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Abstract. Spam e-mail with advertisement text embedded in images presents a 
great challenge to anti-spam filters. In this paper, we present a fast method to 
detect image-based spam e-mail. Using simple edge-based features, the method 
computes a vector of similarity scores between an image and a set of templates. 
This similarity vector is then used with support vector machines to separate 
spam images from other common categories of images. Our method does not 
require expensive OCR or even text extraction from images. Empirical results 
show that the method is fast and has good classification accuracy.  

1   Introduction 

The increasing number of Internet users and the low cost of e-mail make this form of 
communication very attractive for direct marketers. As a consequence, the volume of 
unsolicited commercial e-mail (“spam”) has grown tremendously in past few years.  

In addressing this growing problem, many solutions to spam reduction have been 
proposed. Among these solutions are automated methods for filtering spam. Using 
hand-crafted rules or machine learning techniques, anti-spam filters analyze the text 
content of e-mail to detect spam. Some anti-spam filters are reported to achieve 
accuracy of up to 99% [9]. 

To circumvent such systems, spammers have invented many techniques. An 
example of techniques spammers use is to embed advertising text in images being 
sent with spam. While the contents of such messages are normally viewed by spam 
receivers they are shielded from text-based anti-spam filters. By some estimates, up to 
25% of spam being sent today contain imagery and this number is expected to 
increase [1]. Therefore, it is desirable to develop systems that can detect and filter 
image-based spam. 

A possible way to detect image-based spam is using a pipeline of an optical 
character recognition (OCR) system that extracts and recognizes embedded text, 
followed by a text classifier that separates advertising text from legitimate content. 
While this solution promises to detect spam with a certain level of accuracy, the 
existing OCR algorithms are computationally expensive and thus cannot operate on 
heavily loaded e-mail servers. 

In a recent paper, Aradhye et al. [1] described an image-based anti-spam filter that 
does not require full text recognition. Their method starts by extracting regions with 
overlaid text from images. Based on the text regions and other image elements, the 
method creates several simple features that are indicative of spam. Images represented 
by the extracted features are then classified into spam and non-spam using SVM. 
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Since the method does not include the text recognition step, it is much faster than 
systems with full OCR. However, the extraction of text regions is nontrivial and still 
requires considerable computational resources. 

In this paper, we propose a fast method to detect spam images. The proposed 
method does not try to extract embedded text from an image. Instead, it uses an edge-
based feature vector, which can be computed efficiently, to represent major shape 
properties of the image. Since most of spam images contain large proportions of text 
(Fig. 1), they must have shape representation similar to that of other text intensive 
images. Our method uses the edge-based feature to compute a vector of similarity 
measures from an image to a small set of gold standards – images with different 
proportions of overlaid text. These similarity vectors then serve as input to SVMs that 
separate spam images from legitimate ones. The method is fast because it does not use 
computationally expensive image processing and text recognition steps. On a 
collections of images, the method separates spam images from non-spam ones with 
accuracy of 80% and higher. 

 

  
(a) Image containing only text (b) Image with photographic elements  

Fig. 1. Examples of spam images 

  
(a) Natural scene photo (b) Greetings e-card 

Fig. 2. Examples of non-spam images 

Related work. The problem of image-based spam detection is a special case of image 
categorization that has been studied in context of many important applications. 
Depending on application requirements and the nature of images to categorize, 
generic image categorization methods can use different image features or their 
combinations to distinguish between two or more classes. In a work by Hu and Bagga 
[4], the authors relied on the correlation between image functional categories and 
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several features such as: whether the images are graphic or photographic, whether the 
images have text elements. They used frequency domain analysis of image intensity 
and DCT coefficients to decide about the presence of these features. The learning and 
classification steps were then done with SVMs. Gavilan et al. [3] represented an 
image in term of blobs – image regions lighter or darker than background. The blob 
representations of the images are then used to train neural networks to distinguish 
among natural, artificial, portrait, or text images. Another interesting application is 
indoor vs. outdoor classification [10]. 

