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Abstract
The benthic dinoflagellate Gambierdiscus toxicus produces polyether toxins that cause ciguatera fish poisoning in humans. The

toxins initially enter food webs when fish forage on macroalgae, or other substrates, hosting this epiphytic dinoflagellate. Population

studies of G. toxicus and risk assessments in ciguatera-prone regions often rely on quantifying dinoflagellates on macroalgae.

Underlying these studies is the assumption that the algae sampled represent a readily consumable resource equally available for

benthic grazers. However, many algal hosts of G. toxicus possess a variety of defenses against grazing, and host–dinoflagellate

associations may act as toxin sources or sinks depending on their palatability. Marine macroalgae may tolerate or avoid herbivory by

exhibiting fast growth, by having poor nutritional quality, by utilizing spatial or temporal escapes or by using chemical or structural

defenses. Thus, rapidly consumed algae that cope with herbivores by growing fast, such as many filamentous turfs, could be

responsible for a high toxin flux even at low dinoflagellate densities. In contrast, ubiquitous unpalatable algae with much higher

dinoflagellate densities might contribute little to toxin flux, and effectively act as refuges for G. toxicus. To date, G. toxicus has been

reported from 56 algal genera, two cyanobacteria, one diatom, and one seagrass; 63% of these contain species that are defended

from fish grazing and other grazers via chemical, morphological or structural defenses, by low nutritional quality, or by a

combination of defensive strategies. High dinoflagellate densities on unpalatable macroalgae could indicate passive accumulation

of cells on undisturbed hosts, rather than population explosions or active toxin sources for food webs. Understanding the flow of

ciguatoxins in nature requires consideration of the ecology of both G. toxicus and its algal hosts. The complexity of marine algal–

herbivore interactions also has consequences for other benthic dinoflagellates that produce toxins, which accumulate in consumers.

# 2005 Elsevier B.V. All rights reserved.

Keywords: Algal defenses; Bioaccumulation of toxins; Ciguatera; CTX; Gambierdiscus toxicus; Marine herbivores; Toxin flux through food webs
1. Introduction

Ciguatera is the most common disease associated with

fish consumption in tropical and subtropical regions

(Lehane, 1999; Lehane and Lewis, 2000). Although

typically considered a disease of the tropics, export of

reef fish for human consumption has resulted in a wider

distribution of outbreaks. The disease is caused by the
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transformation and bioaccumulation of toxins produced

by particular strains of the benthic dinoflagellate

Gambierdiscus toxicus, as well as other species of

Gambierdiscus (Chinain et al., 1999a; Yasumoto, 2005).

Lipophilic gambiertoxins (GTX) produced by the

dinoflagellates are ingested by herbivorous fishes that,

in turn, are preyed upon by larger carnivorous fishes. As

the toxins are passed between trophic levels, they are both

oxidized into ciguatoxins and accumulated in muscle

tissues. While the exact pathways are unknown, it seems

likely that mixed-function oxidases that serve as

detoxifying enzymes in the fish are responsible for the

biotransfomation of gambiertoxins into ciguatoxins
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(Lewis and Holmes, 1993). Over 400 fish have been

noted to be ciguatoxic at some time (Halstead, 1978).

Other dinoflagellates have been implicated as causal

agents of ciguatera poisoning, but only the toxins from

Gambierdiscus produce the symptomology correspond-

ing to this illness. While Gambierdiscus toxicus has

received the most attention in the literature, G. australes,

G. pacificus and G. polynesiensis also produce ciguatox-

ins (Chinain et al., 1999a). G. yasumotoi produces an

intoxication in mice more consistent with the production

of maitotoxin (Holmes et al., 1998) and the toxicity of G.

belizeanus (Faust, 1995) remains to be studied.

Identifying Gambierdiscus species without the use of

electron microscopy or molecular tools is a difficult task

(Adachi and Fukuyo, 1979; Chinain et al., 1999a;

Holmes and Teo, 2002; Hernández-Becerril and Alma-

zán Becerril, 2004). Under lower magnification, diag-

nostic traits such as thecal plate morphology cannot be

observed accurately. Some caution should be exercised

when interpreting survey data collected from micro-

scopic observation of preserved field samples as it is

possible that other dorsoventrally flattened species of

Gambierdiscus may have been misidentified as G.

toxicus (Holmes and Teo, 2002). Because of these

limitations, we discuss studies on G. toxicus as they have

been reported, but readers should be aware that this taxon

is likely a species complex.

