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Abstract—We introduce a new method for face recognition
using a versatile probabilistic model known as Restricted Boltz-
mann Machine (RBM). In particular, we propose to regularise
the standard data likelihood learning with an information-
theoretic distance metric defined on intra-personal images. This
results in an effective face representation which captures the
regularities in the face space and minimises the intra-personal
variations. In addition, our method allows easy incorporation
of multiple feature sets with controllable level of sparsity. Our
experiments on a high variation dataset show that the proposed
method is competitive against other metric learning rivals. We
also investigated the RBM method under a variety of settings,
including fusing facial parts and utilising localised feature
detectors under varying resolutions. In particular, the accuracy
is boosted from 71.8% with the standard whole-face pixels
to 99.2% with combination of facial parts, localised feature
extractors and appropriate resolutions.

Keywords-Face recognition; metric learning; Restricted
Boltzmann Machines; information fusion.

I. INTRODUCTION

Face recognition is often cast as a matching problem

between a query face and faces in the database. The key

is to prepare a representation that is rich enough to capture

important facial properties under noisy measurements, and at

the same time, supports matching under large intra-personal

variations [1], [2], [3], [4], [5].

In this paper, we advocate the use of a versatile probabilis-

tic model known as Restricted Boltzmann Machine (RBM)

[6], [7] for face recognition. A RBM is a 2-layer Markov

random field where the input layer represents facial features

x, and the hidden layer encodes binary factors of variations

h. As a modelling tool, the RBM is natural to capture

the regularity in the facial space as well as the higher-

order dependencies among features. As a data processing

tool, the RBM transforms the features into a more robust

(probabilistic) representation P (h|x) which can be used for

classification and recognition. The model has recently been

shown to be useful in a variety of vision tasks including

object recognition [8], [9], learning image transformation

[10] and generating facial expression [11]. However, the

standard application of RBM for face recognition [12] can

be limited since capturing the regularities in face data alone

is not enough to separate a person from another if the intra-

personal variations are high (e.g., due to poses and lighting

conditions).

To that end, we propose a solution by regularising the

objective function during training time so that the data

likelihood P (x) is maximised whilst the intra-personal dis-

tances D(x,x′) are minimised. In other words, we attempt

to learn a face representation that balances between the

ability to explain the facial data well and the invariance to

intra-personal variations. In particular, the representation is

based on the posteriors of hidden factors given the facial

features P (h|x). The regulariser is based on an information-

theoretic distance metric known as symmetrized Kullback-

Leibler divergence between the posteriors of intra-personal

image pairs. While maximising the data likelihood is akin

to capturing the facial variances in PCA [1], minimising the

regulariser is equivalent to learning a non-linear distance

metric between faces [13]. The use of intra-personal metric-

regularised RBMs contributes to the existing face recogni-

tion literature with a novel probabilistic and non-linearity

treatment.

We investigate the proposed RBM under various settings.

Firstly, it may be more useful to fuse multiple sources of

information rather than using just one. For example, the face

recognition literature offers multiple facial representations

(e.g., whole-face versus component-wise [14]) and a variety

of localised feature detectors (e.g., local binary patterns

(LBP) [4] and the Gabor filters [2]). Under RBMs, these

information sources can be naturally integrated under shared

representation with a controllable level of sparsity. Secondly,

it has been conjectured that image resolutions can be critical

for recognition as it is evident that human tends to focus

on some small, informative and high-resolution areas while

skimming over the whole face [11]. Our experiments with a

database of high variations in pose and lighting conditions

demonstrate that the proposed RBM is competitive against

well-known face recognition methods. By taking into these

settings into account, we can boost the accuracy from

71.2% under the standard whole-face pixel-based feature

representation to 99.2% using the LBP feature representation

of multiple facial parts.

We present the RBM and metric-based training for face

recognition in the next section. The evaluation of the



proposed method is presented in Secion III. Section IV

concludes the paper.