Beside spam images, many other categories of images and videos contain text. 
Since overlaid text contains important information about image content,  the 
extraction of text blocks and recognition of their content have attracted research 
interest in the image processing and multimedia analysis community. Previous work 
on text extraction used different characteristics of text regions such as their color [7], 
the frequent occurrence of vertical edges, or wavelets and spatial variance of texture 
[13] to locate blocks of text.  

2   Algorithm 

Our proposed spam detection method uses SVM combined with vector representation 
of images to distinguish between spam and non-spam images. The algorithm consists 
of three steps outlined next.  
1) Feature extraction and normalization using Edge Directions (ED) or Edge 

Orientation Autocorrelogram (EOAC). This step summarizes shape properties of 
an image in term of edge orientation and correlation.  

2) Calculation of similarity scores between the image and a small set of templates or 
sample images containing only text. This step allows representing the image as a 
vector of similarity scores with respect to the templates. 

3)  Training and classification with SVM. The vector representations of images as 
computed in step 2 are used to train SVM and subsequently to classify each new 
image as spam or non-spam. 

In the following sections, we provide a detailed description for each of these steps. 

2.1   Edge Directions and Edge Orientation Autocorrelogram 

In image categorization, it is important to choose appropriate features to represent 
images. Since spam images are text intensive, and text elements have special shape 
characteristics which make them different from that of background or other elements, 
it is desirable to use features able to capture such characteristics. At the same time, for 
the method to be practical, a feature of choice must be fast to compute. 

Although other features like color-based features, texture-based features, blobs etc. 
have been used with success for other image categorization tasks [3,4,8,10], edge-
based features are very indicative of text intensive spam images while remain simple 
to compute. In this work, we have chosen two edge-based features: ED [5,6] and 
EOAC [8]. The ED feature summarizes global shape information. EOAC is an 
extension of ED which captures correlation between text elements over small 
distances. The ED histogram of an image is computed in three steps, and the EOAC is 
computed by adding two more steps as follows. 
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1. Edge detection: The Sobel operator is used to generate two edge components Gx 
and Gy, from which edge amplitude and edge orientation are computed as follows:  

22
yx GGG +=   and         ∠G = tg-1 (Gy / Gx) 

2. Finding prominent edges: only edges with amplitude higher than a predefined 
threshold T1 are extracted. In our experiment we used T1 = 25 as in [8]. 

3. Edge orientation quantization: Edges are quantized into k segments ∠G1, ∠G2, …, 
∠Gk, each segment is five degrees. The result of this step is the ED histogram. 

4. Determining distance set: This step constructs a distance set D, member of which 
are the distances from the current edge. This set is used to compute the correlations 
in the next step. We used the set of four members as in the original paper D = {1, 
3, 5, 7}. 

5. Computing EOAC matrix: The EOAC matrix is a two-dimensional array with k 
rows and |D| columns. The <i, j> element of this matrix contains the number of 
similar edges with the orientation ∠Gj , which are i pixel distances apart. Two 
edges are defined to be similar if the absolute values of their orientations 
amplitudes differences are less than an angle and an amplitude threshold value. 

Figure 3 shows examples of EOAC graphs and ED histograms. 
The ED and EOAC features are translation invariant. This is a desired 

characteristic in our case because text can be located anywhere within an image. To 
achieve also scaling invariance, the ED histogram is normalized with respect to the 
number of edge points of the image, and the EOAC matrix is normalized with respect 
to the sum of the populations of all EOAC bins. 

2.2   Calculation of Similarity Scores 

If the proportion of overlaid text within an image is large enough, the contribution of 
the text to the image’s ED and EOAC will dominate that of the other image elements. 
As a consequence, two images containing large amounts of text tend to share 
similarities in their shape representations. The algorithm proposed herein exploits this 
observation to distinguish text intensive images from others. Specifically, in this step, 
the algorithm computes similarity scores of the image with respect to a small set of n 
sample images or templates. Here we define a template as a specially constructed 
image, which contains only text. The proportions of text as well as text characteristics 
are chosen to vary among different templates so that the set covers a large variety of 
images with overlaid text.  

