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Hot spots are typically locations of abundant phenomena. In ecology, hot spots are often detected with a spatially global
threshold, where a value for a given observation is compared with all values in a data set. When spatial relationships are
important, spatially local definitions — those that compare the value for a given observation with locations in the vicinity,
or the neighbourhood of the observation — provide a more explicit consideration of space. Here we outline spatial
methods for hot spot detection: kernel estimation and local measures of spatial autocorrelation. To demonstrate these
approaches, hot spots are detected in landscape level data on the magnitude of mountain pine beetle infestations. Using
kernel estimators, we explore how selection of the neighbourhood size (t) and hot spot threshold impact hot spot
detection. We found that as T increases, hot spots are larger and fewer; as the hot spot threshold increases, hot spots
become larger and more plentiful and hot spots will reflect coarser scale spatial processes. The impact of spatial
neighbourhood definitions on the delineation of hot spots identified with local measures of spatial autocorrelation was
also investigated. In general, the larger the spatial neighbourhood used for analysis, the larger the area, or greater the

number of areas, identified as hot spots.

While the term hot spot can have a specific meaning, it
often relates to a location where something out of the
ordinary has occurred (i.e. Ord and Getis 2001). This may
be an overabundance of an event such as crime (Ratcliffe
and McCullagh 1999), disease (Besag and Newell 1991), or
species richness (Stohlgren et al. 2006). Another general
definition considers hot spots as regions of high density that
are separated by regions of lower density of some
phenomenon (Hartigan 1975, p. 205, Azzalini and Torelli
2007). The reason for detecting hot spots is perhaps more
singular than their definition. Detecting hot spots is a first
step towards understanding processes that generate occur-
rences of atypical spatial patterns. By characterizing the
nature of the processes, we can learn more about the
complexity of systems (Getis and Boots 1978).

Although there are specific uses of the term hot spot in
ecology, such as biodiversity hot spots (Myers et al. 2000),
ecological hot spot definitions are typically related to
locations abundance and require a threshold be applied to
differentiate hot and non-hot locations (Gaston and David
1994, Flather et al. 1998, Stahl et al. 2001). As such they
are often defined on a case-specific basis.

Hot spots are spatially explicit, in that they are detected
at geographic locations and may be mapped. Definitions of
hot spots may be based on thresholds that are spatially
global or spatially local. Spatially global definitions compare
the value for a given observation with those in the complete
data set. As an example, a 5% threshold is applied to data

556

on the number of rare or endangered species (Gaston and
David 1994). In contrast, spatially local definitions involve
comparing the value for a given observation with locations
in the vicinity of the observation. For instance, hot spots are
located where the species diversity is much higher than in
the surrounding neighbourhood (Prendergast et al. 1993),
or may include locations that are spatially adjacent to the
most diverse regions (Flather et al. 1998). A combination of
local and global spatial methods may also be used, when a
spatially global threshold is applied to a spatially local
measure. We refer to these as partially local methods. As an
example, a spatially local measure is the number of lynx
attacks on livestock within a 5 km area and a global
threshold may be use to delineate locations with the highest
5% of values (Stahl et al. 2001). In general, spatially local
methods are more effective for detecting hot spots when
study areas are large and processes tend to be non-
stationarity. When non-stationarity exists the same high
value may have different meaning depending on the
location. For instance, the importance of high magnitude
forest insect infestations may be different when detected
amongst areas previously infested or previously uninfected.
While local measures consider the context of the high
magnitude events, global measures do not.

Given that all hot spots are spatally explicit, the
definition and detection of ecological hot spots may benefit
from approaches developed in geography, where the
methods for detection of spatial clusters have received



considerable attention (Elliott et al. 2000). Two spatial
analyses that are particularly transportable to hot spot
detection in ecology are kernel estimators and local
measures of spatial autocorrelation. These, and other
geographical approaches, are already being used by ecolo-
gists to visualize spatial trends, and quantify spatial pattern
and covariance in ecological data (Worton 1995, Fortin and
Dale 2005, Shi et al. 2006). However, we have found few
examples of the use of these methods in ecological hot spot
definition or detection.

The first goal of this paper is to demonstrate spatial
methods for defining and detecting hot spots in ecological
data when information on population at risk is unavailable.
The methods we emphasize are either spatially local, in that
hot spots are defined based on values within a region, or
partially local, in that hot spots are defined by applying a
global threshold to data that has undergone a spatially local
transformation. Given that hot spots tend to be defined
with the use of an arbitrary threshold, the second goal of
this paper is to explore how the selection of thresholds, and
other methodological issues, impact the nature of the hot
spots detected. Kernel estimation and local measures of
spatial autocorrelation are demonstrated on a large area
dataset on mountain pine beetle infestation magnitude.