II. RESTRICTED BOLTZMANN MACHINES WITH

METRIC-BASED TRAINING

A. Restricted Boltzmann machines

Restricted Boltzmann Machine (RBM) [6], [15], [8], [7]

for face recognition is a 2-layer probabilistic network in

which the input layer represents facial features and the

hidden layer represents binary factors of variation. Thus,

a face is jointly generated from a set of activated hidden

factors, which supposedly reflect structural information such

as facial parts and variations due to expression, lighting

conditions, poses and occlusions.

To be precise, let x ∈ R
M be the vector of Gaussian

features1 and h ∈ {0, 1}K be the vector of hidden factors.

The RBM is characterised by the Boltzmann distribution2

P (x,h) =
1

Z
exp

(

−
x
⊤
x

2
+w

⊤
x+ x

⊤
Uh+ v

⊤
h

)

where Z is the normalisation constant, and w ∈ R
M ,U ∈

R
M×K ,v ∈ R

K are model parameters. This Boltzmann

machine is restricted in the sense that it limits direct

interactions to those between layers. Given a set of active

hidden factors, features are generated as

P (x|h) =
∏

i

P (xi|h); P (xi|h) = N (wi +U i•h; 1)

where U i• is the row vector corresponding to the ith feature.

On the other hand, given the facial features, the probability

of activating hidden factors are

P (h|x) =
∏

k

P (hk|x); P (h1
k|x) = σ

[

vk + x
⊤
U•k

]

(1)

where we have used h1
k as a shorthand for hk = 1, σ is the

sigmoid function σ [z] = 1/1+e−z, and U•k is the column

vector corresponding to the kth hidden factor.

The set of activation probabilities {P (h1
k|x)}

K
k=1 can be

seen as probabilistic projections of the facial features x onto

the factor space. For recognition purposes, we can use either

these probabilistic projections, which are bounded within the

unit interval (0, 1), or their linear counterparts
[

x
⊤
U + v

]

which are unbounded. For reconstruction, one can use w+
Uĥ where ĥk = P (h1

k|x).

1We work with Gaussian features in this paper, but the RBM can encode
different types, e.g., see [16].

2For simplicity, we assume that each feature, when conditioned on the
hidden factors, has an unit variance. This can be approximated by appro-
priate normalisation over training data. For more complicated covariance
modelling, we refer to the recent work of [9].

Remark 1: The RBM is somewhat similar to the PCA

but with subtle differences: The PCA captures the data

variance through orthogonal eigenvectors, thus it is linear

and the subspace is continuous. On the other hand, the

RBM focuses on explaining the data generation through a

discrete set of hidden factors without any assumption of

orthogonality and linearity. The key representation power

comes from the space of exponentially many variations.

B. Facial metric learning

Standard training of RBMs maximises the data likelihood

P (x). As such, the estimated model captures regularities

and variations in the human faces. However, this is not

necessarily optimal for recognition purposes which often

rely directly on the discriminative power to separate an

identity from others. In other words, if two facial images are

from the same person, their activation probabilities should

be more similar than those from different persons. To be

more concrete, let f and g are face indices, and I(f) is

the identity of face f , then P (h1
k|x

(f)) should be close to

P (h1
k|x

(g)) if I(f) = I(g) for any factor k. To that end,

we propose to maximise the regularised likelihood as follows

Lreg =

∑

f

logP (x(f))− β
∑

f

∑

g∈I(f)

D
(

P (h|x(g)), P (h|x(f))
)

(2)

where β ≥ 0 is the coefficient controlling the regularisation

effect, and D(P,Q) ≥ 0 is the distance metric between

two distributions P and Q. Thus the new objective function

attempts to balance between explaining the facial variations

in the feature space and achieving intra-personal invariance

in the posterior space.