Gambierdiscus toxicus is a benthic dinoflagellate

that can be found on sandy bottoms, detrital aggregates,

seagrasses, algae and cyanobacteria (Ballantine et al.,

1985; Bourdeau and Durand-Clement, 1991; Faust,

1995). However, most works have focused on the

distribution and persistence of this dinoflagellate on

macroalgae. The same applies to other toxin producing

benthic dinoflagellates that could play a role on

ciguatera-like poisonings. Although using dinoflagel-

late abundance on host macroalgae has value for

understanding the dinoflagellate’s autecology, the

utility for understanding ciguatera relies on the

assumption that the macroalgae in question are equally

palatable to fish and readily consumed by herbivores.

However, this is unrealistic. In coral reefs, the strong

selective pressure that herbivores exert on food

resources has led to the evolution of complex strategies

and defenses that allow algae to persist in areas where

herbivory is intense (Hay and Steinberg, 1992; Hay,

1997; Paul et al., 2001). If algae that act as hosts for

toxic dinoflagellates are protected from herbivory, then

they effectively serve as refugia or ‘‘enemy-free space’’

for Gambierdiscus, rather than as a source of toxins to

enter trophic webs. This has important consequences for

our understanding of ciguatera flux pathways and for
the monitoring of risk areas as it has been classically

done.

Anderson and Lobel (1987) were the first to note that

some algal hosts of G. toxicus had structural or chemical

defenses against fishes and that these were often the

algae sampled in field assessments of ciguatera risk.

However, they did not explore how diverse macroalgal

strategies that allow them to cope with herbivores might

directly and indirectly alter flux of ciguatoxins into

complex marine food webs. In this review, we bring

attention to the ecology of marine plant–herbivore

interactions and how traits of host algae may indirectly

influence the uptake of gambiertoxins and other

compounds produced by benthic dinoflagellates. Our

purpose is to underscore the need for a more

comprehensive approach that considers the character-

istics of dinoflagellate host algae when monitoring and

managing marine areas where ciguatera risk is high.

Although we focus on Gambierdiscus toxicus and

ciguatera, our considerations apply to other dinofla-

gellates that associate with algae and whose toxins enter

marine food webs, potentially becoming a health risk to

marine life as well as humans.

2. Distribution patterns of Gambierdiscus toxicus
on macroalgae

The study of ciguatera has a long history, with reports

of the disease dating as far back as 1550s (Halstead,

1978). Although the disease was clearly associated with

‘‘poisonous fishes’’, a causal agent was not found until

1979 (Yasumoto et al., 1979; Yasumoto, 1979; Bagnis

et al., 1980; Yasumoto, 2005). Evidence pointed to a

benthic dinoflagellate, eventually named Gambierdiscus

toxicus because it was originally isolated from benthic

seaweeds in the Gambier Islands. The isolation of various

toxins from this organism coupled with studies on the

physiological effects of the compounds established G.

toxicus as the toxin source of ciguatera poisoning

(Anderson and Lobel, 1987; Lehane, 1999; Lehane and

Lewis, 2000; Yasumoto, 2005).

Following its discovery, a number of studies have

focused on describing the patterns of distribution,

population dynamics and habitat preferences of G.

toxicus, particularly in regions where ciguatera poison-

ing appears prevalent. Because the dinoflagellate was

originally found on macroalgae, surveys have been

predominantly aimed at collecting obvious or abundant

seaweeds. The most commonly used methodology

entails shaking collected macroalgae in seawater to

dislodge epiphytic microorganisms, filtering the water

to concentrate the sample, and counting G. toxicus cells



E. Cruz-Rivera, T.A. Villareal / Harmful Algae 5 (2006) 497–525 499
found (following the original surveys by Yasumoto

et al., 1979; Yasumoto, 1979). Population densities are

then approximated to the number of cells per mass of

algae. Alternatively, the number of cells per area has

been used to quantify the occurrence of G. toxicus on

the surface of corals, zooanthids and rubble (Ballantine

et al., 1985) and on patches of turf algae (Lewis et al.,

1994b). This last study differs from the rest because

sampling of dinoflagellates was conducted using an air-

lift vacuum apparatus. Although G. toxicus has been

found on sessile invertebrates and sand as well

(Ballantine et al., 1985; Bourdeau and Durand-Clement,

1991; Faust, 1995), most data available are from studies

focusing on dinoflagellate-macroalgal assemblages.