There are many types of spatial ecological data (Fortin
and Dale 2005, pp. 14-17). In this paper we assume that
the phenomenon being studied is fully mapped, or that the
spatial coverage of sampling is complete and representative
of the population. Although some of the hot spot
definitions explored in this paper could be applied to any
type of spatial data, the emphasis is on areal and point data
with quantitative attributes, collected over large spatial
extents. In ecology, areal data are available from landscape
level surveys on: fauna and flora (Prendergast et al. 1993),
species richness (Gaston and David 1994, Stohlgren et al.
20006), species abundance (Brown 1984), and species
endangerment (Flather et al. 1998). When data are
collected for areas or plots that are small relative to the
spatial extent of the study, spatial locations may be
represented with point data with quantitative attributes
that indicate the area center (Stahl et al. 2001).

Background: methods for defining and
detecting hot spots

Kernel estimation

Conceptually, kernel estimators are used to convert point
data to continuous surfaces showing event density or
intensity (Silverman 1986). The most common ecological
use of kernel estimation is for home range detection
(Worton 1995, Shi et al. 2006). An animal’s home range
reflects the primary area or habitat used normally by an
animal (Burt 1943, p. 351) and kernels are a standard
approach in its deliniation. Kernels are also used to enhance
ecological edges or boundaries (Fortin and Dale 2005, pp.
206-209), and are employed in geographically weighted
regression (GWR), a technique for spatial modelling of
multivariate relationships (Shi et al. 2006).

Several properties of kernel estimators make them
valuable for hot spot detection. Using kernel estimated

surfaces, it is easy to visualize locations of event abundance
and scarcity, and the spatial variability in events or
phenomena (Nelson et al. 2006). As well, hot spots detected
with a kernel approach are easily investigated in terms of
underlying continuous variables, such as elevation, tem-
perature, or soil (Potvin and Boots 2004, Nelson et al.
2007). Since identifying hot spots with kernel estimation
requires a spatially global threshold and incorporates the
spatial distribution of area centroids or points, we categorize
this method as partially spatially local.

The intensity A(z) at a particular location z in a study
area A can be estimated by the naive kernel estimator

. the number of events in a neighbourhood centered on z

Mz) =

area of the neighbourhood
(D

However, since eq. (1) treats all events equally, lambda_
hat(z) is prone to discontinuous changes as z moves around
the study area. .

A more precise estimate, A (z), which avoids the
discontinuity problem, is defined by
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where z and A are defined as above; T, known as the
neighbourhood size, is the radius of a circular neighbour-
hood centered on z; k() is the kernel, or a probability
density function, which is symmetric around about the
origin; z; (=1, ..., n), are locations of n observed events;
and y; is the attribute value at z. The term p.(z) =
| kl(z—u)/6] du is an edge correction equivalent to the
volume under the scaled kernel centered on z which lies
inside of A (Diggle 1985).

The type of kernel k() determines how events within the
neighbourhood will be weighted. Although theoretically
important, kernel type has little impact on output (Silver-
man 1986, p. 43, Scott 1992, p. 133, Simonoff 1996, pp.
103-105). The standard kernel is the Gaussian. A good
approximation of the Gaussian kernel that is computation-
ally-less burdensome is the quartic kernel (Silverman 1986,
pp- 76-77, Waller and Gotway 2004, pp. 132-133). Given
that large data sets are the focus of this study we used the
quartic form. Using the quartic kernel, eq. (2) becomes:
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where h; =z —1z, so that 3/nt? is the weight at location
z (h; =0) which drops smoothly to zero at h; =1.

The amount of smoothing, controlled by the size of the
neighbourhood (1) over which point density is averaged, has
a larger impact on kernel results (Kelsall and Diggle 1995).
Small values of T will reveal small-scale features of the data,
while larger values will reveal general features. There are
several guides to follow when determining the optimal
neighbourhood size (Bowman and Azzalini 1997, pp. 31—
37); however, there is inevitably an element of subjectivity
in choosing an appropriate value for T.

For marked data with quantitative attribute values, the
neighbourhood size, or radius of T, may be determined using
the optimal circular radius neighbourhood size for standard
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multivariate normal distributions (Scott 1992, p. 152). The
resulting T will be conservative since the normal is the
smoothest possible distribution and will induce oversmooth-
ing when applied to non-normal data (Bowman and Azzalini
1997, p. 31). Oversmoothing will lead to overestimation of
the hot spot area, thus it may be helpful to incorporate an
understanding of the phenomenon’s ecology, or the struc-
ture of the data, to guide the selection of 1. In fact, Atkinson
and Unwin (2002, p. 1096) state “our experience leads us to
believe subjective judgement based on a range of density
surfaces is as good a method as any” for determining an
appropriate neighbourhood size. We agree with this
approach, and through this paper we attempt to demonstrate
how a range of neighbourhood sizes may be determined, and
the resulting impact of these different neighbourhood sizes
on hot spot detection. When study areas are large, or the
density of areas or points varies over space, there may be
advantages to using variable or adaptive neighbourhoods
(Brunsdon 1995), or anisotropic neighbourhoods that vary
in size depending on direction (Bowman and Azzalini 1997,
p- 13).