Maximising the regularised likelihood Lreg , however, is

difficult due to the intractability of the data likelihood term

P (x) =
∑

h
P (x,h), which requires the summing over

2K combinations of variation factors. In this paper, we

resort to an efficient truncated sampling scheme known as

Contrastive Divergence (CD) [15] in which the gradient of

the log-likelihood is approximated by a very short Markov

chain. More specifically, in one-step CD learning, we first

sample the hidden factors from the training features as

h̃k ∼ P (hk|x) and then reconstruct the features using

x̃i ∼ N (wi + U i•h̃; 1). The gradient of the log-likelihood

with respect to the (column) parameter vector U•k is ap-

proximated by3

∂ logP (x)

∂U•k
≈ P (h1

k|x)x− P (h1
k|x̃)x̃

For the gradient of the distance metric, according the chain

rule

∂D (g, f)

∂U•k
=

∂D (g, f)

∂P (h1
k|f)

∂P (h1
k|f)

∂U•k
+

∂D (g, f)

∂P (h1
k|g)

∂P (h1
k|g)

∂U•k

3The derivatives with respect to w and v are omitted here for clarity.



where D (g, f) is a shorthand for D
(

P (h|x(g)), P (h|x(f))
)

and P (h1
k|f) is for P (h1

k|x
(f)). The derivative

∂D(g,f)
∂P (h1

k
|f)

depends on the choice of the distance measure D (g, f)
(Sec. II-C) and is presented in Appendix A. Using Eq. 1,

the derivative
∂P (h1

k
|x)

∂U•k

is then

∂P (h1
k|x)

∂U•k
= P (h1

k|x)
(

1− P (h1
k|x)

)

x

Finally, stochastic gradient ascent is applied due to the

approximate nature of the CD learning

U•k ← U•k + ν
∂Lreg

∂U•k
(3)

for some learning rate ν > 0.

Remark 2: We wish to emphasize that the data like-

lihood and the regulariser in Eq. 2 can theoretically op-

erate on different datasets, which may not overlap with

the database used for recognition. For instance, we can

use a large unlabelled dataset for the data likelihood, a

smaller pairwise labelled dataset with unknown identities for

regularisation, and another dataset with the known identities

for recognition. We only require that these datasets share the

same type of feature representation.

C. Information-theoretic distance measures

For the choice of distance function between two distribu-

tions D(P,Q) we typically expect that D(P,Q) = D(Q,P )
and P = argminQD(P,Q). In this paper, we will focus on

the symmetrized Kullback-Leibler (KL) divergence since it

is natural in the space of activation probabilities.

For brevity, we use KL (g ‖ f) as a shorthand for

KL
(

P (h|x(g)) ‖ P (h|x(f))
)

. The KL divergence is given

as

KL (g ‖ f) =
∑

h

P (h|g) log
P (h|g)

P (h|f)

=
∑

k

∑

hk∈{0,1}

P (hk|g) log
P (hk|g)

P (hk|f)
(4)

Here we have used the fact that P (h|x) =
∏

k P (hk|x).
However, since the KL-divergence is asymmetric (i.e.

KL (g ‖ f) 6= KL (f ‖ g)), we will employ the symmetrized

version, also known as the Jensen-Shannon divergence,

D (g, f) =

=
1

2
(KL (g ‖ f) + KL (f ‖ g))

=
1

2

∑

k

(

(

P (h1
k|g)− P (h1

k|f)
)

×
(

x
(g) − x

(f)
)⊤

U•k

)

The details of the derivation will be presented in Ap-

pendix A.

Figure 1. Sub-images extracted from the faces. Top row: the whole faces;
the second row: the left eyes; the third row: the right eyes; the bottom row:
the mouths.

Remark 3: For a training set with |I| subjects and n
images per identity, the training time is O

(

KM |I|n2
)

.

For most realistic datasets, n is quite small, and thus the

algorithm may be considered as being linear in training

size. For recognition, it takes O (KM) time per image

comparison. To accelerate nearest retrieval, we may employ

efficient bit-wise techniques such as those in [17] since

our posteriors can be turned into binary vectors, i.e., h∗
k =

argmaxhk∈{0,1} P (h1
k|x).