Such studies have provided valuable insights on the

diversity of habitats and algal hosts where Gambier-

discus toxicus can be found, with more than 50 algal

genera yielding G. toxicus cells, and attaining densities

ranging from 0.01 to >75,000 cells/g alga (Carlson

et al., 1984; Inoue and Raj, 1985, Table 1). Population

fluctuations of this dinoflagellate on algae can be large

and have been documented both spatially and tempo-

rally. For example, the number of G. toxicus cells on the

surface of a specific algal host can vary by an order of
Table 1

Cell densities of Gambierdiscus toxicus per algal gram for the highest 20 den

(No assessment was attempted for ‘‘turfs’’ as seldom have their genera been

several algal conspecifics. See ‘‘Refs.’’ for full citations.)

Algal host genus G. toxicus maximum density

Chaetomorpha 75793 (Carlson et al., 1984)

Turfs 60463 (Turquet et al., 2001)

Dictyota 45532 (Carlson et al., 1984)

Jania 41820 (Yasumoto et al., 1979;

Yasumoto, 1979)

Heterosiphonia 6844 (Bomber et al., 1989)

Acanthophora 6095 (Carlson, 1984)

Penicillus 5131 (Bomber et al., 1989)

Halimeda 4774 (Bomber et al., 1988a)

Laurencia 2901 (Carlson, 1984)

Digenia 2180 (Gillespie et al., 1985a)

Turbinaria 1617 (Carlson et al., 1984)

Thalassia 1463 (Ballantine et al., 1985)

Spyridia 1036 (Taylor and Gustavson, 1985)

Bryopsis 680 (Asuncion et al., 1995)

Asparagopsis 660 (Gillespie et al., 1985a)

Dictyopteris 589 (Popowski et al., 2001)

Bryothamnion 531 (Popowski et al., 2001)

Udotea 514 (Bomber et al., 1989)

Galaxaura 395 (Popowski et al., 2001)

Delisea 305 (Gillespie et al., 1985a)
magnitude between individuals of the alga only 5–

10 cm apart (Taylor and Gustavson, 1985). Similarly,

long-term monitoring efforts have often quantified

population explosions of a few orders of magnitude

(Carlson, 1984; Carlson and Tindall, 1985; Thomassin

et al., 1992; Turquet et al., 1998, 2001), and have related

such differences to seasonal cycles in rainfall (Carlson

and Tindall, 1985; Thomassin et al., 1992), temperature

(Chateau-Degat et al., 2005) or to environmental

disturbances that clear substrates which can be

colonized by algae, thus creating readily available

substrate for the dinoflagellate (Inoue and Gawel, 1986;

Kohler and Kohler, 1992; Kaly and Jones, 1994;

Chinain et al., 1999b; Turquet et al., 2001, but see

McCaffrey et al., 1992).

However, seasonality is sometimes, but not always

observed (Ballantine et al., 1985; Gillespie et al., 1985a;

Bomber et al., 1988a; Hokama et al., 1996; Chinain et al.,

1999b; Chineah et al., 2000; Hurbungs et al., 2002), and

the underlying parameters that ultimately control

population increases of this dinoflagellate remain

unknown. While some monitoring efforts have com-

plemented their field surveys with culture experiments or

measurements of nutrients, temperature, irradiance,
sities ever recorded, along with the relative palatability of these algae

reported in the literature. Cell densities are not always averages from

Palatability

Palatable

Variable

Chemically defended but consumed by particular herbivores

Calcified

No defenses known, no data on palatability

Palatable

Calcified and chemically defended

Calcified and chemically defended

Both chemically-defended, and highly palatable, species

Little available data; of low or high preference

depending on fish species

Leathery consistency suggests some structural defense,

but often found in low herbivory areas such as reef lagoons

Palatable to particular fishes and urchins

Palatable

Some species are chemically defended

Produces halogenated compounds and causes reduced

growth in some herbivores

Chemically defended species occur in this genus

Field and laboratory assays show low palatability and

suggest toxicity in some species

Calcified and chemically defended

Calcified and some cytotoxins have been isolated

Chemically defended
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salinity or dissolved oxygen (Withers, 1981; Carlson,

1984; Carlson and Tindall, 1985; Chineah et al., 2000;

Hurbungs et al., 2002), correlations between environ-

mental variables and G. toxicus population densities are

not always consistent. Laboratory studies have defined

optimal growth parameters for G. toxicus, but have also

shown that this organism can grow, or at least survive,

within a relatively broad range of values for temperature,

salinity and light intensity (Yasumoto et al., 1980;

Bomber et al., 1988a; Morton et al., 1992). Furthermore,

the association of G. toxicus with algal hosts might buffer

some potentially harmful fluctuations on environmental

parameters. For example, Villareal and Morton (2002)

provided evidence that shading by macroalgae might

allow G. toxicus to thrive on shallow-water tropical

environments without suffering photoinhibition. Corre-

lating growth rate or cell densities to surface irradiance

might be misleading in this case.