Regardless of the size of neighbourhood used, once a
kernel estimated surface is generated, a threshold must be
defined in order to identify hot spots. A statistical method
has been developed to determine whether the maximum
kernel estimated value is statistically significant (Rogerson
2001). However, this approach is effective when only one
hot spot exists, which is atypical in ecology. Kernel density
estimation may be used to identify hot spots defined as
locations where values are high relative to an expectation of
randomness, or conditional randomness, using Monte
Carlo simulations. For instance, in Nelson and Boots
(2005) kernel density estimation was combed with rando-
mization procedures to identify locations where the
observed values of mountain pine beetle infestations were
greater than expected based on a planar Poisson process
conditioned on a model of forest risk. Most often, an
arbitrary threshold will be applied to the kernel estimated
surface. When hot spots are identified with kernel estima-
tion, hot locations will be regions where high density
estimates are separated from regions with lower density
estimates (Azzalini and Torelli 2007). For details of soft-
ware that may be used to implement kernel density
estimation, see Supplementary material.

Local measures of spatial autocorrelation

Spatial autocorrelation is the notion that all things are
related, and near things more than far (Tobler 1965).
Positive spatial autocorrelation exists when nearby events
are similar. Negative spatial autocorrelation exists when
nearby events are dissimilar. Measures of spatial autocorre-
lation may be either global or local and are used
quantitatively to evaluate the amount of spatial autocorrela-
tion in a data set. Global measures characterize the nature of
spatial autocorrelation for the entire study area using one
value that summarizes average trends. For hot spot
detection, local measures that quantify variations in spatial
autocorrelation over a study area are preferable to global
measures.
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Although global measures of spatial autocorrelation are
more commonly used by ecologists (Fortin et al. 1989,
Liebhold and Gurevitch 2002), local measures of spatial
autocorrelation are gaining popularity for quantifying
spatial patterns (Fortin and Dale 2005, Franklin in press).
For example, local measures of spatial autocorrelation have
been used to quantify the spatial structure of aphid
abundance (Cocu et al. 2005) and the spatial pattern of
diversity in shrubs based on genetic or taxonomic units
(Bickford et al. 2004). They are also used to identify spatial
patches or clusters of homogenous events of phenomena
characteristics. For instance, Whitmire and Tobin (2006)
used local measures to identify unique colonies of gypsy
moths based on trap data.

Local measures of spatial autocorrelation have two key
advantages over other methods hot spot detection. First, as
the name indicates, these approaches enable spatially local
hot spot definitions. Second, as local measures of spatial
autocorrelation are designed to assess the statistical hypoth-
esis that observed patterns could have risen by chance,
rejection of the null hypothesis can be used as the threshold
for defining hot spots.

If the observed values x;, i€{l, ..., n} of a random
variable X are recorded at a set of n data sites, local measures
of spatial autocorrelation take the general form of a cross-
product statistic

I= Zwinij7 (4)
j

where wj; is a measure of the spatial relationships of data sites i
and j at a given time and y;; is a measure of their relationship
in attribute space (Getis and Ord 1992, Boots 2002).
There are several ways to define spatial relationships or
spatial neighbourhoods (w;;) when data are fully mapped,
rather than representative of a sample (Fig. 1). A common
definition is distance, where relationships are summarized
for all locations (j) within some distance of location i (Fig.
1A, B) (Haining 2003, p. 80). A distance band is
appropriate when data sites are regularly spaced and there
is a conceptual reason to select a particular distance. When
data sites are irregularly spaced, a distance band could result
in some neighbourhoods having many sites and others with
few. This can be dealt with by setting the neighbourhood
size to some number (k) of nearest neighbours (Fig. 1C)
(Haining 2003, p. 80). This controls the number of
locations in each neighbourhood, although the area
associated with each neighbourhood can then be variable.
When adjacency is important, Voronoi or natural neigh-
bours may also be used in the definition of neighbourhoods
(Okabe et al. 2000, pp. 418—427). Voronoi polygons can be
created for all data sites by assigning all locations in space to
the nearest data site. Then, the natural neighbours of any
given site are those sites whose Voronoi polygons share a
boundary with the Voronoi polygon of the given site (Fig.
ID). By adding the natural neighbours of j to the
neighbourhood of i it is possible to define muldple
neighbourhood sizes (lags) (Fig. 1E). In the examples
shown in Fig. 1, if i and j are neighbours, w;; equals one
and values of zero are assigned when i and j are not
neighbours. Definitions can also be based on other
measures of the interaction (Haining 2003, p. 84).
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Figure 1. Spatial weights matrices or neighbourhoods can be defined in a number of ways. (A and B) Spatial relationships are defined by
distance. (C) Spatial relationships are summarized for the k nearest locations. (D and E) Spatial relationships are defined by shared

boundaries.