D. Fusing multiple feature sets

Subspace approach in face recognition often relies on

whole-face pixel-based features from relatively low resolu-

tion images. However, the existing literature also recognises

the importance of rich feature extraction methods from

different resolutions and local parts [18], [14]. For example,

Fig. 1 suggests that higher resolution areas around the eyes

and mouth are very informative. The question is therefore

how to make use of these rich sources of information.

Fortunately, the RBM architecture allows natural fusion

of heterogeneous features using shared factors of variation.

In particular, let x1:C = {x1,x2...,xC} be the collection

of C feature sets, the activating probability in Eq. 1 can be

modified as

P (h1
k|x1:C) = σ

[

C
∑

c=1

x
⊤
c U c•k + vk

]

(5)

where U c•k is the column vector with respect to the cth
set and the kth hidden factor. Thus, features from different

sets are fused together by appropriate coefficients U c•k. To

make the model more sparsely connected, we can vary the

level of factor sharing among sets, e.g., by fixing U c•k = 0

for some pairs (c, k).

III. EXPERIMENTS

A. Settings

In order to test our recognition algorithm under strong

variations, we capture facial images from 24 persons, each

of whom has roughly 35 images under 7 poses and 5 lighting
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Figure 2. Schematic illustration of the RBM architecture for face
recognition. For each face, we run C extractors {e1, e2, .., eC} to obtain
C feature sets, each of which is passed through a dimensionality reduction
method {rc}. All the feature sets are then fed into the RBM model to
produce a vector of posterior P (h1

1|x1:C), P (h1
2|x1:C), ..., P (h1

K |x1:C).
This vector is used for matching with the nearest face in the database.

Figure 3. 7 pose (row) and 5 lighting (column) conditions per person.

conditions (e.g., see Figure 3). Unless otherwise specified,

the data is randomly split into a training set of 512 images

and a test set of 330 images.

Our model architecture is depicted in Fig. 2. Image

features obtained from C extractors4 are first preprocessed

by a dimensionality reduction module using PCA. These

4Each extractor may operate on a facial part, or may implement a specific
feature extraction method.
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Figure 4. Performance as a function of the controlling parameter β
(with K = 200) (Left), and the number of factor of variations (with
β = 1) (Right). Facial images are preprocessed using PCA with top 50
eigenvectors.

LDA LPP LDML RBM RBM/LDA

Fa 71.5 71.2 67.3 71.8±0.7 76.5±1.2
Le 65.5 50.9 53.3 64.0±1.0 63.4±1.0
Re 63.9 45.5 54.9 64.0±0.8 68.2±0.5
Mo 65.8 37.3 47.3 64.2±0.4 67.1±0.8

LRe 74.5 58.2 64.8 78.4±1.1 79.6±1.3
MoLRe 80.0 63.0 67.9 83.9±0.7 89.4±0.6
FaLRe 81.2 77.3 77.3 86.4±0.8 89.2±0.7
FaLReMo 83.9 79.7 81.5 88.9±0.6 92.3±0.4
(↓) (43.5) (29.5) (43.3) (60.6) (67.2)

Table I
ACCURACY (%) WHEN FUSING FACIAL PARTS WITH RAW-PIXEL

REPRESENTATION. FA = FACE, LE = LEFT EYE, RE = RIGHT EYE, MO =
MOUTH, LRE = LEFT AND RIGHT EYES. RBM/LDA IS THE RBM

WHOSE INPUT FEATURES ARE FIRST TRANSFORMED BY LDA. FOR THE

PRE-PROCESSING STEP, 50 EIGENVECTORS ARE SELECTED FOR EACH

FEATURE SUBSET. THE SYMBOL ↓ INDICATES THE reduction IN ERROR

RATE WHEN COMBINING FEATURES COMPARED TO THE FACE FEATURES

ALONE.

feature sets are then normalised to zero means and unit

variances before fused into our RBM. For recognition, the

person identity will be assigned to that of the nearest face

in the training data according to the Euclidean distance on

the activation probabilities.

