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Abstract—Word2Vec is a class of neural network models that
as being trained from a large corpus of texts, they can produce for
each unique word a corresponding vector in a continuous space in
which linguistic contexts of words can be observed. In this work,
we study the characteristics of Word2Vec vectors, called API2VEC
or API embeddings, for the API elements within the API sequen-
ces in source code. Our empirical study shows that the close
proximity of the API2VEC vectors for API elements reflects the
similar usage contexts containing the surrounding APIs of those
API elements. Moreover, API2VEC can capture several similar
semantic relations between API elements in API usages via vector
offsets. We demonstrate the usefulness of API2VEC vectors for
API elements in three applications. First, we build a tool that mi-
nes the pairs of API elements that share the same usage relations
among them. The other applications are in the code migration
domain. We develop API2API, a tool to automatically learn the
API mappings between Java and C# using a characteristic of the
API2VEC vectors for API elements in the two languages: semantic
relations among API elements in their usages are observed in the
two vector spaces for the two languages as similar geometric
arrangements among their API2VEC vectors. Our empirical
evaluation shows that API2API relatively improves 22.6% and
40.1% top-1 and top-5 accuracy over a state-of-the-art mining
approach for API mappings. Finally, as another application in
code migration, we are able to migrate equivalent API usages
from Java to C# with up to 90.6% recall and 87.2% precision.
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I. INTRODUCTION

Software library plays an important role in modern software

development. To access the functionality of a library, develop-

ers use Application Programming Interfaces (API elements,

APIs for short), which are the classes, methods, and fields pro-

vided by the library’s designers. A certain combination of API

elements is used to achieve a programming task and is called

an API usage. An example of a Java Development Kit (JDK)

usage for reading from a file could involve the sequence of the

APIs of File and Scanner, and the control unit while to iterate

over the file’s contents. The combination of API elements al-

lows intricate and complex API usages, yet, in many cases, the

API usages that developers write are repetitive. As an evidence

of that, researchers have been able to mine API usage patterns,

which are frequently occurring API usages, from large code

corpora [1], [2]. In other words, the sequences of API elements

in API usages are natural, i.e., have high regularity.
Existing works have explored the regularity of API usages

to build API recommendation engines by using the statisti-

cal modeling of natural utterances and applying it to API

sequences to suggest the next API call in a program editor.

Typical natural language processing (NLP) models for API call

suggestion include n-gram model [3], [4], deep neural network

model [5], and graph-based generative model [6].

In this work, we focus on exploring the naturalness of API
usage sequences from a different perspective by investigating

the embeddings of API elements in a continuous vector space

created by Word2Vec [7]. Let us call them API embeddings or

API2VEC. Word2Vec has been shown to be able to capture the

similarities of the relations between pairs of words in senten-

ces: pairs of words sharing a particular relation have Word2Vec

vectors with constant/similar vector offsets. Via visualization

with Principal Component Analysis (PCA) [8] and vector

operations, researchers have observed the syntactic relations,

e.g., (base, comparative), (base, superlative), (singular, plural),

(base, past tense), etc. [9]. Semantic relations among words

can also be captured via vector operations [7]. For example,

for (state, capital): V (France)-V (Paris) ≈ V (Italy)-V (Rome),

where V denotes Word2Vec and the minus sign is for vector

subtraction. Other types of semantic relations are also observ-

ed: (city, state), (famous name, profession), (company, famous

product), (team, sport), etc. [10]. If these observations hold for

the relations among API elements, we could leverage API2VEC

to support the tasks related to API usages, e.g., API code

completion, usage migration, API pattern detection, etc.

Toward that goal, we conducted experiments on a large nu-

mber of Java and C# projects to answer the following research

questions: 1) In a vector space produced by API2VEC on API

elements, do nearby vectors represent the APIs that have

similar usage contexts (defined as similar surrounding API
elements of those APIs)? 2) By vector offsets, can API2VEC re-

veal similar usage relations between API elements (defined as

co-occurring relations between API elements in API usages)?

Our empirical results confirmed that close proximity of the

vectors for two API elements reflects their similar usage con-

texts. We also showed that API2VEC can capture similar usage

relations between the APIs in usages by vector offsets.

We demonstrated the usefulness of API2VEC vectors for

APIs in three applications by using those characteristics. First,

we built a tool to mine pairs of API elements sharing the same

usage relations among them. For example, we can mine that

the relation “checking the existence of the current element be-
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fore retrieval” is shared between ListIterator.hasNext and ListIte-
rator.next, and between StringTokenizer.hasMoreTokens and String-
Tokenizer.nextToken, despite that they have different names for

similar functionality. Thus, given the pair <ListIterator.hasNext,
ListIterator.next>, and StringTokenizer.hasMoreTokens, our tool can

suggest StringTokenizer.nextToken using vector offsets.

The other applications are in the domain of code migration.

We build API2API to automatically learn API mappings bet-

ween Java and C# (i.e., the API elements in two languages

with the same/similar functionality). It is based on a characte-

ristic of API embeddings in two languages as follows. In the

two languages, despite that the respective APIs might have

different names, since if they are used to achieve the same/si-

milar functionality, each of the API elements would have the

same/similar role in its respective API usage, and the relations

between two API elements would have the same/similar mea-

ning as the relation between the corresponding API elements

in the other language. For example, the relation “checking
the existence of the current element before retrieval” exists

between ListIterator.hasNext and ListIterator.next in Java as well

as between the corresponding APIs IEnumerator.MoveNext and

IEnumerator.Current in C#. A usage could have multiple API

elements (e.g., the above API usage could include List.iterator()
since we first need to obtain an iterator of a list). However,

the relation between two Java API elements in a usage will

exist and be interpreted as the same meaning as the relation

between the two respective APIs in C#.