Similarly, arguments regarding the distribution of G.

toxicus as a function of turbulence are often contra-

dictory. While some studies conclude that this species

prefers areas of high wave action such as barrier reefs,

other studies suggest a preference for protected

environments (Carlson, 1984; Carlson and Tindall,

1985; Tindall and Morton, 1998; Popowski et al., 2001).

Tindall and Morton (1998) proposed four types of

environments (Systems I–IV) to describe particular

community types as a function of various physico-

chemical parameters. They argue that in higher energy

environments (system I), such as barrier reefs and fore

reefs, standing crop estimations of benthic dinoflagel-

lates do not reflect real production due to the low

carrying capacity of the system. This has important

consequences for the interpretation of monitoring data

and toxin flux into food webs, particularly when

assessments are made in order to forecast the propensity

of ciguatera in a particular region. If wave turbulence

causes dinoflagellate cells to be dislodged and carried

away, then surveys performed with conventional

methodologies would underestimate actual dinoflagel-

late productivity. Conversely, Gambierdiscus behavior

in laboratory cultures suggests that turbulence may

increase attachment (Nakahara et al., 1996).

Although the role of invertebrates as ciguatera

vectors in pelagic and benthic food webs has been

discussed (Kelly et al., 1992; Lewis et al., 1994a), it is

universally accepted that ciguatoxins generally enter

food webs via the consumption of dinoflagellate-laden

algae by herbivorous fishes (Anderson and Lobel, 1987;

Lewis and Holmes, 1993). However, the dynamics of

toxin flux are poorly understood. Studies do not always

observe correlations between the incidence of ciguatera
and the prevalence of G. toxicus in a region (Bagnis

et al., 1985, 1988; Taylor and Gustavson, 1985; Turquet

et al., 2001). Similarly, changes in the levels of

ciguatoxin in fish tissues may or may not follow the

dynamics of G. toxicus blooms (Bagnis et al., 1985,

1988). These observations argue for a higher degree of

complexity in the routes by which ciguatoxins enter

food webs. The majority of population studies on toxic

benthic dinoflagellates use visually obvious macroalgae

as their sampling unit because it is assumed that these

algae represent a readily available source of toxins for

fish to ingest (e.g., Carlson et al., 1984). Studies on

marine herbivory, particularly from the tropics, argue

strongly against this simplified view. We propose that

conceptual models explaining the development of

ciguatera need to consider both the ecology of

dinoflagellate host algae and the complexities of marine

plant–herbivore interactions in order to elucidate the

flow of ciguatoxins through marine food webs.

3. Marine herbivory and algal palatability

Algae have evolved a variety of strategies and

adaptations to cope with grazing pressure. Marine

systems experience the highest rates of herbivory on

earth, and this particularly true for tropical environments

(Hay, 1991). Coral reef herbivores can remove more than

90% of the biomass produced daily by palatable marine

macroalgae and measurements of grazing intensity have

demonstrated rates of 20,000–156,000 bites/m2/day by

herbivorous fishes alone (Carpenter, 1986). Thus, marine

herbivory constitutes a primary determinant of algal

distribution and population dynamics. In contrast with

terrestrial plants that produce subterranean structures

such as roots, bulbs and tubers, which are generally

protected from grazing, the vast majority of marine algae

do not produce equivalent underground parts; virtually all

algal biomass in the ocean is potentially exposed to

consumers.

Marine herbivores are more phylogenetically diverse

than terrestrial herbivores, including vertebrates and an

array of invertebrates spanning at least four different

phyla. Because of their size and mobility, marine

grazers are often grouped in three general categories

(Hay, 1992; Hay and Steinberg, 1992; Paul et al., 2001).

