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Abstract Smart home, smart grids, smart museum, smart cities, etc. are making the
vision for living in smart environments come true. These smart environments are
built based upon the Internet of Things paradigm where many devices and applica-
tions are involved. In these environments, data are collected from various sources
in diverse formats. The data are then processed by different intelligent systems with
the purpose of providing efficient system planning, power delivery, and customer
operations. Even though there are known technologies for most of these smart en-
vironments, putting them together to make intelligent and context-aware systems
is not an easy task. The reason is that there are semantic inconsistencies between
applications and systems. These inconsistencies can be solved by using metadata.
This chapter presents management of big data metadata in smart grids. Three im-
portant issues in managing and solutions to overcome them are discussed. As a part
of future grids, some concrete examples from the offshore wind energy are used to
demonstrate the solutions.

1 Introduction

Advanced technologies are making the vision for living in smart environments be-
come realistic. Recently, several concepts within the smart environments have been
introduced, such as smart home, smart transport, smart grids, smart museum, and
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smart cities. These smart environments are built based upon the Internet of Things
(IoT) paradigm where lots of devices, sensors, appliances are connected through the
Internet. These devices produce vast amounts of data, thus making the management
of data a highly challenging task. Another common feature and an important prob-
lem of these smart environments is that each of them involves data modeling, infor-
mation analysis, integration and optimization of large amounts of data coming from
various smart appliances in diverse formats. The data are then processed by different
intelligent systems with the purpose of providing efficient system planning, power
delivery, and customer operations. Even though there are known technologies for
developing most of these smart environments, putting them together to make intel-
ligent and context-aware systems is not an easy task. The reason is that there are
semantic inconsistencies between applications and systems. These inconsistencies
can be solved by using metadata.

Typically, data are a collection of raw and unorganized symbols that represent
real-world states. The information is the processed, organized, and structured data
according to a given context [2, 60]. The context of related data and processes will
decide the role as information of the captured data. Principally, information is the
structured data with semantics. For example, if data are used for documentation
or analysis, the data become information. Without metadata, the data cannot easily
become information and incomplete or inaccurate metadata or too much metadata
can cause misinterpretation of data [55]. Metadata should be therefore managed in
a way that data can be easily interpreted and transformed to information.

Metadata management is a key to make data integration successful [25]. It has to
be taken into consideration in the development of systems since it helps in making
the systems scalable. For formal metadata management, semantic technologies have
been developed. Ontology, which is a part of semantic technologies, plays a signifi-
cant role in managing metadata of a domain. Ontologies can be used to support data
integration in terms of facilitating knowledge sharing and data exchange between
participants in a domain. In ontologies, concepts, properties, relations, functions,
constraints, and axioms of a particular domain are explicitly defined [19]. We use
semantic technologies to exploit the semantics of data, and hence ease metadata
handling in smart environments.

In this chapter, we discuss how to manage big data metadata in smart grids with
a particular focus on (1) knowledge sharing and data exchange, (2) derived data
from relations between concepts, and (3) data quality as metadata. We will present
a developed ontology model for offshore wind energy metadata management as
an example of domain concept descriptions. IEEE P2030 points out that ontology
might be a good option to create formal representation of real-world systems or
objects composing these systems within smart grids [1]. As the number of devices
is increasing tremendously, and many of them will be used in smart environments,
it is important to make sure that any future system is scalable enough to keep pace
with the technologies. Metadata models, as a backbone of any system, also need to
be considered thoughtfully. The models need to be developed so that the following
requirements are fulfilled.
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• The models need to be compatible with existing data resources and future appli-
cations.

• Minimum effort is used to modify the models when integrating new devices.
• New devices’ metadata are described in a way that discovery and access to them

are easy.
• It must provide a guide to structuring, sharing, storing, and representing the big

data in smart grids.
• The semantics of data needs to be exploited and clearly defined.
• Since it is not feasible to attach metadata with individual data, the metadata mod-

els must be related to data sources.

The rest of the chapter is organized as follows. Section 2 gives some background
information about the areas that we discuss in this work. Section 3 presents some
challenges of big data metadata management that we attempt to tackle. Section 4 de-
scribes solutions and approaches to overcoming the challenges. Section 5 discusses
our solutions and gives some remarks on future work. Finally, section 6 concludes
the chapter.

2 Background

This section describes the background of metadata, semantic technologies, IoT and
smart grids. The relations between these areas are also highlighted.