Thanks to the above vector offset characteristic in both Java

and C# vector spaces, in our experiment, we were able to

observe that the API elements in the corresponding API usages

in Java and C# have their vectors in similar geometric arrange-

ments in the two vector spaces for Java and C#. For example,

Fig. 4 shows similar arrangements of the vectors for the APIs

in the usages with FileReader and FileWriter in Java and Stream-
Reader and StreamWriter in C#. This is reasonable since each

element and its corresponding API element play the same/-

similar role in the corresponding usage. Then, due to similar

geometric arrangements, we can learn the transformation (e.g.,

rotating and/or scaling) between the vector spaces if we know

some API mapping pairs in a training data. To find the mapped

C# API for a given Java API j with its vector Vj , we use the

learned function to compute its transformed vector VC in the

C# space. The C# API c with the vector most similar to the

transformed vector VC is considered as the mapped API of j.
To evaluate API2API, we conducted an empirical study. Our

result shows that for a given Java API, in 53.1% of the cases,

the correct respective C# API is listed on the top of API2API’s

resulting list. It has 22.6% and 40.1% relative improvement in

top-1 and top-5 accuracy, respectively, over the state-of-the-

art approach StaMiner [11]. To show the third application,

we used our resulting API mappings in a phrase-based ma-

chine translation tool, Phrasal [12], to translate a JDK usage
sequence into the equivalent .NET usage with multiple API
elements. The result showed that with the mappings, our tool

achieves high precision (up to 87.2%) and recall (up to 90.6%)

in migrating API usages. Our key contributions include
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Fig. 1: Vector Representations for API Elements with CBOW

• An extensive study on the characteristics of API2VEC em-

beddings/vectors for API elements in API sequences;

• An application of API2VEC for API elements in mining the

pairs of API elements that share same usage relations;

• API2API: an approach to mine API mappings via vector

projection without a parallel corpus of respective code;

• An empirical study to show API2API’s accuracy in mining

API mappings, and migrating API usages from Java to C#.

II. BACKGROUND ON WORD2VEC

Word2Vec [7] is a class of neural network models in which

after being trained in a large corpus of texts, they can produce

for each unique word a corresponding vector in a continuous

space in which linguistic contexts of words can be observed. It

represents words by encoding the contexts of their surrounding

words into vectors. Mikolov et al. [7] introduce two Word2Vec

models, named Continuous Bag-of-Words (CBOW) and Skip-

gram models. We show CBOW model in Fig. 1 as we used it.

Let us summarize the CBOW model. Basically, CBOW has

a neural network architecture with three layers: input, hidden,

and output. The input layer has a window of n words preceding

the current word wi and a window of n words succeeding wi.

The total (context) window’s size is 2n. The output layer is for

wi. Each word is encoded into the model as its index vector.

An index vector for a word is an 1×V vector with V being the

vocabulary’s size, and only the index of that word is 1 and the

other positions of the index vector are zeros. The Word2Vec

vector for each word wi is the output of the hidden layer with

N dimensions, which is the number of the dimensions of the

vector space. To compute Word2Vec vector for wi, CBOW

first takes the average of the vectors of the 2n input context

words, and computes the product of the average vector and the

input-to-hidden weight matrix WV×N (shared for all words):

V (wi) =
1

2n
(w(i−n)+...w(i−1)+w(i+1)+...+w(i+n)).WV×N

V (wi) is the Word2Vec vector for wi. 2n is the win-

dow’s size. WV×N is the input-to-hidden weight matrix.

w(i−n), ..., w(i+n) are the vectors of the words in the context

window. Training criterion is to derive the input-to-hidden

weight matrix WV×N and the hidden-to-output weight matrix
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W ′
N×V such that Word2Vec correctly classifies the current

word w = wi for all words. Details can be found in [7].

III. API2VEC: API EMBEDDINGS FOR API USAGES

A. API2VEC for API Usages

In API usages, one needs to use API elements in certain or-

ders. Thus, APIs are often repeatedly used in similar contexts,

i.e., similar surrounding API elements in which each of them

has a specific role. We aim to verify if Word2Vec vectors can

capture the regularity of APIs via maximizing the likelihood

of observing an API element given its surrounding elements

in the API usages. Let us call them API2VEC vectors.

Specifically, in Word2Vec, the regularity of words is expres-

sed in two key characteristics. First, it has been shown that in

the Word2Vec vector space for texts, the nearby vectors are

the projected locations of the words that have been used in the

similar contexts consisting of similar surrounding words [13].

Thus, our first research question is to verify whether the close
proximity of the vectors in the API2VEC vector space re-
present the API elements that have similar usage contexts.

Two APIs have similar usage contexts if they have similar sets
of surrounding API elements in their API usages. Examples of

APIs with similar contexts are the APIs in the same class or the

classes with similar purposes (e.g.,StringBuffer and StringBuilder).
They are often surrounded by similar sets of APIs in usages.

Second, in NLP, the regularity of words is observed as si-

milar vector offsets between the pairs of words sharing a par-

ticular relation. For API usages, APIs are used in certain ways

with semantic dependencies/relations among them. For exam-

ple, the relation “check if the current element exists before
retrieval” occurs between ListIterator.hasNext and ListIterator.next,
and between XMLStreamReader.isEndElement and XMLStreamRea-
der.next. Such relations among APIs, called usage relations, are

parts of API usages and occur regularly in source code. Thus,

our second research question is to verify if similar usage
relations between APIs can be observed via vector offsets.

B. Building API Sequences for API Usages

For training, we process a large code corpus to build the

sequences of annotations to represent API elements in usages.

We traverse an AST to build an annotation sequence according

to the syntactic units related to APIs, including literals, identi-
fiers, API elements (method/constructor calls, field accesses),

variable declarations, array accesses, and control statements
(while, for, if, etc.). For a non-control unit, we collect data types,

method/field names, return types, and roles (literals, variables,

receivers/arguments). Such annotation is expected to increase

regularity and characterize API elements. The names of types/-

classes/methods/fields are kept. Those of variables/identifiers

are discarded since different usages could use different names.