Macrograzers such as fishes, urchins and large

gastropods have relatively higher mobility due to their

size, feed on foods generally smaller than themselves

and sample a variety of individual algae through their

life. Smaller consumers such as amphipods, isopods,

sacoglossans, and small herbivorous crabs, shrimps, sea

hares, snails and polychaetes feed on algal hosts larger
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than themselves, are generally more limited in mobility

than macrograzers due to their size, and likely sample

fewer hosts through their lifetime. For these animals,

termed mesograzers, food and shelter can be tightly

coupled. Micrograzers such as copepods and cladocer-

ans are better studied for pelagic systems, but some

copepods can inhabit or feed on, macroalgae (Paul et al.,

2001). Because meso- and micro-grazers feed on a

smaller scale than fishes, they may consume either

macroalgae or algal epiphytes (such as dinoflagellates)

selectively, or both. This is a potentially important

aspect of ciguatoxin flux that has received little

attention. The potential of some invertebrates to act

as links in the ciguatera food web has been suggested

(Kelly et al., 1992; Lewis et al., 1994a) but more studies

are needed to adequately assess their importance as

vectors of ciguatoxins.

The intensity of herbivory on marine systems, along

with the natural physiological and nutritional constraints

on the evolution and maintenance of herbivory as a

modus vivendi (Mattson, 1980; Cruz-Rivera and Hay,

2003), place a strong selective pressure on marine algae.

As a result, seaweeds have evolved numerous adaptations

to tolerate or avoid herbivory. Seaweeds that are

otherwise excluded from areas of high grazing find

spatial or temporal refuges by growing at times of the

year when herbivores are rare, in sheltered places that are

less accessible to grazers or by associating with

unpalatable organisms that might provide some protec-

tion (Hay, 1986; Kerr and Paul, 1995). For example,

palatable algae can decrease herbivory on their thalli by

as much as 80% by growing intertwined with unpalatable

seaweeds. Such algae turn ‘‘competitors into accom-

plices’’ (Hay, 1986) by trading off reductions in average

growth (due to competition for light and nutrients) for the

ability to survive in areas where herbivores could

potentially drive them to local extinction. Palatable

seaweeds may also tolerate herbivory by exhibiting high

growth rates and, essentially, growing faster than they are

consumed. This strategy is commonly seen on turf algae

(Carpenter, 1986).

The nutritional quality of seaweeds has important

consequences for algal susceptibility to grazing and,

thus, indirectly may affect consumption of epiphytic

dinoflagellates. Because herbivores make a living by

consuming foods that are lower in nutrients and higher

in structural materials than their own bodies, they need

to ingest larger amounts of material than carnivores

(Mattson, 1980; White, 1993). For example, coral reef

fishes may eat many times their required energetic

needs in order to gain enough nitrogen from seaweeds

(Hatcher, 1981). Similarly, some invertebrates will
increase their consumption of algae (compensatory

feeding) as a function of their organic content (Cruz-

Rivera and Hay, 2000a, 2001, 2003; Stachowicz and

Hay, 1999; Sotka and Hay, 2002). Because algal

nutrient content is highly variable (Cruz-Rivera and

Hay, 2003) and can influence the amount of a particular

alga that is ingested by consumers, the nutritional

quality of an alga may indirectly influence ingestion of

ciguatoxic dinoflagellates by consumers. Low nutri-

tional quality can also act as a defensive mechanism.

Seaweeds with a very low nutritional value might be too

costly to consume because herbivores might spend more

nutrients by processing the food than they are

assimilating. Below a certain threshold, even herbivores

capable of compensatory feeding might suffer poor

long-term performance and decreased fitness if confined

with low quality algae (Cruz-Rivera and Hay, 2000a,

2000b, 2001, 2003). In mixed algal communities, the

net result would almost certainly be to shift feeding

preferences to more nutritious species. In other words,

more palatable neighbors will draw herbivores away

from less nutritious algal species (Atsatt and O’Dowd,

1976).

Many seaweeds deter herbivores by using morpho-

logical, structural, and chemical defenses either

individually or in combination (Hay and Fenical,

1988; Hay and Steinberg, 1992; Hay, 1997; Paul

et al., 2001). Structural defenses such as calcification

(incorporation of calcium carbonate into algal tissues)

and toughness (which offers mechanical resistance to

biting and chewing herbivores) are common in certain

groups of seaweeds and can strongly influence the

foraging choices of vertebrate and invertebrate con-

sumers (Pennings and Paul, 1992; Kennish and

Williams, 1997). Particular green algae such as

Halimeda, Udotea and Penicillus, some of which

contain more than 90% calcium carbonate per dry mass

of tissue are well studied examples of this (Hay et al.,

1994). Calcium carbonate not only can increase the

toughness of algae, but it also increases the amount of

structural, non-digestive material, thus decreasing the

overall organic content of seaweeds and lowering their

overall nutritional value (Hay et al., 1994). Calcium

carbonate may also interfere with digestion, particularly

in herbivores with acid guts such as some herbivorous

fishes (Horn, 1989) and, therefore, act also as a

chemical defense. While toughness and calcification are

simple to understand as structural defenses, a less

intuitive mechanism of protection is provided by the

shape of algal thalli. Morphology of an alga itself may

influence consumer choice because it can mechanically

reduce the ability of an herbivore to manipulate the alga.
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For example, it was shown that the herbivorous crab