2.1 Metadata

The term “metadata” was first introduced in 1968 by Philip R. Bagley to refer to de-
scriptive data that provided information about other data in a database environment
[51]. In different contexts, the term metadata is interpreted in different ways, for ex-
ample, metadata are data about data; or metadata are machine-readable information
about electronic resources or other things; or metadata are structured information
that describes, explains, locates an information resource [54]. Basically, metadata
are descriptors that describe a way of identifying information. Data without meta-
data result in blind decision making [55]. In other words, without metadata, data
have no identifiable meaning. For instance, when a user searches for information,
he will receive a list of search results from a search engine. The search engine looks
up for requested information from huge amounts of data based on search terms,
tagging content, and other metadata associated with data. Metadata provide the nec-
essary documentation for users by answering who, what, when, where, why, and
how questions upon the users’ requests.

Metadata put data into a context so that the data can be understood by users and
become information. Besides the general role as descriptors, metadata can be used
for:
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• information classification - information is classified into different categories
based on content, purpose, location, area, etc;

• information discovery - a large amount of time is used to look for things, and
many of them cannot be found due to the lack of descriptions. Metadata therefore
enhance information discovery and knowledge sharing;

• information interpretation - a poor description of data may lead to wrong decision
making or business loss due to wrong interpretation of the data;

• data integration - when we integrate data from various sources in different for-
mats and platforms, metadata are the only option that can make a foundation for
data integration [55];

• device discovery - based on metadata of devices such as location, type, and other
features devices can be discovered either automatically or semi-automatically by
a system.

2.2 Big Data Metadata Management

Big data is characterized with volume, variety and velocity [61]. Volume is consid-
ered as a huge amount of data which can hold terabytes to petabytes of data which
come from different devices, applications, and systems. Velocity is the speed at
which the data comes in, and variety means many data types and data formats. Struc-
tured, semi-structured and unstructured data are involved in big data [15]. Data of-
ten come from machines, sensors, social networks such as Facebook, Tweets, smart
phones and other cell phones, GPS devices and other sources making it complex
to manage [45]. According to a report from McKinsey Global Institute, every year,
over 30 billion original documents with data are created. 85% of the data will never
be retrieved, 50% of the data is duplicates, and 60% of stored documents are obso-
lete. $1 and $10 are the costs to create a document and to manage it, respectively
[31]. As the amount of data increases, the cost of management also increases. It is
important to describe and manage metadata so that only important and necessary
data are stored and provided to users when requested. Since data are used for mak-
ing decisions by different applications and systems, the quality of data is one of
concerns.

Not all of the data captured from sensors or devices are useful, only a part of
the data is. Data are transformed to information only if the data are used for partic-
ular purposes, e.g., modeling, documentation. Part of the information will become
knowledge in terms of abstraction and perception. Users are not interested in infor-
mation (numbers), they are interested in knowledge, i.e., what can be derived from
the information. For example, if a user wants to know about the temperature in a
wind turbine hub, he will probably not expect to get a number or set of numbers as a
response, but he will probably want to get either “Normal”, “Cold”, or “Hot”. Even-
tually, only part of the knowledge will be transformed to wisdom if the knowledge
is used to serve some actionable intelligence [46]. Every step of the transformation
involves management of data, information, and knowledge. Management of big data
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metadata concerns a way to manage big data metadata such that metadata are good
enough to enable knowledge extraction from big data.

2.3 Smart Grids and Internet of Things

Smart grids are the future generation of power grids where the energy is managed in
a way that both consumers and energy producers will get more benefits from the grid
in terms of reduction of expenditure on energy and reduction of carbon emissions.
Indeed, it enables consumers to utilize lower tariff charges during off-peak periods
and energy producers to react efficiently during peak periods. Smart grids are also
used to effectively response to the fluctuations of renewable sources such as wind
and solar when they are integrated in a power grid.

A smart grid is an electricity network that efficiently delivers sustainable, eco-
nomic, and secure electricity supplies by intelligently integrating the actions of all
users connected to it, including generators, consumers and those that do both [16].
On the consumer side, smart grids involve many smart meters and smart appliances,
for example, smart washing machines, and dishwashers. The number of smart ap-
pliances is increasing dramatically. These devices are connected directly to the In-
ternet. A large amount of sensors are used in these devices to make sure that every
single change can be detected, managed and controlled. On the energy provider side,
intelligent applications are used to maintain balance between demand and supply.
Smart grids will bring the decision making gradually from a centralized level to
local and finally to automatic.

In order to make a grid become smart, different technologies and applications
are involved, e.g., advanced metering infrastructure (AMI), distribution manage-
ment system (DMS), geographic information system (GIS), outage management
systems (OMSs), intelligent electronics devices (IEDs), wide-area measurement
systems (WAMS), and energy management systems (EMSs) [12]. These systems
are driven effectively by IoT [56].