Table I shows the key rules to build annotation sequences in

Java. Similar rules are used for C# (not shown). θ is used to

denote the function to build an annotation sequence (API seq-
uence for short). It is initially applied on a method and recur-

sively called upon the syntactic units in the code until we

have all terminal annotations. A terminal annotation is either

TABLE I
KEY RULES θ(E) TO BUILD API SEQUENCES IN JAVA

Syntax T = typeof, RetType = return type
Expression

Literal: θ(E) = T(Lit)
E ::= Lit e.g., θ("ABC") = String
Identifier θ(E) = T(ID)#var
E ::= ID e.g., θ(writer)=FileWriter#var
MethodCall θ(E) = θ(e1) ... θ(en) RetType(m)#ret θ(e)#rec
E ::= T(e).m T(e1)#arg ... T(en)#arg
e.m(e1,...,en) Discard θ(ei) if ei is ID or Literal

Discard θ(e)#rec if e is a class name
e.g., θ(dict.get(vocab)) =
Integer#ret HashMap#rec HashMap.get String#arg

Constructor θ(E) = θ(e1) ... θ(en) [θ(e)] T(C).new
E ::= [e.]new T(e1)#arg...T(en)#arg

C(e1,...,en) e.g., θ(new FileWriter(“A”))
= FileWriter.new String#arg

Field Access θ(E) = T(f)#ret θ(e)#rec T(e).f
E::= e.f Discard θ(e)#rec if e is a class name

e.g., θ(reader.lock)=Object#ret Reader#rec Reader.lock
Variable Decl θ(E) = C#var θ(e1) [... C#var θ(en)]
E ::= C id1[=e1],

...[idn[=en]] e.g., θ(FileWriter writer)=FileWriter#var
ArrayAccess θ(E) = θ(e) T(a[]) T(a)#access T(e)#arg
E::= a [e] Discard θ(e) if e is ID or Literal

e.g., θ(list[1]) =String String[]#access Integer#arg
Lambda expr E
::=(e1,...,en) => e θ(E) = θ(e1)...θ(en) T(e1)#arg ... T(en)#arg θ(e)
Statement

ForStmt S::= θ(S)=‘for’ θ(i1) ... θ(in) θ(e) θ(u1) ... θ(um) θ(S1)
for (i1,...,in ; e; e.g., θ(for (; it.hasNext();)) =
u1, ..., um) S1 for bool Iterator#var Iterator.hasNext
S::= while (e) S1 θ = ‘while’ θ(e) θ(S1)
S::= if (e) S1 θ(S) = ‘if’ θ(e) θ(S1) ’else’ [θ(S2)]
[else S2]
ExprStmt S::= e ; θ(S) = θ(e)
Block S::=s1,.,sn θ(S) = θ(s1) ... θ(sn)

a method call (e.g.,Reader.read), field access, or a type with/wit-
hout a suffix annotation (e.g.,String, FileWrite#var, HashMap#rec,

String#arg). The final sequence contains only terminal ones.

1) Literal: We keep only its type.

2) Identifier: We concatenate its type with annotation #var.
3) Method call: We keep its full signature including the return

type and the types (not the concrete names) of its receiver and

arguments. For example, for dict.get(vocab), we have Integer#ret
HashMap#rec HashMap.get String#arg. Such type information

could help predict the current API call given the return type

and its arguments’ types, or predict the current argument given

the name of API call, its return type, and other arguments. We

keep the receiver’s type since we want to capture the following

relations: an object “invokes” an API call, and a call “returns”

an object with a specific type. If a method call is an argument

of another call, m(n()), the sequence for n() is created before

the one for m() because n() is executed first.

4) Constructor call or field access: similar to method call. For

a constructor call, no return type and receiver’s type is needed.

5) Variable declaration: We keep its type and annotation #var,
e.g.,FileWriter#var. We discard its name to increase its regularity.

6) Array access: We keep the types of the array, the elements,

and the index, e.g.,list[1] → String String[]#access Integer#arg.

7) Statements: The rules for while, for, if, and other statements

are similar, however, those keywords are also kept.
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1 HashMap dict = new HashMap();
2 dict .put("A", 1);
3 FileWriter writer = new FileWriter("Vocabulary.txt");
4 for (String vocab: dict .keySet())
5 writer .append(vocab + " " + dict.get(vocab)+"\r\n") ;
6 writer .close();

Fig. 2: An API Usage in Java JDK

TABLE II
DATASETS TO BUILD API2VEC VECTORS

#projects #Classes #Meths #LOCs Voc size

Java Dataset 14,807 2.1M 7M 352M 123K
C# Dataset 7,724 900K 2.3M 292M 130K

For example, in Fig. 2, we produce the API sequence:

HashMap#var HashMap.new

String#ret HashMap#rec HashMap.put String#arg Integer#arg

FileWriter#var FileWriter.new String#arg

for String#var String[]#ret HashMap#rec HashMap.keySet
String#ret HashMap#rec HashMap.get String#arg FileWriter#rec

FileWriter.append String#arg

FileWriter#rec FileWriter.close
Such sequences for all methods in a dataset is used to train

CBOW. An API (annotation) sequence for a method is called

a sentence. Each element in a sentence is considered as the

current one. Assume that the current API is HashMap.keySet
(used for the output layer, Fig. 1). If the context window’s size

is 10, we use 5 elements preceding and 5 succeeding it for the

input. After training, the output of the hidden layer gives the

vector for the current API, which is called API embedding.

IV. CHARACTERISTICS OF API EMBEDDINGS

We conducted experiments to answer the following questions:

RQ1. In a vector space for the APIs in usages, do nearby

vectors represent the APIs that have similar usage contexts?

RQ2. Can vector offsets in API2VEC capture similar usage

relations (i.e.,co-occurring relations among APIs in usages)?

Data Collection (Table II) The first dataset, collected from

Allamanis et al. [14], is for training Word2Vec model to build

the vectors for JDK APIs. For vectors for .NET APIs, we chose

7,724 C# projects with the ratings of +10 stars in GitHub.

A. RQ1. Nearby Vectors Represent APIs with Similar Contexts

We first randomly selected 1,000 JDK API methods and

fields in our dataset. For each API, we computed the top-5 API

method calls and field accesses that are closest to that API in

the vector space. We processed those 1,000 groups of 6 API

methods/fields (one main API of the group and top-5 closest

ones) to verify if each of those 5 elements shares similar usage

contexts with the main API (i.e., used with similar surrounding

APIs). For such verification, we wrote a program to take two

APIs a and b and search through our Java dataset to compute

two sets A and B of API elements that have been frequently

occurred with a and b, respectively (80% threshold), in the

methods in the dataset. If A and B overlaps more than 80%,

we consider a and b share similar surrounding APIs in usages.