Local measures of spatial autocorrelation with attribute
relationship definitions (y;;) that are well suited for hot spot
detection include local Moran’s I; and local Getis (G;).
Both of these measures characterize spatial autocorrelation
in values that are extreme relative to the mean, thus aiding
the detection of unusual events (Getis and Ord 1992,
Anselin 1995).

For local Moran’s [; the attribute relationship in the
cross product statistic is defined as y; = (x; — %)(x; — %) and

L= Zlez Zwijzj7 ()
; j

i

n

where z, = (x, —X). Positive values of Moran’s I; indicate
positive spatial autocorrelation in values that are extreme
relative to the mean. Negative Moran’s I; indicate negative
spatial autocorrelation in values that are extreme relative to
the mean. When Moran’s I; approaches zero it could be that
there is no spatial autocorrelation, or that spatial auto-
correlation is present in values near the mean.

For hot spot detection, a Moran’s scatterplot can be used
to distinguish positive and negative spatial autocorrelation
based on the attribute value of a location in relation to the
attribute value of its neighbours. On a Moran’s scatterplot,
the x axis is the attribute value in deviation form and the y
axis is a standardized average of the neighbour values also in
deviation form (Anselin 1995). The upper right quadrant
indicates high values surrounded by high values (high-high),
the upper left quadrant indicates low values surrounded by
high values (low-high), the lower right quadrant indicates
high values surrounded by low values (high-low), and the

lower left quadrant indicates low values surrounded by low
values (low-low) (Fig. 2). Depending on the application,
hot spots could be defined by one or more of the Moran’s
scatterplot categories. For instance, high-high locations may
be used to detect clusters of large values, while high-low
locations may be used to locate local high outliers. Low-low
and low-high locations are indicative of the absence of
phenomena and will not be considered in the remainder of

this paper.
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Figure 2. Moran scatter plot quadrants can be used to categorize
locations base on the on the attribute value of a location in relation
to the attribute values of neighbours.
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Under some circumstances, the Moran’s scatterplot can
be combined with statistical testing to determine the
significance of potential hot spots. Although the expected
values of I; can be derived under the hypothesis of no local
spatial autocorrelation (Sokal et al. 1998), the distribution
does not follow a known distribution (Boots and Tiefelsdorf
2000), and so a randomization approach must be adopted
for statistical testing.

The local Getis statistic only considers positive spatial
autocorrelation and enables differentiation between clusters
of similar values that are high or low relative to the mean
(Getis and Ord 1992, Boots 2002). Using the Getis
statistic, it is possible to identify spatial clusters of large
and small attribute values. These are equivalent to the high-
high and low-low clusters, respectively, as identified by I;,
and the former may be considered hot spots. We employ
the local Getis statistic with the following form:

G = Wi,

5%

For G;* the value of i is included in the sum and the
attribute relationship is defined as y; = x; + x;.

For G;* it has been shown that normality can be
reasonably assumed when locations have at least eight
neighbours (eight j for each i) (Ord and Gets 1995).
Equations for calculating the expected mean and variance of
G;* under the hypothesis of complete randomness are given
by Boots (2002) and can be used to calculate z-scores for
significance testing. For G;*, z-score values >2 are used to
indicate hot spots of abundance, as locations identified will
be spatial clusters of values that are extreme and high
relative to the mean. G;* z-score values <—2 indicate
spatial clusters of values that are extreme and low relative to
the mean. These are often labelled cold spots and will not
be considered here.

It should be noted that testing the statistical significance
of all local measures of spatial autocorrelation is compli-
cated by the presence of global spatial autocorrelation and
issues of multiple and correlated tests (Boots 2002). Until
these issues are overcome, it is best to use the statistical tests
associated with local measures of spatial autocorrelation for
data exploration, rather than as confirmatory statistical
testing. Global measures of spatial autocorrelation should
be presented when local measures are calculated, and when
significant global spatial autocorrelation exists, the like-
lihood of falsely identifying significant local spatial auto-
correlation increases (Ord and Getis 2001). For details of
software that may be used to implement local measures of
spatial autocorrelation, see Supplementary material.

Case study

In this case study, we apply the methods outlined above,
kernel estimators and local measures of spatial autocorrela-
tion, to data on a forest insect pest. Through application of
these methods we demonstrate how varying the parameters
of spatial hot spot detection methods impacts the nature of
the hot spots identified.
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Study area and data

Forest insect pests cause tree mortality (Safranyik and
Carroll 2006), defoliation (Whitmire and Tobin 2006),
and forest disturbance (Fleming et al. 2002). In order to
understand the characteristics of forests that are most prone
to infestation by insect pests, it is helpful to locate hot spots
of insect populations or forest damage (Nelson et al. 2007).
The mountain pine beetle Dendroctonus ponderosae is a
forest pest that is native to pine (Pinus spp.) forests
throughout western North America. As a forest pest, the
mountain pine beetle is of particular importance given that
it is responsible for the largest forest epidemic on record,
currently occurring in western Canada (Westfall 2006).
Periodic population eruptions occur when an abundance of
susceptible host trees coincides with climatic conditions
amenable for beetle survival (Safranyik and Carroll 2006).
Although epidemic populations are a natural component of
forest disturbance, large infestations have substantial im-
pacts and provide unique challenges to forest managers
(Safranyik et al. 1974).