In IoT, things are connected in such a way that machines and applications can un-
derstand our surrounding environments better and therefore make intelligent deci-
sions and respond to the dynamics of the environments effectively [6]. These things
communicate to each other over the Internet. Advantages of IoT will contribute a
lot to the effort of making smart grids in terms of real-time monitoring and control.
Smart grid applications require quick response time no matter how big the data are.
One example of such a system is an energy trading system which allows energy
consumers or third parties to bid for energy prices in advance [13].

Due to characteristics of smart grids, a number of challenges are encompassed
with the development of smart grids such as support heterogeneous participants,
flexible data schema (e.g., add new or remove old appliances), complex event pro-
cessing, privacy and security [57]. Thus, data from IoT alone are not enough. The
data must be used together with the domain knowledge, machine interpretable meta-
data, services, etc. to become useful.
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Figure 1 illustrates a conceptual model for smart grid communication with a
focus on offshore wind as an energy generator. The model is based on the Smart
Grid Interoperability Panel promoted by the National Institute of Standards and
Technology (NIST) [38].

Fig. 1 An example of con-
ceptual model for smart grid
communication

Each domain is a high-level grouping of organizations, individuals, and systems
of the offshore wind industry. Communication between stakeholders in the same do-
main may have similar characteristics and requirements. The communication flows
are bidirectional. In this model, smart meters, smart appliances are installed at
households, sensors are embedded on wind turbines, and intelligent programs are
used at operations center.

Metadata are significant in the smart grid context. It is needed for organizing and
interpreting data coming from energy market, service providers, customers, power
grid, and power generators. Managing metadata in such a varied environment is a
challenging task.

2.4 Semantic Technologies

Semantic technologies have been developed to make metadata understandable by a
machine. Ontology is a part of semantic technologies that plays a significant role
in managing metadata of a domain. There are several ontology languages such as
SHOE, OIL, DAML-ONT, DAML+OIL, and OWL [30, 21]. Web Ontology Lan-
guage (OWL), a language proposed by World Wide Web Consortium (W3C) Web
Ontology Working Group, is being used intensively by research communities as
well as industries. Ontologies can be represented by using Resource Description
Framework (RDF)/RDFS (RDF Schema). However, a number of other features are
missing in RDFS such as cardinality restrictions, logical combinations (intersec-
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tions, unions or complements), and disjointness of classes. Let us examine some
concrete cases within the offshore wind energy. The first case is that in RDF, we
cannot state that HydraulicSystem and HeatingSystem are disjoint classes. The sec-
ond case concerns the lack of cardinality restrictions, e.g., the fact that a wind power
plant (WPP) can have more than one wind turbine converter component (WCNV)
cannot be expressed in RDF, but it can be done in OWL using the following axiom
WPP v (≥ 1 hasWPPComponent.WCNV). OWL is an extension of RDFS, in the
sense that OWL uses the RDF meaning of classes and properties [21, 8, 3]. The de-
sign of OWL was influenced by its predecessors DAML+OIL, the frames paradigm
and RDF [21].

In OWL, Owl:Thing is a built-in most general class and is the class of all individ-
uals. It is a superclass of all OWL classes. Classes are defined using owl:Class. A
class defines a group of individuals that belong together. Individuals are also known
as instances. Individuals can be referred to as being instances of classes. Note that
the word concept is sometimes used in place of class. Classes are a concrete repre-
sentation of concepts. Owl:Nothing is a built-in most specific class and is the class
that has no instances. It is a subclass of all OWL classes. There are two types of
properties in OWL ontology, they are object property and data type property. Prop-
erties in OWL are also known as roles in description logics and relations in Unified
Modeling Language (UML). An object property relates individuals to other individ-
uals (e.g., hasWPPComponent relates WPP to WPP components). An object prop-
erty is defined as an instance of the built-in OWL class owl:ObjectProperty. A data
type property relates individuals to data type values (e.g., hasOilPressure, hasWind-
Speed). A datatype property is defined as an instance of the built-in OWL class
owl:DatatypeProperty. A property in OWL can be transitive, functional, symmetric,
or inverse.

OWL DL (DL stands for “Description Logic”) is a variant of OWL. It was devel-
oped to support existing DL and to provide a possibility of working with reasoning
systems. In this work, OWL DL is used to develop ontologies. The OWL DL se-
mantics is very similar to the SH OI N (D) Description Logic. It provides maximum
expressiveness and it is decidable [21]. OWL DL abstract syntax and semantics can
be found in [41].