Figure 3 shows a non-spam image (a), a spam image (b), and a template (c) as well 
as their respective EOAC graphs [(d)-(f)] and ED histograms [(g)-(i)]. As shown in 
the figure, the EOAC and ED representations of the spam image share some 
similarities with those of the template while the representations of the non-spam 
image look very different. 

To measure the similarity between an image with EOAC X and a template with 
EOAC Y we use L1 distance computed as follows: 
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For the ED feature, the similarity is computed similarly.  
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(a) Non-spam image 
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(c) Template image 
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Fig. 3. An example of shape representation using EOAC and ED; (a) - (c) show three images, 
where (a) is non-spam, (b) spam, (c) a template; (d)-(e) their respective EOAC graphs; and (g)-
(i) their respective ED histogram. 

At the end of this step, each image is represented by a vector of length n, elements 
of which are the similarity scores with respect to the templates. In machine learning 
community, the idea of representing an object via its similarity to a set of other 
objects is known as empirical feature map [11]. The merit of the empirical feature 
map is that it provides a general way to map from similarity scores to vector 
representation, from which a proper kernel can be constructed to use with SVM. 

2.3   Support Vector Machine Learning and Classification 

With vector of similarity computed above, we train SVM to differentiate between the 
two classes: spam and non-spam. The SVM algorithm relies on two main ideas. First, 
the algorithm maps the given training sets of n-dimensional vectors with positive and 
negative examples into a (possibly) high-dimensional feature space. Then, in the 
feature space, the algorithm seeks to locate a hyperplane with two properties: 1) it 
separates the positive from the negative examples; 2) it maintains a maximum margin 
from any example in the training set [12]. Having found such a hyperplane, the SVM 
predicts the label of a new example by mapping it into the feature space and defining 
on which side of the hyperplane the example is located. The mapping from the input 
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space to the feature space is done by using a so called kernel function. In this work, 
we used similarity vectors as input to the SVM and tried several kernel functions 
defined on input vectors. 

3   Experiments and Results 

Dataset. Unlike the situation with text-based spam filtering, to our best knowledge, 
there is no public benchmark dataset for image-based spam. To create a dataset for 
experiments, we collected images from spam messages arriving at an e-mail server. 
We used images from a spam message only if the message does not contain text in its 
body and hence the image content provides the major source of information to make 
spam-non-spam decision. Images that exist only for formatting were not included. 
The spam part of the dataset contains 411 images, about half of them contain only text 
without complex background (Fig. 1a). The other images contain graphic and 
photographic elements with different levels of complexity (Fig. 1b). 

The non-spam images in our dataset were collected from several sources. We asked 
our friends and colleagues to donate e-cards they received over email. The e-card 
collection was augmented by free e-cards downloaded from different websites with 
default text. This resulted in 287 images all contain text. We further randomly 
selected 300 images from the CorelDraw collection. Finally, following the work 
presented in [1] other 723 images were collected by querying the Google-images 
search engine with keywords “nature photo”, “portrait” and “baby” and then 
randomly selecting from what the engine returned. 

Evaluation methodology. We assessed the method by using 10-fold cross-validation. 
The dataset was randomly divided into 10 folds of equal size. One fold is left as the 
test set and the other folds were used for training. The experiment was repeated 10 
times with different folds being the test sets; the classification accuracy is calculated 
by averaging over 10 runs. 