TABLE III
EXAMPLES OF APIS SHARING SIMILAR SURROUNDING APIS

G1. File.new G4. List.iterator
System.getProperty
ProcessBuilder.directory
Path.toFile
FileDialog.getFile
JarFile.new

SynchronousQueue.iterator
ArrayList.iterator
ArrayDeque.iterator
Collection.iterator
Vector.iterator

G2. System.currentTimeMillis G5. String.hashCode
Calendar.getTimeInMillis
ThreadMXBean.getThreadUserTime
Thread.sleep
File.setLastModified
Calendar.setTimeInMillis

Integer.hashCode
Date.hashCode
Class.hashCode
Boolean.hashCode
Long.hashCode

G3. String.compareTo G6. Map.keySet
Integer.compareTo
Comparable.getClass
Boolean.compareTo
Long.compareTo
Comparable.toString

IdentityHashMap.entrySet
EnumMap.entrySet
AbstractMap.keySet
NavigableMap.keySet
IdentityHashMap.keySet

TABLE IV
t-TEST RESULTS FOR VECTOR DISTANCES OF APIS IN THE SAME AND

DIFFFERENT CLASSES AND PACKAGES FOR JAVA AND C#

t df p-value Confidence interval

Java Class -934.33 223.330 <2.2x10−15 (-∞; -0.5280486)
Java Package -109.52 67.360 <2.2x10−15 (-∞; -0.0472560)

C# Class -962.47 351.961 <2.2x10−15 (-∞; -0.6252377)
C# Package -443.71 282.878 <2.2x10−15 (-∞; -0.1364794)

Among 5,000 pairs of APIs (1,000 groups and 5 compari-

sons each), we found that 4,632 pairs (92.64% of them) have

similar surrounding APIs in their usages. Thus, this gives a po-

sitive answer to our RQ1. For the other 7.36%, this is because

an API has multiple contexts and some contexts with infre-

quently used APIs were not captured with insufficient data.

Table III displays a few groups of those nearby API vectors.

The 3 groups on the left share similar surrounding API ele-

ments despite that their names are quite different. The 3 groups

on the right have members sharing the names. For illustration,

we show only the groups with the members in different classes.

B. Vectors of the APIs in Same Classes/Packages

In this experiment, we aim to verify if an API method call
or field access to be projected closer to the other APIs of the
same class than the APIs of different classes (*).

We computed the cosine distances among the vectors of

the API methods and public fields in the same class and the

distances among the vectors of the APIs from different classes.

For every API method/field m, we computed the distances

from m to all other API method/fields in the same class

with m and to all other methods/fields in different classes.

To verify (*), for all the distances in the entire set of APIs,

we conducted the independent-samples t-test with significance

level α = 0.99. We chose the following alternative hypothesis:

“the distances among the vectors of the APIs within a class are
smaller than the distances among the vectors of APIs belong
to different classes”. The null hypothesis is “those distances
are equal”. We also performed the same procedure for the
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Fig. 3: Distances of JDK API Vectors within and cross Classes

API methods/fields with respect to the boundary of packages.

Table IV shows the results for both Java and C# vectors.

As seen, with the p-values, we can confirm our alternative

hypothesis: the distances among the vectors for APIs in the

same class/package is significantly smaller than the distances

for APIs in different classes/packages. Thus, we can verify (*).

Fig. 3 shows the boxplot for the distributions of distances

among the vectors of the methods/fields in the same classes

for the 7 most popular JDK classes in our dataset. We also

show the boxplot for the distributions of distances between the

vectors of the APIs in each class and those in other classes.

As seen, the two boxplots for each class are quite separated.

In brief, the APIs in the same class/package perform functi-
ons relevant to the class/package’s theme, and often share si-
milar surrounding APIs. They tend to have nearby vectors.

C. RQ2. Similar Vector Offsets Reflect Similar Relations

We first mined the frequent pairs of APIs by collecting all

the pairs of the APIs in the same methods in our Java dataset.

We ranked the pairs by their occurrence frequencies. We then

manually checked the most frequent pairs and collected 120 of

them, which are placed into 14 groups of pairs representing 14

different relations. Similarly, we collected a set of 138 correct

pairs of C# APIs placed into 16 groups. We used those two

sets of pairs in JDK and .NET as our benchmarks.

We processed the pairs as follows. For each group of pairs

of APIs (representing a relation), we randomly picked a seed

pair, e.g., (List#var, List.add). For each of the other pairs in the

group, e.g., (Map#var, Map.put), we applied the vector offset

from the seed pair to the vector of the first API of the current

pair to compute the resulting vector, e.g., X = V(List.add) −
V(List#var) + V(Map#var). We then searched for the vectors

that are closest to X (e.g.,Map.put) and considered them as the

candidates (ranked by their respective cosine distances). If the

second API of the current pair in the benchmark is in the top-k
of the candidate list, we count it as a hit. Accuracy is the ratio

between the number of hits over the total number of cases.

There are 94.2% of the correct APIs in those relations show-

ing up in the top-5 candidate lists. 74.1% are actually at the top

one. Table V shows examples of 5 groups of relations in our

oracle for JDK APIs and the ranks of the correct APIs in the

candidate lists. As seen, API2VEC can capture similar relations

between APIs and rank highly the correct APIs, even when the

respective names are different. For example, in the relation

TABLE V
EXAMPLE RELATIONS VIA VECTOR OFFSETS IN JDK

R1. Check the current element before retrieval Rank
ListIterator.hasNext ListIterator.next 1
Enumeration.hasMoreElements Enumeration.nextElement 1
StringTokenizer.hasMoreTokens StringTokenizer.nextToken 3
XMLStreamReader.isEndElement XMLStreamReader.next 1

R2. Obtain property after creating system/stream
System#var System.getProperty 1
Properties#var Properties.getProperty 1
XMLStreamReader#var XML...Reader.getAttr...Value 1

R3. Add an element to various types of collections
List#var List.add 1
Map#var Map.put 1
Hashtable#var Hashtable.put 1
Dictionary#var Dictionary.put 1

R4. Parse a string into different types of numbers
Float#var Float.parseFloat 1
Double#var Double.parseDouble 1
Integer#var Integer.parseInt 1
Long#var Long.parseLong 1

R5. Avoid adding duplicate element to a collection
Set.contains Set.add 1
Map.containsKey Map.put 3
LinkedList.contains LinkedList.add 1
Hashtable.containsKey Hashtable.put 3

“add an element to various types of collections”, as using

List, one uses List.add, however, Map.put is used for Map. We

were also able to observe/interpret the same relations in C#:

• “Check size before removal”,

e.g.,Dictionary.Count – Dictionary.Remove,

• “Add an element to a collection”,

e.g.,Hashtable.new – Hashtable.Add,

• “Read a file with different types”,

e.g.,BinaryReader.ReadInt64 – System.Int64,

• “Check the current element before retrieval”,

e.g.,IEnumerator.MoveNext – IEnumerator.Current, etc.