2.5 Ontology Reasoning and Querying

A reasoner is a piece of software that is able to infer logical consequences from a
set of asserted facts or axioms. It is used to ensure the quality of ontologies. It can
be used to test whether concepts are non-contradictory and to derive implied re-
lations. Reasoning with inconsistent ontologies may lead to erroneous conclusions
[4]. There are some existing DL reasoners such as FaCT, FaCT++, RACER, DLP
and Pellet. A reasoner has the following features: satisfiability, consistency, classi-
fication, and realization checking [49]. Given an assertional box A (ABox contains
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assertions about individuals), we can reason w.r.t a terminological box T (TBox
contains axioms about classes) about the following:

• Consistency checking: ensures that an ontology does not contain any contradic-
tory facts. An ABox A is consistent with respect to T if there is an interpretation
I which is a model of both A and T .

• Concept satisfiability: checks if it is possible for a class to have any instances.
Given a concept C and an instance a, check whether a belongs to C. A |=C(a) if
every interpretation that satisfies A also satisfies C(a).

• Classification: computes the subclass relations between all named classes to cre-
ate the complete class hierarchy. Given a concept C, retrieve all the instances a
which satisfy C.

• Realization: computes the direct types for each of the individuals. Given a set of
concepts and an individual a, find the most specific concept(s) C (w.r.t. subsump-
tion ordering) such that A |=C(a).

For relational database (RDB), Structured Query Language (SQL) is the query
language of choice. But for ontologies, SPARQL and SQWRL (Semantic Query-
Enhanced Web Rule Language) [39] are used to build queries. SPARQL is an RDF
query language and SQWRL is a SWRL-based language for querying OWL on-
tologies. SPARQL extensions such as SPARQL-DL [48] and SPARQL-OWL [27]
can be used as OWL query languages in many applications. But SPARQL cannot
directly query entailments made using OWL constructs since it has no native under-
standing of OWL [39].

3 Challenges in Managing Big Data Metadata in Smart Grids

There are a number of challenges associated with management of big data metadata
such as metadata quality, metadata provenance, semantics, and metadata alignment.
In this section, we attempt to tackle three challenges in managing smart grids’ big
data metadata.

3.1 Knowledge Sharing and Information Exchange

In a diverse environment such as smart grids, meters, appliances, and applications
are developed by different companies and vendors. Many of them use their own
proprietary data formats, protocols, and platforms, thus data exchange is impeded.
Using approved standards would contribute to solving such problems since they
can make the data exchange unambiguous. The standards can be seen as a means
of interoperability, a dictionary of data that can be used to manage, simplify, and
optimize data models [10]. However, there are some problematic issues related to
existing international standards for data exchange. For instance, it takes some years
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to approve a standard internationally, but it seems that new technologies are pro-
posed every year. As a result, novel concepts and terms are introduced, but they are
not immediately described in these international standards.

The lack of widely accepted standards prevents the interoperability between
smart devices, applications, smart meters, and renewable sources [47]. The Insti-
tute of Electrical and Electronics Engineers (IEEE), and NIST have recommended
a list of standards that should be considered while developing smart grids [1, 38].
These standards have been developed by different working groups, leading to a lack
of harmonizations. Although these standards describe different parts of smart grids,
they share a common feature, i.e., the smart grid concepts. The question here is
how to structure the domain concepts such that semantics is exploited effectively,
knowledge sharing and data exchange are eased, and new concepts are updated in
knowledge bases timely.

3.2 Relations between Concepts

Ontologies can be used to support data integration in terms of facilitating knowledge
sharing and data exchange between participants in a domain. Ontologies describe
the relations between concepts and their properties. These relations are metadata
since relations can lead to computability of derived data. This opens several possi-
ble paths for calculation and gives users the possibility of selecting the most suitable
one. However, there is a lack of a formal description of such relations in ontologies.
One important question in managing metadata in ontologies is how to handle rela-
tions so that the selection of data (independent of type of data: base or derived data)
can be done at runtime depending on the actual situation.

3.3 Data Quality

It is normal to use more than one sensor to measure, e.g., pressure or temperature
at a particular point. The quality of each sensor is different from the others and de-
pends on the conditions. In offshore wind energy, a couple of sensors are deployed
on a windmill and they frequently measure and deliver the data to the users and ap-
plications by means of services. As sensors are prone to failures their results might
be inaccurate, incomplete, and inconsistent [50]. Therefore, the data quality should
be handled in such a way that users and applications can specify the desired quality
level of the data. Only when the data source has the requested quality descriptions it
would be used for further processing. One of the issues related to data quality is the
handling of data quality at user level in enterprise applications where there is a po-
tentially large number of data sources with quality information. Another issue is that
sometimes none of the available data sources has the required quality information.
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In this case, how a system should respond to such a request should be considered
and a way to provide requested data to users should be investigated.

4 Solutions

This section presents three solutions and approaches to overcoming the challenges
described in Sect. 3. Smart grids involve vast amounts of data from consumers, gen-
erators, billing, and management. Here, we use a case in which offshore wind energy
plays a role as a renewable energy source generator to demonstrate our points.