Grapsus albolineatus selects algae based on the shape

of the thallus rather than the nutritional content of algae

(Kennish and Williams, 1997).

Perhaps one of the best studied defensive strategies

in marine macroalgae is the production of noxious

secondary metabolites that deter herbivore feeding (Hay

and Fenical, 1988; Hay and Steinberg, 1992; Paul et al.,

2001). More than 2400 natural products have been

isolated from marine red, brown and green algae, and

the majority of these have come from tropical species

(Paul et al., 2001). Although the ecological function of

many marine algal secondary metabolites remains

untested, some of the most thorough and ecologically

realistic studies on the use of chemical defenses in

consumer prey interactions come from the realm of

marine–algal–herbivore interactions (Hay and Fenical,

1988; Hay and Steinberg, 1992; Paul et al., 2001). The

chemical identity of defensive secondary metabolites is

diverse, encompassing terpenes, acetogenins, epoxydes,

peptides and lipopeptides, phenolic acids, phlorotan-

nins, and a variety of halogenated compounds (Paul

et al., 2001). Some algae such as Desmarestia spp. will

accumulate sulfuric acid up to 18% of dry mass which

serves as a feeding deterrent (Sasaki et al., 2004). Many

of the compounds tested against consumers thus far,

show strong deterrence against larger consumers such

as fishes and urchins, while smaller invertebrate grazer

often prefer, and sometimes specialize, on chemically

defended algae. These small consumers that live in

areas where pressure from predation is high may

sequester compounds from their host algae and

incorporate them in their own tissues as defense, or

may hide in, or cover themselves with, noxious algae

and find ‘‘enemy-free’’ space from their natural enemies

(Stachowicz and Hay, 1999; Cruz-Rivera, 2001; Hay,

1992). If macroorganisms such as small crustaceans,

gastropods and polychaetes can find refuge from

consumers by associating with noxious algae, it is then

reasonable to assume that less visible organisms such as

dinoflagellates could benefit the same way by finding

refuge in chemically defended algae that are less

susceptible to large grazers.

A particular alga can combine different defensive

mechanisms and the importance of multiple defenses

may be very significant in herbivore-rich tropical waters.

The common co-occurrence of CaCO3 and defensive

secondary metabolites in tropical seaweeds has been

suggested to be adaptive because the high diversity of

tropical herbivores limits the effectiveness of any single

defense (Schupp and Paul, 1994; Hay, 1997; Paul et al.,

2001). Multiple defenses can also act additively or
synergistically to decrease palatability of an alga. For

example, combinations of CaCO3 and secondary

metabolites have been tested as feeding deterrents and

both additive and synergistic effects of these combined

defenses have been observed (Pennings and Paul, 1992;

Hay et al., 1994). Similarly, low nutritional quality of

prey may enhance the negative effects of defensive

secondary metabolites resulting in lower prey palatability

(Duffy and Paul, 1992; Pennings et al., 1994), decreased

per capita consumption of that prey and potentially on

lower fitness of herbivores confined with such diets

(Cruz-Rivera and Hay, 2003).

Given the array of defensive strategies displayed by

marine macroalgae, it is clear that seaweeds cannot be

regarded as a homogeneous ‘‘ready to eat’’ group. In

fact, algae that seem conspicuous in reefs are often

those that are unpalatable to grazers. Their deterrent

capabilities, in turn, are often exploited by small

macrofauna that find refuge on such algal species.

Dinoflagellates living on defended algae would find

similar refuge. Thus, large, abundant, conspicuous

macroalgae may, in fact, represent sinks for ciguatera

toxins rather than pools of available dinoflagellates to

enter the food web. It is important to note that many

unpalatable species have congeners that are palatable

(e.g., Bryopsis, Laurencia, etc., Appendix A). Thus, it is

important that surveys of G. toxicus report the species of

algae from which dinoflagellates were collected.