We also build a tool to derive pairs of API elements with

the same/similar relations. The tool takes as input a pair of

API elements in the same class, e.g., List#var and List.add, and

another API in a different class, e.g., Hashtable#var. It then

uses the vector offsetting operation to derive the corresponding

API Hashtable.put, without understanding the meaning of the

relation. One could use this tool to derive that List.add could

be used to achieve the similar functionality as Hashtable.put.
This is useful for developers who are new to the APIs.

V. MINING API MAPPINGS BETWEEN JAVA AND C#

A. API Mappings

This section presents an application of API embeddings

in code migration. Migrating code from one language to

another requires not only the mappings between the language

constructs (e.g., statements, expressions), but also the map-

pings between the APIs in the two languages that have the

same/similar functionality. For example, in JDK, one uses Sys-
tem.out.println, while in .NET, (s)he could use Console.Writeln. To
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Fig. 4: Distributed Vector Representations for some APIs in Java (left) the corresponding APIs in C# (right)

reduce manual effort, several approaches have been proposed

to mine API mappings from a parallel training corpus of the

libraries’ client code that already had two respective versions

in two languages [15], [16]. However, building such corpus

with parallel implementations in general requires much effort.

B. Mappings via Transformation between Two Vector Spaces

In this work, we introduce API2API, an approach/tool to

automatically mine API mappings between Java and C#
without requiring a parallel corpus. API2API is based on a

characteristic of the API2VEC vectors for API elements in two

languages: semantic relations among APIs in their usages are

observed in the two vector spaces for the two languages as

similar geometric arrangements among their vectors.

For motivation, we conducted an experiment in which we

picked 2 groups of APIs in Java JDK, FileReader and FileWriter,
and the corresponding APIs in C# .NET. The vectors for the

respective APIs in JDK and .NET in each group were projected

down to two dimensions using PCA [8] (Fig. 4). We visually

observe that the group of FileReader and that of the respective

one StreamReader have similar geometric arrangements in the

two vector spaces. This suggests further exploration. With

this projection to 2-D spaces, we were able to compute a

transformation matrix that converts those two groups of APIs

in Java to the respective ones in C#. That is, similar geometric

arrangements enable us to find a transformation with rotating

and scaling between the vectors in the two vector spaces.

The rationale is that the usage relations, e.g., in the

usage “open a file, read, and close it” (among FileReader-
#var, FileReader.new, FileReader.read, and FileReader.close) are

observed as the vector offsets in the Java API vector space.

In C#, those usage relations are also captured via the

vector offsets among the corresponding APIs in the C#
vector space (StreamReader#var, StreamReader.new, StreamRe-
ader.ReadLine, and StreamReader.Close). The distance (vector

offset) between the API vectors with such a relation in the

Java space might be different from the distance between the
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Fig. 5: Training for Transformation Matrix

corresponding API vectors with the same relation in the C#
space. However, as in NLP, such a distance (vector offset)

for two API vectors in Java space can be interpreted as the
same relation as the distance (offset) between two vectors

for the corresponding APIs in C# space. For example, both

V(FileWriter.new)-V(FileWriter.append) and V(StreamWriter.new)-

V(StreamWriter.WriteLine) can be interpreted as the relation

“open and append to a file”. Thus, the respective vectors in

two vector spaces could form similar geometric arrangements.

C. Transformation Matrix to Compute Single API Mappings

From the above observation, we aim to learn the transforma-

tion between the two vector spaces for APIs from some prior-

known API pairs, and then use the learned transformation to

locate the C# vectors corresponding to other unknown Java

APIs. Fig. 5 shows how we train the transformation model.

First, we collect the single mappings between JDK in Java and

.NET in C# into a training set (in our empirical evaluation,

we used a set of API mappings that was provided as part of

the migration tool Java2CSharp [17]). For example, FileReader
in JDK is mapped to StreamReader in .NET. Then, we use the

trained Word2Vec models for JDK and .NET to collect the

vectors for all the pairs of APIs in the training set.

In training, the pairs of vectors of those respective APIs are

used to derive the transformation matrix from Java to C# as

follows. Let us have a training set of API pairs and their asso-

ciated vector representations {ji, ci}, i = 1..n where ji is a
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Fig. 6: Comparison in Top-k API Mapping Mining Accuracy

vector in the Java vector space with d1 dimensions and ci is

the corresponding vector in the C# space with d2 dimensions.

We need to find a transformation matrix T such that T×ji ap-

proximates ci. Adapted from [18], we learn the matrix T with

the dimensions d2×d1 by minimizing the Least Square Errors:

min
W

n∑

i=1

||T × ji − ci||2

Training process is done with stochastic gradient descent [18].

For prediction, for a given API in Java j, we compute

c = T × j. The API in C# whose vector is closest to

c via cosine similarity will be the top result. We produce

multiple candidates with their scores using the cosine simi-

larity measures. For all JDK APIs in its vocabulary, we use

the computed matrix to compute their corresponding single

mappings in .NET in C#. That is, we have {ji, ci}, i = 1..|V |
with V is the vocabulary of JDK APIs. Note that, our mining

approach works in the other direction as we can compute the

transformation matrix from C# to Java in the same manner.

D. Accuracy Comparison

This section presents our experiments to evaluate API2API’s

accuracy in mining API mappings between Java and C#.

Beside the two datasets (Table II) to train the respective

Word2Vec models in Java and C#, we also used 860 API

mapping pairs between Java JDK and C# .NET, provided by

the migration tool Java2CSharp [17] as the oracle. We used

part of those mappings to compute the transformation matrix.