4.1 Semantic-enhanced Concept Modeling

This section discusses the solution to the challenge described in Sect. 3.1. We look
into how the semantic technologies can help us to solve the challenges with taking
into consideration the requirements for the developed metadata models presented in
Sect. 1.

4.1.1 The Information Model

An information model plays an important role in building a smart grid. It not only
provides a common basis for understanding the general behavior of smart grid com-
munication, but also facilitates the collaboration process between smart grid stake-
holders due to shared concepts with a common semantics. An example of sharing
common concepts between partners of offshore wind energy is illustrated in Fig. 2.

Fig. 2 Data pie chart for the
offshore wind industry [36]
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Availability and reliability of data are significant for any systems and partners.
Offshore wind partners can efficiently perform their work using the available data.
For example, wind speed information is the input to a wind speed prediction pro-
gram. The output from the program can be used with the generator speed to predict
the availability of wind power in the next few hours. In order to optimize wind farm
efficiency, wind farm operations information regarding wind direction, active power,
status of blades, etc. is needed. The weather forecast and energy market information
is used to manage wind power production as well as maintenance for wind turbines
(e.g., a wind turbine can be stopped when consumer demand is low). An informa-
tion model is developed based on the IEC 61400-25 standard [24] to keep pace with
the continual introduction of new technologies. More details about the information
model can be found in [37].

4.1.2 An Offshore Wind Ontology

An information model represents the knowledge concerning specific domain com-
munication. In particular, the purpose of creating an offshore wind information
model is to facilitate the process of agreement on data exchange models as well
as collaborations among offshore wind partners. We use the developed information
model to build an offshore wind ontology (OWO) as depicted in Fig. 3. The idea
of creating OWO from the terminologies is to share, reuse knowledge, and reason
about behaviors across a domain and task. It is also a key instrument in develop-
ing the semantic web in which information is given well-defined meaning, better
enabling computers and people to work in cooperation [9]. An ontology helps to
make an abstract model of a phenomenon by identifying the relevant concepts of
that phenomenon [53].

Suppose several different sources/data storages contain wind turbine information.
If these sources share and publish the same underlying ontology of the terms they all
use, then computer agents can extract and aggregate information from these different
sources. The agents can use this aggregated information to answer user queries or to
provide input data to other applications. For example, a SQWRL query over OWO
that is used to get oil pressure and pitch angle set point of the wind power plant
which has ID is “2300249”, is expressed as follows:

WF(?p) ˆ hasID(?p,“2300249′′) ˆ hasWPPComponent(?p,?comp) ˆ hasOilPressure(?comp,?pres)
ˆ hasPitchAngleSetPoint(?comp,?pitchAngle) ->sqwrl : select(?p,?pres,?pitchAngle)

4.1.3 Semantic Sensor Network Ontology

As the number of devices and appliances grows, the number of sensors embedded
in such devices will also grow. Ontologies are an adequate way to model sensors
and their capabilities [35]. Sensor metadata are used for selecting sensor sources
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Fig. 3 OWO visualization
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and for integrating with other data sources [28]. Thus sensor metadata are impor-
tant and needs to be exploited. However, sensor metadata alone cannot make a grid
become smart. These metadata must be associated with metadata from devices and
appliances that are participated in the grid.

The W3C semantic sensor network incubator group has introduced a semantic
sensor network (SSN) ontology1 to describe sensors, observations, and measure-
ments. The ontology describes sensors and their properties such as accuracy, preci-
sion, resolution, measurement range, and capabilities. The ontology includes models
for describing changes or states in an environment that a sensor can detect and the
resulting observation [14]. An example of the alignment of the SSN ontology to the
developed OWO is depicted in Fig. 4.

Fig. 4 An example of the alignment of the SSN ontology to OWO

The developed OWO can be connected to SSN to share common information
such as measurement values from sensors embedded on a wind power plant. At the
same time, OWO can still guarantee the complete description of a wind power plant
data model. These two ontologies should be maintained separately since the number
of concepts in these ontologies might grow as new technologies are introduced.

1 http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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4.2 Relations between Concepts

Missing data can be caused by network disconnection, device faults, and software
bugs. In some cases, where monitoring of devices or components is extremely im-
portant, a single missing value of a data point could lead to wrong predictions or
damage of components. In the wind energy domain, many prediction and monitor-
ing applications are employed, for example, power output prediction, wind turbine
blade monitoring. The performance of these applications relies very much on data
collected from the wind turbines. Missing of a single data item in the set of input
data to these applications can make the applications produce wrong output or no
output at all. In this case, the missing data item needs to be derived from other avail-
able data items. Derivation of data also plays a significant role in decision support
systems [43]. For instance, in time-series data analysis, missing data that are located
in the middle of a time-series have a high influence on the efficiency of algorithms
that are used to reveal hidden temporal patterns such as vector autoregression and
exponential smoothing [62]. This section describes a way to model possible paths
to deriving missing data from relations between the concepts.