Understanding landscape-scale mountain pine beetle
processes through experimental research is not feasible due
to practical limitations, and so we rely on spatial patterns of
infestation to gain insight on spatial processes. Determining
the presence of infestation hot spots can be an important step
in analyzing spatial and spatial-temporal patterns of infesta-
tion and in gaining insight on mountain pine beetle spatial
processes. By identifying locations where the spatial pattern is
unusual, and exploring the conditions in these areas, we can
develop hypotheses on beetle processes and better understand
conditions that lead to infestations.

Hot spot definitions and detection approaches are
explored using mountain pine beetle infestation data from
the Morice Timber Supply Area (TSA), which is located in
west-central  British  Columbia Canada (54°24'N,
126°38'W) (Fig. 3—5). Covering an area of 1.5 million
ha, Morice is dominated by lodgepole pine and spruce
(Picea spp.) species.

The Morice TSA monitors the mountain pine beetle
infestation using point-based, global positioning system
(GPS) aerial surveys. Aerial surveys of mountain pine
beetle infestations use indicators of pine mortality, mainly
changes in crown foliage color, to monitor mountain pine
beetle activity. During helicopter aerial surveys, clusters of
visually infested trees are identified, typically those with
yellow and red crowns, and a GPS is used to map cluster
centers with a point. For each cluster, the number of
infested trees is estimated and the infesting insect species
recorded. Attributes have been shown to be accurate to +
10 trees for 92.6% of points (Nelson et al. 2006). The
maximum area represented by a point is 0.031 km?,
equivalent to a circle with a radius of 100 m (Nelson et
al. 2006). For this study we used data from 2004, when a
total of 16358 clusters and 130983 trees were detected to
be infested. The frequency distribution of infestation
cluster sizes (numbers of infested trees) demonstrates that
attributes have a non-normal distribution, with small
infestations being most common.
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used to identify hot spots for each definition of 1. Hot spots are shown in red.

Methods

For large data sets, such as the mountain pine beetle
data, computational speed is an important factor and the
quartic kernel was used. The primary consideration in the
application of a kernel estimator is the neighbourhood
size (1) and using a combination of statistical and
substantive considerations, described below, we defined
a feasible range for T to be between 450 and 9500 m.

The lower limit, equivalent to a typical kernel containing
at least one data point, was determined from the spatial
distribution of the data points by identifying the area of
influence associated with a typical data point. To do this we
generated the Voronoi diagram (see above) of data points.
Voronoi polygons had an average area of 0.63 km”. A circle
of equivalent size has a radius 448 m, suggesting T ca 450 m.

The upper limit for T was determined using the optimal
radius for standard multivariate normal distributions. For
details we refer the reader to Scott (1992 p. 152). This
value, meant for use with a normal kernel, can be converted
for use with the quartic kernel using a scaling factor (Scott
1992, p. 142). The quartic kernel was calculated as 9546 m,
suggesting an upper limit of ca 9500 m for .

Further evidence of an appropriate T may be gathered by
investigating the observed spatial dependence in the point
data set for which kernel estimated values will be generated.

For the 2004 mountain pine beetle data, a variogram was
generated from the locations and attribute values of the
infestation clusters. The variogram range, or distance at
which data variance is maximized, represents the spatial
scale of dependence (Bailey and Gatrell 1995). The
variogram range is 800 m.

Finally, biological theory on mountain pine beetle
dispersal was exploited to suggest an appropriate measure
of 1. Mountain pine beetle disperse over both short and
long distances. Long distance dispersal is typically wind
driven and short distance dispersal occurs within stands
(Furniss and Furniss 1972, Barclay et al. 1998). For
selecting T, the maximum distance of short range dispersal,
conservatively set at 2000 m (Barclay et al. 2005), is an
indicator of the size of areas that are related due to nearby
population movement and dependence.

On the basis of all of the above considerations, we set T
equal to 450, 800, 2000, and 9500 m. An additional issue,
which arises in software that represents kernel estimated
values in a raster format, is the definition of surface cell
size. We used a 200 by 200 m grid cell, as the data
points represented circular areas with a maximum diameter
of 200 m.