Generic assessments of algal hosts, might lead to

erroneous estimations of ciguatoxin sources and flux.

3.1. Associational defenses, protective coatings and

shared doom

Because unpalatable algae avoid or decrease con-

sumption, they represent available substrates for

epifauna and epiphytes, and potential safe sites for

smaller organisms from larger consumers. This inter-

action has led to the evolution of complex associations

between unpalatable algae (e.g., chemically defended)

and a diverse array of mesograzers (Hay, 1992; Paul

et al., 2001). If unpalatable seaweeds represent a refuge

for mesograzers from macroconsumers, it is likely that

epiphytic dinoflagellates can exploit this refuge in a

similar fashion. This has important implications for our

understanding of ciguatoxin fluxes through food webs

and the interpretation of field surveys, particularly those

aimed at identifying ciguatera-prone areas. Tradition-

ally, high densities of Gambierdiscus toxicus on algae

have been interpreted through bottom–up controls such

as nutrient inputs into the environment or reef

degradation caused by eutrophication or coral bleaching
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(Anderson and Lobel, 1987; Lehane and Lewis, 2000).

However, if dinoflagellates associate with algae that are

not consumed by herbivores, then the importance of

top–down control in toxin fluxes becomes more evident.

Low preference macroalgae may passively accumulate

dinoflagellates because they are not disturbed as often

by grazers and, thus, act as sinks for ciguatera toxins

(see also Anderson and Lobel, 1987). Such reservoirs of

G. toxicus might even serve as ‘‘seed banks’’ that help

repopulate nearby areas when conditions are favorable.

One of the basic mechanisms by which unpalatable

algae can serve as refugia is by creating ‘‘enemy-free

space.’’ Because fish can recognize and learn to avoid

distasteful prey (Lindquist and Hay, 1995; Thacker

et al., 1997), they visit unpalatable seaweeds less often.

This, in turn, lowers potential encounters between fishes

and prey dwelling in low preference seaweeds. For

example the brown alga Dictyota menstrualis (pre-

viously D. dichotoma in Hay et al., 1987a,b; Duffy and

Hay, 1994) produces two terpene alcohols (pachydic-

tyol A and dictyol E; Cronin et al., 1995) that are

unpalatable to omnivorous fishes and urchins, but the

alga is also a preferred food of the amphipod Ampithoe

longimana which is generally not deterred by natural

concentrations of the chemicals (Hay et al., 1987a;

Duffy and Hay, 1994; Cronin and Hay, 1996; Cruz-

Rivera and Hay, 2003). The amphipod does not

sequester compounds from the alga, but by living in

a chemically defended host, is able to maintain its

populations during times when other amphipods that do

not associate with Dictyota are driven to local extinction

by omnivorous fishes (Hay et al., 1987a; Duffy and Hay,

1994; Cronin and Hay, 1996).

This example is particularly relevant because

Dictyota spp. have been used as sources of Gambier-

discus toxicus for physiological studies (Villareal and

Morton, 2002) and are commonly sampled in popula-

tion studies of this dinoflagellate (Withers, 1981;

Carlson, 1984; Carlson et al., 1984; Ballantine et al.,

1985; Taylor, 1985; Taylor and Gustavson, 1985; Inoue

and Gawel, 1986; Bomber et al., 1989; Bourdeau and

Durand-Clement, 1991; Kohler and Kohler, 1992;

Popowski et al., 2001). Populations of more than

45,000 cells of G. toxicus per gram of Dictyota have

been recorded (Carlson et al., 1984; Table 1). Most, if

not all, species in the genus Dictyota produce dictyols

(Faulkner, 1994) and species that occur widely in the

tropics such as Dictyota acutiloba, D. bartayresiana

(=D. bartayresii), D. ciliolata, D. menstrualis, and D.

pfaffi have been shown to be chemically defended (Hay

et al., 1987a, 1990b; Hay and Steinberg, 1992; Faulkner,

1994; Cronin and Hay, 1996; Cronin et al., 1997;
Barbosa et al., 2004). Given the widespread deterrence

of this algal genus, it is possible that large populations

of G. toxicus accumulate as a result of lower grazing

disturbance on these algae.

The fact that many defended marine algae serve as

refugia to a wide variety of mesograzers (Hay, 1992;

Paul et al., 2001) carries also other consequences. The

potential for marine mesograzers as ciguatoxin vectors

remains unexplored. However, if indeed mesograzers

are a link in the ciguatera food web, those finding refuge

in defended algae might act as ciguatoxin sinks. In such

cases, even if the animal can accumulate or vector

toxins, its protected status (within its algal refuge) may

reduce transfer to higher trophic levels.