4.2.1 Derived Data Modeling

Data are classified into two categories: base data and derived data [20]. Base data
are those data obtained from data sources. Derived data are those data obtained by
combining or computing from base data. The combination and computation of base
data are based on relations between domain concepts.

Derived data are described by derived classes and derived attributes. A derived
attribute is an attribute that is derived from other attributes in the same class or from
different classes that have relationships with the class that contains the attribute. If
all attributes of a class are derived, the class is called derived class [5].

Derived data give an advantage of storing data since there is no need to store
derived data in a database. Another advantage is that the structure of the data storage
is undisclosed to users, derived attributes are accessed via user interface.

Guaranteeing the correctness of derived data is an important task because ap-
plications that use the data might produce wrong results if they receive insufficient
input. Therefore, derived data need to be handled in such a way that its correctness
is ensured. Formally modeling of derived data can help us to figure out different
aspects of handling the data, and hence guaranteeing the correctness.

We use UML [18] to model the concepts in the wind domain. UML is based
on object-oriented design concepts and is independent of any specific programming
language. We also use Object Constraint Language (OCL) to express constraints
in UML models [59]. OCL is a complement of UML. It makes models precise,
consistent, and complete. In this work, we add OCL constraints to our models to
tackle the derived issue mentioned in Sect. 3.2. We analyze two wind energy related
cases where derived data play an significant role. We use the ontology introduced in
Sect. 4.1.2 to demonstrate the cases.
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4.2.2 Derived Data within One Concept

Temperature measurement can be presented in different units such as Fahrenheit (F)
or Celsius (C). The relation between F and C is as follows.

F =
9
5
∗C+32 (1)

or
C =

5
9
∗ (F−32) (2)

The derivation can be obtained during execution time, for example, the authors
of [11] use SWRL to define the transformation between temperature measurement
units. However, such an approach will limit the possibility of expressing complex
equations. A better approach is to attach formulas directly to properties in ontologies
such as [23]. Let us consider a simple ontology describing the wind turbine genera-
tor (WGEN) concept and temperature as one of its properties. Figure 5 illustrates a
formal model of temperature conversion using UML and OCL.

Fig. 5 Temperature conversion

WGEN denotes the wind turbine generator class as described in [24]. Temperature
is an abstract class that contains two attributes: the celsiusValue and f ahrenheitValue.
The two classes TempInC and TempInF contain rules to convert temperature unit
from C to F and from F to C, respectively.

4.2.3 Derived Data between Two Concepts

Let us consider an offshore wind farm scenario where many sensors are located on a
wind turbine to capture information. What if one of them loses the connection? In-
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formation related to that one will be lost. How can we utilize other devices to derive
that information so that the monitoring of the wind turbine is still ensured? Figure
6 shows how to make use of derived data from two parameters within the wind
domain. The basic mathematical relation between wind speed and power output is
expressed in Eq. (3) [33].

Pavail =
1
2

ρπr2v3Cp (3)

where Pavail denotes the available power output (W ), ρ denotes air density (kg/m3),
r denotes blade length (m), v is the wind speed (m/s), and Cp denotes the power
coefficient. Please note that the power coefficient is not constant; it depends on
other factors such as rotational speed of the turbine, pitch angle, and angle of attack
[34].

Fig. 6 Derivative relationships between two concepts

4.2.4 Derived Data with More than Two Concepts

What happens if one more parameter is added to the system? As an extension of the
two concept model, we can have a model for three parameters as shown in Fig. 7.

Equation (3) can be rewritten as follows:

Pavail =
1
2

ρπr2Cp(
r

T SR
)3

ω
3 (4)

where TSR is tip speed ratio, ω (rpm) is the rotational speed of the blade. The TSR
value can be obtained from the blade manufacturer, otherwise let TSR equal 7 since
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Fig. 7 Derivative relationships between three concepts

it is the most widely reported value in three bladed wind turbines [42]. We can then
easily obtain PO DerivedRotor as shown in Fig. 7.

A simple path, which is extracted from the model described in Fig. 7, is shown
in Fig. 8a where WindSpeed Derived can be derived from PO DerivedRotor which
can be derived from RotorSpeed Sensor.

Fig. 8 WindSpeed is derived
from PowerOutput and Rotor-
Speed

If we choose RotorSpeed Derived instead of RotorSpeed Sensor, this leads to a
cyclic dependency as shown in Fig. 8b. Cyclic dependencies have to be avoided, as
they cannot be computed.