To define hot spots based on the kernel estimator, a
spatially global threshold was applied. The typical threshold
value applied in ecology is the 95th percentile (5%
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threshold) (Gaston and David 1994, Flather et al. 1998).
We apply a 5% threshold to kernel estimated surfaces
generated from 7 equal to 450, 800, 2000, and 9500 m. To
consider the impact of thresholds, we also detect hot spots
in the kernel surface generated from T equal to 2000 m
using thresholds of 1, 5, and 10%. In order to quantify the
impact of T and threshold values on hot spot detection, we
compared the number and size of hot spots detected using

each definition. One of the benefits of using kernel
estimation is that it enables comparison with continuous
environmental variables. Therefore, we also calculated and
compared the minimum and maximum elevation values
associated with hot spots to quantify how relationships with
landscape characteristics differ with hot spot definitions.
To aid interpretation of both Moran’s I; and G;* results,
we quantified the number of neighbours that occur for each
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spatial relationship definition used and calculated global
Moran’s I (Cliff and Ord 1981) using all spatial relationship
definitions (i.e. distance, natural neighbours, and k nearest
neighbours).

For Moran’s I;, we detected hot spots using three
spatial neighbourhoods. A distance based definition where
neighbours include all locations within 2000 m of each
centroid was used. We also used a natural neighbour
definition, based on Voronoi polygons generated from the
centroid of infestation clusters. Lag 1 and lag 2 natural
neighbours were used. To detect hot spots, Moran’s I
results were categorized using a Moran scatterplot and
significance determined using 99 randomizations and a
critical value of 0.05. Hot spots are locations where the
null hypothesis, that the spatial pattern is generated by a
random process, is rejected. Moran’s I; enables two hot
spot categories: clusters of high values and high values
surrounded by low values. To assess the impact of spatial
neighbourhoods on the detection of hot spots, the
correspondence and confusion of hot spot categories
detected with Moran’s I; were compared.

To implement G;*, three spatial neighbourhoods were
defined. For G{* normality can be assumed when there are
at least eight neighbours in every local neighbourhood. A
lag 1 contiguity neighbourhood definition typically has an
average of six neighbours (Okabe et al. 2000), and as such is
unsuitable for use with G;*. We set the minimum
neighbourhood size to the nearest eight neighbours (i.e. k
equals eight). We also used a lag 2 contiguity and 2000 m
distance definition as in the analysis with Moran’s I;. G*
values were converted to z-scores, and hot spots, spatial
clusters of infestation levels that were high and extreme,
were identified when z-score values were >2. The
correspondence of hot spots detected with G;* and different
neighbourhood definitions were also compared.

Results

Hot spots detected by applying a 5% threshold to kernel
intensity estimated surfaces generated with T equal to 450,
800, 2000, and 9500 m are shown in Fig. 3. With
increasing T, the kernel estimator provides a more general
visualization of spatial pattern. As a result of smoother
surfaces, the infestation intensity appears more contiguous
and hot spots become larger and fewer in number (Table 1).
Variability in hot spot size increases as T increases from 450
to 2000 m. However, when 7 is 9500 m, there are only two

Table 1. Comparison of hot spot numbers and size identified as the
top 5% of infestation density values in kernels generated with
different sizes of .

T=450m 1=800m t=2000m t=9500m

number of hot 152 126 27 2
spots

minimum size 0.04 0.04 0.08 19.90
(m?)

maximum size 1.68 6.00 56.16 249.72
(m?) ,

average size (m?) 0.20 0.69 7.23 224.42

coeff. of variation 1.15 1.37 1.63 0.16

in size

hot spots and the variance in size is low. The differences in
kernel surfaces and associated hot spots requires considera-
tion of which 7 is best. Given the issues of oversmoothing
(Silverman 1986), we might suggest that T =9500 m does
not generate appropriate input for further analysis. The 450
m T is also problematic for visualization, as hot spots are
very small relative to the overall study area. As such, we
suggest T=800 m or T=2000 m are arguably more
appropriate. When multiple neighbourhood sizes are valid,
biological reasoning may become necessary to ensure
appropriate neighbourhood size definition.

Over the entire study area, elevation values range from
549 to 2719 m (mean elevation =1074 m). For hot spots
identified using a 5% threshold and T =450 m, elevations
range from 581 to 1290 m (mean 888 m). When t =800
m, elevations ranged from 568 to 1318 m (mean =894 m);
for 1=2000 m elevations range from 670 to 1354 m
(mean =905 m); and, when T =9500 m elevations range
from 653 to 1505 m (mean =940 m).

Holding T constant at 2000 m, we varied the threshold
used for hot spot detection. The results of thresholds of 1,
5, and 10%, that were applied when T equalled 2000 m, are
visualized in Fig. 4. Larger thresholds lead to more, larger,
and more variably-sized hot spots (Table 2). Larger thresh-
olds also result in larger ranges of elevation being associated
with hot spots. When a 1% threshold is applied, the
associated elevations ranged from 806 to 1019 m (mean =
872 m). Using a 10% threshold, the range in elevation is
562-1437 m (mean =917 m), while the use of a 25%
threshold increases the range from 553 to 1572 m (mean =
912 m).