In our evaluation, we used spam recall and non-spam recall defined as follows: 

 spam all of #

classifiedcorrectly  spam of #
 =recallspam

 spam-non all of #

classifiedcorrectly  spam-non of #
 =− recallspamnon  

SVM training. To conduct  experiments we used WEKA  library (http://www. 
cs.waikato.ac.nz/ml/weka). All the similarity vectors were normalized to have unit 
length. In all the experiments we used SVM with soft margin and C = 1. We tried 
different kernels and found that the linear kernel and the RBF kernel give the best 
results. In what follows, only results obtained with the linear kernel are reported. 

Template set construction. Since the algorithm makes sense only when an image 
contains dominating amount of text, the templates were constructed so that text 
regions cover more than 50% of each template. Specifically, we used black-white 
templates with text areas covering from 50% to 90% of the whole images with 
interval of 10%. Letters were chosen uniformly so that all the letters of the English 
alphabet appear with the same frequency. We tried several commonly used font 
families and their italic and bold face variants. Since EOAC is scaling-invariant, the 
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choice of font size is not critical. In our experiment, we used font size = 10. To avoid 
unexpected effect when comparing images of different sizes, we used ten sets of 
templates each of them consists of templates of the same size. The sizes were chosen 
from 80x60 to 800x600 pixel with interval of 80x80. When computing the similarity 
vector for the given image, the set with the size closest to the image’s size is used. 
Results. In the first experiment, we compared the performance of two versions of the 
method - with ED and EOAC used as image features. We also examined how the use 
of templates with different font families affected the spam detection accuracy. In 
addition to three fonts that are commonly used in the Internet namely Times New 
Romans (TNR), Arial, and Tahoma, we used two other template sets constructed with 
Gothic and Lucida fonts. The results are summarized in Table 1. 

The results show that, in average, the two edge-based features have nearly the same 
non-spam recall, but EOAC gives significantly higher spam detection accuracy. At 
the same time, computing EOAC is more expensive than computing ED. On a PC 
with Pentium IV and 512 MB RAM, the computation of EOAC and ED for 1000 
800x600 images takes 260 seconds and 125 seconds respectively. 

Table 1. Spam recall and non-spam recall for different edge-based features and font families 

 TNR Tahoma Arial Gothic Lucida 

Spam recall 0.73 0.75 0.74 0.74 0.79 
ED Non-spam recall 0.88 0.88 0.88 0.88 0.87 

Spam recall 0.80 0.83 0.80 0.79 0.86 
EOAC Non-spam recall 0.87 0.87 0.88 0.87 0.84 
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Fig. 4. Spam and non-spam recalls for different image categories 

As expected, the proposed method is not sensitive to the choice of font families 
used in template construction step. Except small fluctuations in cases of Tahoma and 
Lucida, the different font sizes give nearly the same classification accuracy. A 
possible explanation is that the small differences in shapes of the letters from different 
font families are smoothed during the edge orientation quantization step. 
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The next experiment was designed to evaluate the performance of the method on 
different categories of non-spam images. The method was run with EOAC as image 
feature and the template set constructed from Tahoma font family. In figure 4, non-
spam recall for each image category is plotted against spam recall. The results show 
that the method can accurately distinguish spam images from “nature photo” images - 
both spam and non-spam recalls are higher than 93%. At the same time, e-cards 
proved to be most difficult to distinguish from spam images. Images of this category 
always contain some amount of overlaid text, which make them similar to spam. 

4   Conclusion 

We have described a new method for detecting spam e-mail with content embedded in 
images. Given an image, our method first extracts an edge-based feature, which 
summarizes the global information of the image. It then computes a vector of 
similarity scores between the image and a set of templates that contain only text. This 
vector representation of the image is used as input for support vector machines 
training and classification. The use of edge-based feature allows capturing regularities 
in shapes of text intensive spam images while does not require costly computations. 
Empirical tests show that our method achieves overall accuracy of 80% and higher in 
classifying spam from different categories of images whiles remains fast. Given the 
complexity of the problem, these results are encouraging and the proposed method 
can be used as a starting step for the construction of image-base anti-spam filters. 
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