Fig. 9 depicts a model which is the extension of the model illustrated in Fig
7. In order to solve the derivation cycle issue, the transitive closure of the depen-
dency dependsOn should not be reflexive. The transitive closure of dependsOn is
expressed in OCL as follows:

contextProperty
inv cycleRestriction : not sel f .dependsOn.closure()−> include(sel f )
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Fig. 9 Solving the cyclic derivation issue in derivative relationships between three parameters

4.3 Data Quality

Data quality can influence the decisions made by organizations. Indeed, wrong de-
cisions can be made because of poor quality data [52, 22]. Data quality describes
the characteristics of data and hence gives users a better view on data they want
to request for. We consider data quality as metadata. Data quality has several di-
mensions which are criteria for selecting the most suitable data source according to
users’ requests. This section presents a solution to the challenge posed in Sect. 3.3.

4.3.1 Data Quality Dimensions

There are more than 17 data quality dimensions which have been mentioned in lit-
erature, e.g., accuracy, completeness, timeliness, consistency, access security, data
volume, confidence, and understandability [58, 29, 7, 17]. The most commonly used
quality dimensions are accuracy, completeness, and timeliness [44]. The other di-
mensions such as confidence, value-added, and coverage are only suggested by a
couple of studies because these dimensions can be either derived from the other di-
mensions or applicable only in a few domains. There is no unique definition for each
data quality dimension, so we describe the dimensions based on existing definitions
and our understanding. Table 1 shows the notation that we use in our definitions.

Accuracy is defined as how close the observed data are to reality. According to
the ISO 5725 standard [26], accuracy consists of precision and trueness.

We assume that the sensors are calibrated, meaning that the trueness is very close
to zero. Therefore, we only consider precision as the accuracy in our system. A
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Table 1 Table of notation
Symbol Explanation
D Data source
R Reference data source (reality)
ND total number of data points in D
NR total number of data points in R
di a single data point in D
ri real value corresponding to di
xi di - ri
t(ri) the moment when the data point i is due
t(di) the moment when the data point i is available

statistical measure of the precision for a series of repetitive measurements is the
standard deviation. Let µ denote the trueness (µ = 0). Thus, the accuracy of data
source D can be obtained using Eq. (5).

Acc(D) =

√√√√ 1
ND

ND

∑
i=1

(xi−µ)2 =

√√√√ 1
ND

ND

∑
i=1

(di− ri)
2 (5)

Completeness is defined as the ratio of the number of successful received data
points to the number of expected data points. The completeness of the data source
D can be calculated using Eq. (6).

Compl(D) =
ND

NR
(6)

Timeliness is the average time difference between the moment a data point has
been successfully received and the moment it is produced. The timeliness of data
source D is calculated using Eq. (7).

Time(D) =
∑

ND
i=0(t(di)− t(ri))

ND
(7)

4.3.2 Combination and Computation of Data Quality

By combining existing data sources, it is possible to improve the quality of data to
meet the user defined requirement. The combination of data sources is defined as the
process of constructing a data source from existing data sources. We present three
simple methods to combine data quality: D1 (E) D2, D1

⊕
D2, and D1 (A) D2.

• D1 (A) D2: taking a conventional average of the data sources D1 and D2.
• D1

⊕
D2: use data points from data source D1 if available, otherwise use D2.

• D1 (E) D2: pick up the earliest received data point from either D1 or D2.

Table 2 gives an overview of all combination methods with data quality dimen-
sions. These methods are used to generate the virtual data source from the real data
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sources. P(D1) denotes the probability of the event D1 having data available and
P(D2) denotes the probability of the event D2 having data available. Acc(D1) and
Acc(D2) are the accuracy (precision) of D1 and D2, respectively. α is the probability
of the event a data point D1i arrives before a data point D2i.

Table 2 Combination Results
Method Completeness Accuracy Timeliness

D1 (A) D2 P(D1) . P(D2)
√

Acc(D1)2+Acc(D2)2

4 ≈ 3
2 Time(D1)

D1
⊕

D2 P(D1) . P(D2) P(D1)∗Acc(D1)+P(D1)∗P(D2)∗Acc(D2)
P(D1)+P(D1)∗P(D2)

Compl(D1)∗Time(D1)+P(D1)∗P(D2)∗Time(D2)
P(D1)+P(D1)∗P(D2)

D1 (E) D2 P(D1) . P(D2) αAcc(D1)+αAcc(D2) Time(D1)∗Time(D2)
Time(D1)+Time(D2)

The following assumptions are made in order to obtain Table 2. (1) Data sources
D1 and D2 are independent and normally distributed; (2) timeliness Time(D1) and
Time(D2) of D1 and D2 are two independent distributed exponential random vari-
ables.