Global Moran’s I indicates that the mountain pine beetle
infestation data are significantly positively spatially auto-
correlated regardless of neighbourhood definition (Table 3).
The different definitions of spatial neighbourhoods changed
both the configuration and number of neighbours asso-
ciated with each centroid (i). k nearest neighbours is the
only definition that controls the number of neighbours.
When spatial relationships are defined using lag 1 and lag 2
neighbourhoods, there is less variation in the number of
neighbours than when the 2000 m distance neighbourhood
is used.

Visualizing local Moran’s I; it appears that the same
general “zones” of significance occur regardless of how the
neighbourhood is defined (Fig. 5). The tabulated results
indicate that more significant locations are found when
larger neighbourhoods are used (Table 4). Typically, when
the result of Moran’s I; changes with different neighbour-
hood definitions, the value will go from being a hot spot to
a non-hot spot, or vice versa, and rarely changes hot spot
category (i.e. from high-high to high-low). Correspondence

Table 2. Comparison of hot spot numbers and size identified using
kernels where 1 =2000 m and hot spots are defined using thresholds
of the top 1, 5, and 10% of values.

1% 5% 10%
number of hot spots 3.00 27.00 50.00
minimum size (m?) 0.64 0.08 0.04
maximum size (m~) 2.24 56.16 117.56
average size (mz) 1.29 7.23 10.65
coeff. of variation in size 0.65 1.63 2.21
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Table 3. Global Moran’s | and number of neighbours for mountain pine beetle infestation cluster data. The neighbourhoods are defined as
k=8, lag 1 natural neighbours, lag 2 natural neighbours, and a 2000 m distance.

weights I (p-value) median no. of mean no. of cv of min no. of max no. of
neighbours neighbours neighbours neighbours neighbours
k=8 0.24 (0.01) 8 8 0 8 8
lag 1 0.19 (0.01) 6 5.99 0.27 3 16
lag 2 0.25 (0.01) 19 20.29 0.28 7 69
2000 m 0.17 (0.01) 42 46.3 0.58 1 162

between results is highest when the size of neighbourhoods
is similar. Lag 1 and lag 2 comparisons of Moran’s I; results
have 94.0% correspondence. For lag 1 and 2000 m
comparisons there is 92.4% correspondence, and lag 2
and 2000 m results correspond in 89.9% of cases.

G;* results follow the same trend as Moran’s I; in that
larger neighbourhood sizes result in more centroids having
significant spatial patterns (Table 5). Correspondence in
hot spots is higher when neighbourhood sizes are similar.
Neighbourhoods of k =8 and lag 2 have 92.5% correspon-
dence, k =8, and 2000 m has 87.0% correspondence, and
of lag 2 and 2000 m has 90.9% correspondence. Visually,
hot regions show consistency in location (Fig. 5).

Discussion

There are several approaches to assist with the detection of
spatially explicit hot spots. In the mountain pine beetle
example, we applied kernel estimated intensity surfaces and
local measures of spatial autocorrelation. When using kernel
estimation for hot spot detection, the analyst must set T and
a hot spot threshold. As T increases, hot spots will become
larger and fewer; as the hot spot threshold increases, hot
spots will become larger and more plentiful. The kernel
approach generates a smooth representation and enables
comparison with other spatially continuous phenomena.
When the threshold is held constant at 5%, and different
sizes of T are used, the landscape conditions, in this case
represented by elevation, vary. The smaller values of 1
capture more localized trends and suggest hot spots are
associated with lower elevations, indicative of valley
bottoms. As T becomes larger, the elevations associated
with hot spots tend to be higher, and represent hill slopes.

Table 4. Coincident Moran’s |; results for hot spot detected with
different neighbourhood definitions.

Not hot  High-high  High-low Total

lag 1/lag 2

Not hot 14639 128 71 14838

High-high 505 626 1 1132

High-low 271 0 17 388

Total 12814 754 189 16358
lag 1/2000 m

Not hot 13953 124 75 14152

High-high 991 629 5 1625

High-low 471 1 109 581

Total 12814 754 189 16358
lag 2/2000 m

Not hot 13871 148 133 14152

High-high 639 984 2 1625

High-low 328 0 253 581

Total 9894 1132 388 16358
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Compared to hills, the area of a valley bottom is small and
constrained, and trends associated with fine scale features
are better investigated using small neighbourhoods.

When 1 is held constant and the hot spot threshold
varied, the range of elevation values associated with hot
spots increases with increasing 7. In the case where T =2 km
and thresholds varied from 1 to 25%, the range of
elevations associated with hot spots changes from 806—
1019 m to 553-1572 m. This has implications when
characterizing forest conditions associated with the most
infested beetle locations, and indicates the benefit of
considering the threshold carefully.

Moran’s I; enables two categories of hot spots to be
detected, and statistical significance can be used in lieu of a
hot spot threshold. All hot spots are detected in values that
are extreme relative to the mean value. Hot spots may be
defined as high values surrounded by high values, or outliers
emphasized and detected as high values surrounded by low
values. In contrast, G;* detects clusters of high values
relative to the mean.

