-period solution. For the ability of
satisfying demands, while the multi-period solution always
serves 100% number of requested demands, the non-period
solution serves less than 95.5% for 130 requested demands
(Fig. 1b). For the evaluation using the Geant dataset, Fig. 1d
shows that the total network routing cost of the multi-period
solution is only approximately 50% that of the non-period
solution. Similarly, the multi-period solution achieves a higher
acceptance ratio comparing with the non-period solution (Fig.
1e). Especially, the benefits of considering the multiple time

periods in a service demand over the non-period case are
higher when a number of demands and network size are
large. Fig. 1f shows that the multi-period solution obtains the
maximum link utilization that is not as good as the non-period
solution with 50 service demands because of the aggregation
of traffic on a low-cost link of a minimum-cost path.

Second, we evaluate the performance of our approach when
optimizing the link weight system over multiple time periods.
The ECMP routing is independently repeated in each time
period, but it uses different link weight systems in two cases. In
the first case, i.e., the non-adjusting case, the algorithm ignores
the step of optimizing the link metric vector and the weight
of links is fixed as 1. In the second case, i.e., the adjusting
case, the algorithm finds the optimal link weight system over
multiple time periods. Fig. 2a and Fig. 2b show the results
with the Geant dataset. We observe that the solution in the
adjusting case is much better than that in the non-adjusting
case in both the total network routing cost and the percentage
of accepted demands.

Third, we compare the efficiency of our approach when
using the historic link weight and the adaptive link weight for
finding a NFV routing solution in each new time period. In the
former, the algorithm computes the optimal link weight system
based on the information of historic demands, and then it uses
this link weight system for routing next demands. In the latter,
the algorithm uses the information of demands in the current
time period to compute again the optimal link weight vector
and the routing solution. Fig. 2c and Fig. 2d illustrate that
the total network routing cost achieved by using the historic
link weight system is very close to the result obtained by re-
running the algorithm for each new time period. In spite of
a slightly better result, the computation of the optimal link
weight for each time period is not practical because of the
high disruption to the network routing [16].

Finally, we analyze the performance of our approach in
comparing RAP and the optimal solution. We use the IBM
ILOG CPLEX Optimizer to achieve the optimal solution of the
MILP model for the small-scale problem (i.e., the number of
service demands varies between 4 and 32). Fig. 3a and Fig. 3b
provide a comparison between the total network routing cost
obtained by RAP and the optimal solution with the Internet2
and Geant network. The total network routing costs achieved
by two algorithms are almost equivalent in the Internet2
topology and very close in the Geant topology. Fig. 3c and Fig.
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Fig. 3: Comparison between RAP and CPLEX

3d depict a comparison of the maximum link utilization when
using the Internet2 and Geant networks. The results show that
the maximum link utilization provided by RAP is a little bit
higher as compared to the optimal solution.

VI. CONCLUSION

In this paper, we investigated the traffic steering problem
considering the dynamics of traffic demands in different time
periods and taking into account the ECMP routing strategy and
SFC in NFV. We introduced a MILP model for obtaining the
optimal solution of the problem. For the large scale problem,
the RAP algorithm can find an approximate solution that
is very close to the optimal solution. The evaluation results
show that a traffic steering solution considering the dynamics
of traffic demands can reduce approximately twice time the
total network routing cost compared to the non-period case.
Possible extensions of our work include the consideration of
the forecast traffic and failure scenarios in the traffic steering
problem.
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