The combination methods have different effects on the data quality dimensions.
A quality dimension can increase or decrease depending on a combination method.
Table 3 shows relation the between the combination operations and the data quality
dimensions, where (X) indicates that it can be better than both of D1 and D2, (−)
means it varies from case to case, and (×) means it is worse than both of D1 and
D2.

Table 3 Quality Combination Relations

Combination
method

Completeness Accuracy Timeliness

D1 (A) D2 X X ×
D1

⊕
D2 X − −

D1 (E) D2 X − X

According to this table, all three methods can increase the completeness. By
using the average method, the combined data source would have better accuracy.
However, it makes the timeliness become worse. For the

⊕
method, both the accu-

racy and timeliness of the combined data source varies from case to case. The (E)
method helps to increase the completeness and timeliness, but not the accuracy. If
the timeliness is the critical choice, the (E) method is recommended to use.

4.3.3 A Data Quality-based Framework for Data Source Selection

We have developed a framework for data source selection based on data quality
dimensions. An overview of the framework is shown in Fig. 10. The framework
offers ways to manage data sources, to insert a new data source, and to provide the
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best suited data source to users. Due to limitation of space, we cannot describe the
prototype in detail. More information about the prototype implementation can be
found in [44].

Fig. 10 An overview of a quality-based data source handling framework

The prototype contains three main parts: web-based client application, integrated
servers (IS), and data provider services. The web-based client application receives
requests from users and forwards them to the IS. The client is in charge of data
visualization in terms of graphs. The IS is responsible for data quality handling and
communicating with data providers. The data providers store the data and provide
addresses to access those data. The IS consists of an open source enterprise service
bus, MuleESB and the Service Manager which contains the Combination Engine,
the Quality Manager, the Quality Calculator, and the Service-quality Database.

5 Discussion and Future Directions

One reason of having ontologies is to share an understanding of domain concepts
between partners who are working in different domains. We have proven the useful-
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ness of having ontologies in smart grids where energy generator, energy providers,
consumers need to share the common view on domain concepts.

Many technologies (smart meter, semantic technologies, etc.) are mature enough
to be used in building smart grids. But bringing these technologies together to enable
smart grids is still a challenging task.

Information and communication security always has a significant role in any in-
formation systems and it is not an exception for smart grid systems. The power
industry needs to manage not only the power system infrastructure, but also the in-
formation infrastructure. The reason is that the power industry increasingly relies
on information to operate power systems and many manual operations are being
replaced by automation. It is obvious that better decisions can be made by humans
or intelligent systems based on available information. However, information needs
to be made accessible in a secure way. One way of doing it is to lower the risk by
granting access to metadata to only trusted partners.

Metadata provide information about data that are stored in a database without
having accessed it [32]. Quality of metadata guarantees that proper sensing re-
sources and data sources are found and data are used properly. The quality of meta-
data definitely affects the use of data and decisions that are based upon the data.
There are several metadata quality criteria that must be taken into consideration such
as correctness, completeness, accuracy, consistency, value-added, interpretability.
Among these criteria accuracy, completeness, and consistency are the most com-
mon criteria for measuring metadata quality in literature [40]. The challenge is
among those metadata quality dimensions which ones are the most important and
how to check their quality. Another challenge that has not been addressed in this
work is tracking provenance of metadata when it comes to metadata combination
and enhancement. Besides management of metadata, agreement on the definition
of concepts is also an important task since without understanding the definitions,
metadata may be misinterpreted or misused. We plan to tackle these challenges in
future work.

6 Conclusions

Technologies bring us closer to our vision for living in smart environments. Even
though there are available technologies for us, it is still not an easy task to bring all
the technologies together. A smart grid is an example of a smart environment. In
smart grids, a huge number of smart meters, sensors, smart appliances, and other
smart devices are employed and connected to Internet. This leads to issues in han-
dling and processing vast amounts of data, and integrating these devices in a network
so that they can communicate with each other through intelligent systems and ap-
plications. In this chapter, we have discussed issues related to management of big
data metadata in smart grids. Three problems were addressed: concept modeling
for knowledge sharing and data exchange, formal description of derived data from
concept relations, and data quality handling. We have also proposed solutions and
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approaches to solving these problems. Some concrete examples within the offshore
wind energy were used to demonstrate our points.

This work shows that the semantic technologies are mature enough to be used
in the development of smart grids in particular and smart environments in gen-
eral. The work also proves that data quality can be improved in some cases by
combining different data sources that provide measurements about the same phys-
ical phenomenon. Relations between concepts not only describe real-world ob-
jects/phenomena, but also open several possible paths for calculation and give users
the possibility of selecting the most suitable one.
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