For training, the parameters {U c•}Cc=1 are initialised

randomly from Gaussian N (0;0.1), while bias parameters

w,v are set to zeros initially. To reduce the training time, we

divide training data into mini batches of B = 100 images,

and update the parameter after each batch. The learning rate

is fixed at ν = 0.005/B (Eq. 3) and the number of iterations

is set at 50. All experiments with RBMs are repeated 10
times before results are reported.

Fig. 4 depicts the recognition performance of the proposed

RBM under various hyper-parameters: the metric-learning

coefficient β (Eq. 2) and the number of hidden factors K. It

can be seen that metric learning effect is profound (β = 0
means no metric learning), suggesting that suppressing intra-

personal variations is critical. The performance is quite

stable against the number of hidden factors as long as the

model is large enough (e.g., K ≥ 50). For the rest of the

paper, we select β = 1 and K = 200 unless specified

otherwise.

B. Fusion of facial parts

In this experiment, we manually extract the regions around

the eyes and the mouth, and use raw-pixels as features (we

can employ automated detectors, e.g., see [14], in a more

sophisticated setting). For each part, we run PCA with the

top 50 eigenvectors for pre-processing. For comparison, we

implement a recent metric learning method called logistic

discriminant (LDML) [13], make use of the locality pre-

serving projection5 (LPP, a.k.a. Laplacian faces) [3] and the

linear discriminant analysis (LDA)[19]. The LDML takes

5Code available at: http://www.zjucadcg.cn/dengcai
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Figure 5. Accuracy as a function of training size with combination of
parts and the whole face.

every pair of images and estimates a parametric distance

between them. For recognition of a given query face, the

nearest training face according to the distance metric is used

for recognition. The distance function is trained by max-

imising the pairwise likelihood under the logistic regression

model to specify whether an image pair belongs to the same

person. Thus, training LDML is expensive since its run-time

complexity is quadratic in training size. Our method, on the

other hand, is only quadratic in training size per person

(which is quite small in most realistic datasets), and linear

in number of subjects. The LPP, when the neighbourhood

is defined on the intra-personal neighbours, can also be

considered as a metric learning method. The main difference

from our RBM is that the LDML and the LPP do not have

the generative component to capture the regularity in the

data.

Table I reports the results of RBMs against other methods.

The RBM fares comparably with the LDA when there is a

single source of information, and becomes competitive when

there are multiple sources. It is interesting to see that the

RBM can improve over the LDA since the LDA to some

extent is also a metric learning method. We conjecture that

the probabilistic and non-linear nature of the RBM may

complement the LDA. When combining parts, the reduction

of error rate is significant: we can reduce as much as

67% error by combining part-based features with whole-

face features using the LDA as a pre-processing step for the

RBM.

C. Feature extraction under different resolutions

We employ two feature representations: the local binary

patterns (LBP) [20] and the Gabor features [2]. For the LBP

we follow the recommendation in [4], in that each facial

component or the whole face is partitioned into smaller cells,

and then LBP is applied to each region to yield a histogram.

Finally, all histograms are concatenated to form a long

feature vector. The partition and concatenation processes

Face res Pixel LBP(*) Gabor(**)

13×13 92.3±0.4 75.8±2.3(2×2) 90.4±0.6(/2)
19×19 91.2±0.6 83.0±1.3(3×3) 95.9±0.6(/4)
25×25 90.8±0.6 92.6±0.8(3×3) 97.2±0.7(/4)
38×38 91.6±0.7 94.8±0.8(5×5) 94.3±1.1(/4)
75×75 NA 98.5±0.5(5×5) 70.4±1.4(/8)

150×150 NA 99.2±0.2(5×5) NA

Table II
PERFORMANCE OF RBM WITH RESPECT TO FEATURE

REPRESENTATIONS, MULTIPLE PART FUSION UNDER DIFFERENT

RESOLUTIONS. EXTRACTED FEATURES ARE FIRST PREPROCESSED BY

LDA. THE FACE RESOLUTION IS LISTED FOR THE WHOLE FACE, AND

THE COMPONENTS ARE PROPORTIONALLY RESIZED. (*) THE LBP
DEPENDS ON HOW WE PARTITION THE IMAGE INTO SMALLER CELLS,
E.G., 2× 2 MEANS THERE ARE 4 CELLS. (**) THE GABOR FILTERS