For a test JDK API j, API2API produces a resulting list. If the

true mapping API in C# .NET for j is in the top-k resulting

list, we count it a hit. Top-k accuracy is computed as the ratio

between the number of hits and the total of hits and misses.

1) Quantitative Comparison: We conducted an experi-

ment to compare API2API with the state-of-the-art approach

StaMiner [11]. StaMiner could mine both single API map-

pings as well as the mappings for the usages with multiple

API elements. For comparison with API2API, we configured

StaMiner to mine single API mappings. In StaMiner [11], the

authors showed that it performs better than the existing mining

approaches such as MAM [15], AURA [19], and HiMa [20],

thus, we do not compare with those existing tools.

We trained StaMiner in the same dataset used in its paper

(Table 2 of [11]) with 34,628 pairs of respective methods in

Java and C# in 9 projects that have been developed in Java

and (semi-)automatically ported to C#. For API2API, we used

TABLE VI
NEWLY FOUND API MAPPINGS, NOT IN JAVA2CSHARP BENCHMARK

Java API C# API

java.util.HashMap.size System.Collect...Generic.Dictionary.Count
java.util.List.size System.Collections.Generic.IList.Count
java.util.Map.Entry.getKey System.Coll...Generic.KeyValuePair.Key
java.util.ArrayList.ensureCapacity System.Collections.Generic.List.Capacity
java.sql.ResultSet.getShort System.Data...SqlDataReader.GetInt16
java.sql.ResultSet.getInt System.Data.....SqlDataReader.GetInt32
java.sql.ResultSet.getLong System.Data...SqlDataReader.GetInt64
java.io.File.canWrite System.IO.FileInfo.IsReadOnly
java.io.InputStream.read System.IO.Stream.ReadByte

the training datasets in Table II to produce Word2Vec vectors

for the APIs. We configured API2VEC with the number of

dimensions of vector spaces N=300, and the window size of

Word2Vec model 2*n=10. For both tools, we used 10-fold

cross validation on Java2CSharp’s API mapping dataset.

As seen in Fig. 6, API2API achieves high accuracy. For a

given Java JDK API, it can correctly derive the corresponding

API in C# .NET in 53.1% of the time with just a single
suggestion. That is, the correct corresponding .NET API is on
the top of the resulting list in more than half of the suggestion
cases. Moreover, for a given JDK API, the correct correspon-
ding API in .NET is in the list of 5 suggested .NET APIs in
almost 4 out of 5 cases (77.9%). That is, in 77.9% of the time,
users just need to check a list of 5 suggested APIs to find the
correct C# API for a given JDK API. This result shows that

it is practical to use API2API in helping code migration.

Importantly, as seen, API2API outperforms StaMiner about

10% at top-1 accuracy, i.e., 22.6% relative improvement. At

top-5 accuracy, the relative improvement is 40.1%.

API2API is able to detect a large number of pairs of APIs

with different names. Some examples are shown in Table VI.

2) Qualitative Comparison: Investigating further the re-

sult, we reported the (dis)advantages of two approaches. First,

StaMiner requires a parallel corpus of corresponding usages

in two languages. It is not always easy to collect a statistically

significant number of parallel code. Second, both tools have

out-of-vocabulary issue, i.e., requiring to see the APIs in the

training dataset to produce their mappings. Third, StaMiner

has a stronger requirement that the mapped APIs must be in
respective pairs in the parallel corpus. Using transformation,

API2API does not need a parallel corpus with respective API

usages. However, it requires a training dataset of single API

pairs. It would be better if the training API pairs are diversely

selected in multiple packages (discussed in Section V-E1).

Fourth, it needs a high volume of code to build high-quality

vectors. This issue is easily mitigated due to a large wealth

of open-source repositories. In this study, with our easily-

collected datasets (Table II), API2API performs better than

StaMiner with 34,628 pairs of respective methods. Finally, this

result leads to a potential direction to combine two approaches.

3) Newly Found API Mappings: Interestingly, we found

that API2API correctly detected a total of 52 new API map-

pings that were not manually written in the latest mapping file
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Fig. 7: Top-k Accuracy with different Training Data Selections
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Fig. 8: Top-k Accuracy with different Numbers of Dimensions

in Java2CSharp (currently, we counted them as incorrect cases

since those mappings are not in the Java2CSharp benchmark.

Thus, API2API’s actual accuracy is even higher). Some cases

with different syntactic types and names are listed in Table VI

(see our website [21] for more). Those newly found mappings

are correct and could be added to complement Java2CSharp’s

data file. StaMiner can detect only 25 new mappings.

E. Sensitivity Analysis: Impacts of Factors on Accuracy

1) Selecting different packages of API mapping pairs to
train the transformation matrix: As shown in Section IV-B,

the vectors for APIs in the same classes/packages are closer

than those for other APIs in different classes/packages. Thus,

we aimed to answer the question of whether this characteristic

affects the training quality of the transformation matrix and

consequently affects accuracy. We first divided our dataset of

all 860 API mappings into 13 groups corresponding to 13 JDK

packages. We used one group of mappings for testing, and

the other 12 groups for training. We repeated the process with

every group as the testing group and accumulatively measured

the top-k accuracy. We compared this accuracy with that in

which we conducted 10-fold cross validation with the map-

pings in the training set being randomly selected from every
package (each package must have at least one pair).

As seen in Fig. 7, randomly selecting training mappings

in more diverse packages gives better accuracy than the first

setting. For top-1 accuracy, the difference is 53.1%-35.0%=

18.1%. In the first setting, the lack of mappings in the package

used for testing really hurts accuracy. This result implies that

in addition to the large size of training data, we need to have a

diversity in API mappings used for training. Investigating furt-

her from the result in Section IV-B, we found that the vectors

for APIs in the same classes/packages or for APIs sharing

similar surrounding API elements are clustered into groups of

nearby vectors. We found that the vectors of JDK APIs in the

same cluster have similar arrangements as the corresponding

vectors of .NET APIs in the respective cluster. Thus, if we
provide the mappings for some APIs in a cluster, they likely
help derive other mappings in the cluster since they provide
better information to learn the transformation matrix.

There are two implications from this result. First, if we

want to derive the API mappings in some package, we need

to have in the training data the pairs of APIs from that package.