When Moran’s I; and G* are implemented, the larger
the spatial neighbourhood, the more locations identified as
significant. This is not surprising as we would expect larger
spatial neighbourhoods to identify spatial patterns asso-
ciated with broader spatial processes. Therefore, when larger
hot spots are of interest, or the spatial processes being
studied are of coarse scale, it is best to use larger spatial
neighbourhoods for detection.

It should also be mentioned that given Moran’s I; and
G;* are computed relative to the global mean, spatial
variability within a study area will be problematic for
detecting hot spots, as the spatial extent of the study may
impact the location of hot spots when non-stationarity is
present. New methods for use with local measures of spatial
autocorrelation are being developed to account for non-
stationarity when computing local measures (Aldstadt and

Table 5. Coincident G; results for hot spot detected with different
neighbourhood definitions.

Not hot Hot spot Total
k =8/lag 2
Not hot 14121 352 14473
Hot spot 875 1010 1885
Total 14532 1362 16358
k =8/200 m Not hot Hot spot Total
Not hot 13191 319 13510
Hot spot 1805 1043 2848
Total 14532 1362 16358
2000 m/lag 2 Not hot Hot spot Total
Not hot 13249 1224 14473
Hot spot 261 1624 1885
Total 10995 2848 16358




Getis 2006, Lin and Lu 2006), however these are beyond
the scope of the current paper.

Conclusion

Hot spot definition and detection methods should be
selected based on the specific goals of the application.
When definitions are spatial, geographical methods may aid
in hot spot detection. Kernel estimators are suitable when
the aim is to identify general trends or areas with an
abundance of a phenomenon. Kernel estimators also
improve visualization and enable hot spots detected from
point data with an attribute to be integrated with
continuous data. In ecology, integration with spatially
continuous data is valuable as environmental variables,
such as elevation, temperature, precipitation, are often
assessed in order to understand the processes that generate
phenomena abundance. If the goal of an ecological study is
to investigate fine scale features, one should be cautious in
oversmoothing data using large neighbourhood sizes. While
this paper focuses on point data with attributes, it is worth
noting that kernel methods may also be used with point
data that do not have attributes.

In contrast to kernel methods, measures of spatial
autocorrelation require point, centroid, or area data with
attributes. Hot spot detection with local measures of spatial
autocorrelation, Moran’s I; and G;*, is useful when the aim
is to identify clusters or outliers of values that are high and
extreme relative to the global mean. Designed for testing the
hypothesis that patterns have arisen by chance, local
measures of spatial autocorrelation have an inherent
approach for threshold selection, and are useful for
determining if an individual location is, or is part of, a
hot spot. Interestingly, kernel estimation and the high-low
category of Moran’s I; have conceptual similarities to
wavelets (Fortin and Dale 2005, pp. 98-100), which have
been used to detect high densities of phenomena such as
plants (Csillag and Kabos 1996).

Hot spots detected in the mountain pine beetle case study
highlight the importance of considering scale when con-
ducting spatial analyses on ecological data. Regardless of the
methods used, the larger the spatial neighbourhood, the
greater the number or size of locations detected as hot. If the
aim of hot spot detection is to identify broad areas for
further investigation, the impact of spatial analysis scale may
be minor. However, if the selection of individual locations is
important, analysis must have a finer spatial resolution and
analysis parameters will impact results. Given the impor-
tance of selecting the appropriate spatial scale for analysis, we
have demonstrated a variety of approaches for defining
spatial neighbourhoods. There will, however, always be an
element of judgement in selecting the spatial scale for
analysis and it is important to justify one’s choice.

Spatially local methods that characterize spatial auto-
correlation (Moran’s I; and G;*) appear more robust than
kernel estimators, in that they are less affected by the choice
of neighbourhood. Consequently, Moran’s I; and G;* may
be more appropriate to use for hot spot detection when
substantive knowledge about the phenomenon under
consideration is sparse or poorly developed.

Quantitative geography and spatial science offer many
ways to identify hot spots. In this manuscript we have
focused on methods for detecting hot spots in areal and
point data that have quantitative attributes, when the
population at risk information is not available and data
are collected over large areas. Spatial analysis techniques are
available for detecting hot spots in other types of data. For
instance, when data are points without attributes, as is
commonly the case for radio telemetry data, the local k-
function (Franklin and Getis 1987) or Voronoi polygons
(Okabe et al. 2000) may be used to identify locations where
the spatial pattern is unexpected based on chance. When
population at risk information is available, scan statistics
may be used to identify unexpected spatial patterns
(Coulston and Riitters 2003, Riitters and Coulston
2005). As well, when point or area data have binary
attribute values, such as presence/absence, local join counts
can be used to examine the likelihood that the spatial
pattern results from a random process (Boots 2003, 2006).
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