TYPICALLY PRODUCE BIG RESPONSE IMAGES WHICH ARE THEN DOWN

SAMPLED BY A CERTAIN FACTOR, I.E., (/8) FOR THE CASE OF 75× 75
RESOLUTION.

implicitly encode the geometrical structure of the component

or the face, which are critical to the recognition performance.

Thus, there is a trade-off between the number of cells for

preserving information richness and the length of vector for

efficiency. For the Gabor representation, as suggested in [2]

we employ a bank of 40 filters which account for 5 scales

and 8 orientations.

Table II reports the results of the RBM with respect to

resolution of the images. It can be seen that the raw-pixel

representation is robust against image scaling. This may be

explained by the fact that the pre-processing step based on

LDA typically discovers the subspace of the faces, which

depends on the overall structure of the face space rather than

the details. Localized methods like LBP and Gabor filters,

on the other hand, rely on the local details of the faces such

as textures in the case of LBP and edges in the case of

Gabor filters. The LBP is also depending on the number

of partitions in the face, which means that larger faces will

allow more cells.

IV. CONCLUSION

We have introduced a new method for face recognition us-

ing Restricted Boltzmann Machines. Our main contribution

lies in the regularisation of the training objective function to

reduce intra-personal variations. This is achieved by adding

an information-theoretic divergence into the standard log-

likelihood. The proposed model is flexible in incorporating

multiple feature sets with easy controlling of sparsity level.

Experiments on a dataset with strong variations in lighting

and pose conditions have shown that our proposed method

is competitive against other metric learning rivals. We also

validated the method under a variety of settings, including

fusing facial parts, using feature extraction techniques such

as LBP and Gabor filters, and varying resolutions.
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APPENDIX

For brevity, let ak(f) = x
(f)⊤

U•k + vk and denote

Qk(f) = P (h1
k|x

(f)) . Thus, Qk(f) = σ [ak(f)] and

expanding the KL-divergence KL (g ‖ f) in Eq. 4 yields

KL (g ‖ f) =

= Qk(g) log
Qk(g)

Qk(f)
+ (1−Qk(g)) log

1−Qk(g)

1−Qk(f)

= Qk(g) log
1 + e−ak(f)

1 + e−ak(g)
+

+(1−Qk(g)) log
(1 + e−ak(f))e−ak(g)

(1 + e−ak(g))e−ak(f)

Rearranging terms we have KL (g ‖ f) =

= log
1 + e−ak(f)

1 + e−ak(g)
+ (1−Qk(g)) log

e−ak(g)

e−ak(f)

= log
Qk(g)

Qk(f)
+ (1−Qk(g)) (ak(f)− ak(g))

Thus the symmetric KL-divergence D (g, f) =
1
2 (KL (g ‖ f) + KL (f ‖ g)) is straightforward:

D (g, f) =
1

2
(Qk(g)−Qk(f)) (ak(g)− ak(f))

Replacing ak(g) and Qk(g) with their corresponding forms
give us D (g, f) =

1

2

∑

k

(

(

P (h1
k|g)− P (h1

k|f)
)

×
(

x
(g) − x

(f)
)⊤

U•k

)

.

The gradient of the symmetric divergence with respect to
a distribution is then

∂D (g, f)

∂Qk(g)
=

1

2

(

∂KL (g ‖ f)

∂Qk(g)
+

∂KL (f ‖ g)

∂Qk(g)

)

where

∂KL (g ‖ f)

∂Qk(g)
= log

Qk(g)

Qk(f)
− log

1−Qk(g)

1−Qk(f)

∂KL (f ‖ g)

∂Qk(g)
= −

1

Qk(g)
+

1

1−Qk(g)
.