Second, if one aims to manually build a training set of map-

pings, (s)he needs to diversify the pairs in JDK packages.
2) Varying Numbers of Dimensions of Vector Spaces:

The dimension N of vector space (Section II) is a crucial

factor that could affect API2API’s accuracy. In this experiment,

we configured the dimensions of the two Word2Vec models

for Java and C# APIs ranging from Njava=NC#=N=10, 100,

200,..., 1,000. We performed 10-fold cross validation on the

pairs of API mappings. We also measured running time.
Fig. 8 shows the result. As seen, the very low-dimensional

vector spaces give low accuracy, e.g., 25.1% top-1 accuracy for

N=10. As we increase N , accuracy increases gradually and

reaches its peak (across all top-k accuracy values) around

N=300. This is reasonable since the low-dimensional vector

space does not fully capture the APIs’ characteristics with re-

gard to their surrounding APIs in usages. Multiple features are

compressed into same dimensions. When N is large enough,

the characteristics of APIs are better captured, leading to

higher accuracy. However, as we increase N more (N>=400),

accuracy starts to decline gradually. In this case, a more com-

plex model with larger N requires larger training data.
As seen in Fig. 8, training time increases significantly as

N>=300-400 due to the significant increase in the numbers of

models’ parameters. To achieve both high accuracy and rea-

sonable training time, we use N=300 (6 hours of training) as

the default configuration for subsequent experiments. Time to

derive a mapping for an API is a few milliseconds (not shown),

thus, API2API is suitable to be interactively used in an IDE.

3) Varying Word2Vec Window’s Sizes: We varied the

size of the window 2*n of the Word2Vec model and measured

its impact on accuracy. When n is small (n=1–2), the context is

insufficient to represent each API element in API usages. For

our dataset, with the window’s size of 10–12 (5–6 APIs be-

fore and 5–6 APIs after the current API), accuracy reaches its

peak (not shown) since the window can cover well the length

of API sequences in an API usage. When the window’s size is

larger (>12), running time increases much, while accuracy is

stable. Thus, we use window’s size of 10 as a default setting.

4) Varying Sizes of Training Datasets for Word2Vec:
We varied the sizes of both training datasets in Java and C#
(Table II). First, we randomly selected 2% of all the methods

in Java dataset and 2% of the methods in C# dataset to train the

Word2Vec models. We repeated the 10-fold cross validation

as in the previous study and measured top-k accuracy. Next,

we increased the training data’s sizes for both Java and C#
by randomly adding more methods to reach 5%, 10%, 25%,
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Fig. 9: Accuracy with Varied Training Datasets for Word2Vec
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Fig. 10: Accuracy with various Numbers of Training Mappings

50%, and full training corpora. As seen in Fig. 9, as more

training data added, API2API encounters more APIs and usage
contexts, and the regularity of APIs increases. Moreover, as

seen, more mapped APIs were observed, we trained better the

transformation matrix, thus leading to higher accuracy.

5) Varying number of mapping pairs to train the
transformation matrix: In this experiment, we varied the size

of the dataset to train the transformation matrix. We divided

all 860 API mappings from Java2CSharp into 10 equal folds.

First, we chose the first fold as the testing fold. We then used

the second fold for training and measured accuracy. Next, we

added the third fold to the current training data (consisting of

the second fold) and tested on the testing fold. We repeated

the process by adding more folds to the current training data

until the 10th fold was used. Then, we chose the second fold

as the testing fold and repeated the above process. The top-

k accuracy for each size of training data was accumulatively

computed over all executions for that size. Note that, we do not

need 9 folds for training to run for one fold. In fact, API2API

produced mappings for all the Java APIs not in the training set.

As seen in Fig. 10, as more training mappings are added,

top-k accuracy increases across all ks. Top-1 accuracy increa-

ses from 22.4% to 53.1% when training data increases from 1

to 9 folds (86 to 774 mappings). Importantly, with only 10% of

data, it achieves 60% top-5 accuracy. As 30% of the mappings

(258) are used, it achieves high top-1 accuracy (40%).

VI. MIGRATING EQUIVALENT API USAGE SEQUENCES

We conducted another experiment to show a useful applica-

tion of our approach. We used API2API’s single API mappings

in a phrase-based machine translation tool, Phrasal [12], that

TABLE VII
ACCURACY (%) IN GENERATING EQUIVALENT API USAGE SEQUENCES

Project
Within-Project Cross-Project

Recall Precision Recall Precision
Antlr 87.8 75.2 90.6 87.2
db4o 83.9 79.4 88.7 75.8
Fpml 89.6 86.1 86.3 83.7
Itext 75.9 77.2 76.5 81.3
JGit 77.2 66.4 81.1 67.1
JTS 76.3 76.6 76.3 73.7
Lucene 75.7 77.7 77.1 78.5
Neodatis 78.6 70.4 78.8 74.2
POI 76.9 78.3 77.1 78.6

takes a JDK API usage and produces a respective usage
sequence with multiple API elements in .NET. For example,

given the Java code in Fig. 2, our Phrasal-based tool, equipped

with API2API’s API mappings, will produce a sequence of

APIs in C#: Dictionary#var, Dictionary.new, StreamWriter#var, etc.

Users will fill out the concrete variables to produce the com-

plete code. (We did not aim to migrate complete code since it

requires the mappings of all constructs in Java and C#.)

Settings and metrics. We used the dataset O of 34,628 pairs of

respective methods as in the study in Section V-D1. We parsed

the methods to build the API sequences, and used them and

API2API’s single mappings to train Phrasal.

We have two settings. The first one is within-project usage

migration, which supports the case that users partially migrated

a project and our tool helps in migrating the remaining

methods. For each project, we used 10-fold cross validation

on all of its methods. We compared the resulting sequences of

APIs in C# with the real sequences in the manually-migrated

C# code in the dataset O. The second setting is cross-project

migration, which supports the case that developers can use

our tool to migrate the usages for a new project while using

the migrated usages in the other projects for training. In this

setting, we used the API sequences in the methods of a project

for testing and those in the remaining projects for training. We

repeated the process for each of those projects, and compared

the result against the human-migrated oracle O.

To measure accuracy in migrating API usages, we computed

precision and recall of our translated sequences while also con-

sidering the orders of APIs. We computed the longest common

subsequence (LCS) of a resulting sequence and its reference

sequence in the oracle. Precision and recall values are com-

puted as: Precision = |LCS|
|Result| , Recall = |LCS|

|Reference| . They

are accumulatively computed for all resulting sequences. The

higher Recall, the higher coverage the migrated sequences.

Recall=1 means that the migrated sequences cover all the

APIs in the oracle in the right order. The higher Precision,

the more correct the migrated sequences. Precision=1 means

that the migrated APIs are all correct and in the right order.

We also computed BLUE score for lexical matching [11].

Result. As seen in Table VII, the results in both settings are

comparable since JDK and .NET APIs are very popular. Our

Phrasal-based tool is able to migrate API sequences from Java
to C# with high recall and precision. Specifically, for a given

444446



sequence of JDK API elements, the first resulting .NET API
sequence from our tool covers from 7.6–8.9 out of 10 needed
.NET APIs, and from 6.6–8.6 out of 10 generated .NET API
elements are in the correct order in that API sequence. Thus,

users just need to remove 1.4–3.4 .NET APIs and search for

additional 1–2.4 APIs out of 10 elements. BLUE scores (n=4)

are from 65.2–76.5%. Accuracy in the cross-project setting

is slightly higher than that in the within-project one since the

model observed more diverse API usages in other projects. The

improvement is not much due to a small number of projects.

VII. THREATS TO VALIDITY AND LIMITATIONS

Our datasets and the randomly selected sets of API pairs

might not be representative. For API mappings, we did not

train and test of API mappings on the same package due to the

small number of samples for each package in Java2CSharp

oracle. For fair comparison between models, we measured in-

vocabulary accuracy (counting cases with already-seen APIs).
Due to space limit, we did not report the result from Skip-

gram model. CBOW predicts target words from the words in

their contexts, while Skip-gram predicts context words from

the target words. We focused on CBOW since it fits with our

need better in characterizing an API via its surrounding ele-

ments. We tried both and CBOW gave slightly better accuracy.
API2API has shortcomings. First, it works best with one-to-

one mappings. It cannot handle the cases with n-to-1 or 1-to-

n mappings, and the case of mappings to multiple alternative

subclasses of a class. Second, it needs a diverse training set of

API mappings. Third, to find a mapped API in C#, it needs to

search in a large number of candidates. Finally, it might not

work for the pairs of libraries with much different paradigms.

VIII. RELATED WORK

DeepAPI [22] uses Recurrent Neural Network Encoder-

Decoder to generate API sequences for a given text by using

word embeddings and deep learning. DeepAPI has a different

goal as it learns the association of API sequences and anno-

tated words to generate API sequences from texts. We use

Word2Vec to capture the relations between API elements and

generate C# API sequences from Java API sequences. While

DeepAPI uses a deep learning translation model between texts

and API sequences, we use transformation between two vector

spaces to derive the API mappings between two languages.
API2API is also related to the work by Ye et al. [23]. The

authors used Skip-gram model on API and reference docu-

ments and tutorials to create embeddings for words and code

elements. Semantic similarities among such documents are

modeled via those embeddings. The first key difference is

that they aimed to quantify the relations between words and

code elements, while we focus on the relations among API

elements in API usages. Thus, they used documentation, while

we work on API sequences from source code. Finally, their

application is to improve text-code retrieval, while we support

the applications involving API usages and code migration.
Researchers have applied statistical NLP methods including

word embeddings to software artifacts. PAM [24] is a parame-

ter-free, probabilistic algorithm to mine API patterns. It uses a

probabilistic formulation of frequent sequence mining on API

sequences. Allamanis et al. [25] suggest methods/classes’ na-

mes using embeddings. The elements with statistical cooccur-

rences are projected into a continuous space with the words

from the names. In comparison, we use Word2Vec and learn

the transformation between two spaces. Their model works in

the same space. Maddison and Tarlow use probabilistic CFGs

and neuro-probabilistic language models for code [26].

Researchers have proposed to use language models to

suggest next tokens or API calls [3], [4], [5], [27]. Allamanis et
al. [28] use bimodal modeling for short texts and source code

snippets. They use traditional probabilistic model, and we use

Word2Vec for learning API embeddings. NATURALIZE [29]

suggests natural identifier names and formatting conventions.

API2API is inspired from a work by Mikolov et al. [18] where

similar geometric arrangements were observed in English and

Spanish words for numbers and animals. Anycode [30] uses

a probabilistic CFG for Java constructs to synthesize Java ex-

pressions. SWIM [31] synthesizes code by using IBM Model

to produce code elements and then uses n-gram for synthesis.

Peng et al. [32] propose a deep learning model to learn vec-

tor representations for tree-based source code. Mou et al. [33]

introduce convolutional neural networks over tree structures.

We could use those models in place of Word2Vec in API2API.

To mine API mappings, MAM [15] uses API Transforma-

tion Graphs, and compares APIs via similar names and calling

structures. HiMa [20] and Aura [19] use call dependency and

text similarity to identify change rules. Rosetta [16] needs pairs

of functionally-equivalent applications.

Our work StaMiner [11] mines API mappings by maximi-

zing the likelihoods of observing the mappings between API

pairs from a parallel corpus of client code. The resulting API

mappings are useful for rule-based migration tools [17], [34],

[35], [36], [37], [38], [39]. Our prior work SLAMC [40] pro-

vides a code representation for our phrase-based SMT models
in mppSMT [41] and semSMT [42]. Phrase-based SMT was

enhanced with grammar structures [43]. SMT is used to create

pseudo-code [44]. Early work on API2API was in a poster [45].

IX. CONCLUSION

We have shown that Word2Vec for APIs can capture the

regularities of the relations of APIs in API usages. We demon-

strate its usefulness in 3 applications. We build a tool to mine

the pairs of API elements that share the same usage relations

among them. We also propose an approach to automatically

mine API mappings by learning the transformation between

the two vector spaces of APIs in the source and target

languages. Our experiment shows that for just one suggestion,

our approach is able to achieve high precision and recall. In

the final application, we build a migration tool that migrate

API usages between Java and C# and show its high accuracy.
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