A wide variety of macroalgae containing deterrent or

bioactive secondary metabolites are known to host

intermediate to dense (hundreds to thousands of cells

per gram of algae) populations of Gambierdiscus

toxicus and other benthic dinoflagellates (summarized

in Appendix A). These include species of red algae such

as Asparagopsis (Fankenbergia), Portieria and Laur-

encia which produce halogenated compounds, various

brown algae like Sargassum, Lobophora and Zonaria

species, which contain phlorotannins, Dictyopteris spp.

some of which produce potent feeding deterrents,

Stypopodium zonale, which contains the deterrent

stypopodial and syphonous green algae like Avrainvil-

lea, Bryopsis and Caulerpa species, which produce

terpenes that are deterrent to fishes and sequestered by

certain gastropods for their own defense (Paul et al.,

2001). Gambierdiscus toxicus has also been found on

cyanobacteria such as Lyngbya and Calothrix spp.

which produce an array of cytotoxic and deterrent

compounds (over 400 different secondary metabolites

isolated from Lyngbya spp., Paul et al., 2001), and

seagrasses such as Thalassia testudinum which contain

phenolic acids (Zapata and McMillan, 1979), although

their role in palatability is unknown (Valentine and

Heck, 1999, Appendix A).

Just as the use of noxious algae as enemy-free space

by invertebrates has been well documented, associa-

tional defenses between palatable and unpalatable

seaweeds (e.g., Hypnea or Spyridia growing with

Sargassum) have been studied (Hay, 1986) and provide

analogs for Gambierdiscus and host macroalgae. In this

case, algae that would otherwise suffer large losses in

biomass due to herbivory, are able to survive by growing

near, or intertwined with, less palatable algae. In some

cases, these palatable algae trade reduced growth rates

due to competition for light and nutrients with the host,

for survival (lower mortality) by growing on defended

hosts. Although there are no equivalent studies on
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associational defenses between benthic dinoflagellates

and their algal hosts, similar mechanisms could, and

likely do, operate in such interactions. Whether G.

toxicus significantly competes for nutrients or light with

their algal hosts is unknown. However, it is known that

this dinoflagellate benefits from the shade provided by

algae, thus reducing the potential for photoinhibition

(Villareal and Morton, 2002).

It is likely that G. toxicus also finds benefits by

associating with algae that are structurally defended

(Schupp and Paul, 1994; Hay, 1997). Some calcified

algae and tough leathery algae experience reduced

herbivory because they are less susceptible to grazing

from herbivores with weak mouthparts. Calcification is

widespread is some green and red algae and genera such

as Halimeda can contain >90% CaCO3 per mass (Hay

et al., 1994). Calcified macroalgae known to host

populations of Gambierdiscus toxicus include species

of Acetabularia, Amphiroa, Galaxaura, Halimeda,

Jania, Padina, Penicillus, Lithothamnion and Udotea

(Table 1). In fact, some of the highest densities known

for this dinoflagellate come from collections of the

widespread algal genus Jania from the Gambier Islands

(Yasumoto et al., 1979; Table 1).

The importance of toughness as a structural defense

has received less attention than chemical defense in

general. However, tests have shown calcification to be

important for the preferences of large herbivorous

gastropods and some fishes (Pennings and Paul, 1992;

Schupp and Paul, 1994). The morphology of an alga

itself can influence susceptibility to herbivores as it is

the case with crabs that select food algae based on algal

form, rather than nutritional value (Kennish and

Williams, 1997). While tests clearly demonstrating

toughness as a defensive mechanism in non-calcified

algae are few, it is likely that this strategy is used by a

wider variety of algae than currently appreciated. As

such, G. toxicus likely finds some protection by living

on tough or crisp algae such as Turbinaria, Colpomenia

and some species of Sargassum (but see Lewis, 1985,

Appendix A). Some of these algae have thick, leathery

thalli and probably find some escape from grazers

through toughness.

In addition to calcification, some green syphonous

algae such as Acetabularia, Halimeda, Udotea and

Penicillus produce chemical defenses. Multiple

defenses can act additively or synergistically, thus

enhancing the survival of some macroalgae in heavily

grazed tropical reefs (Hay et al., 1994). Siphonous algal

hosts of G. toxicus have evolved some of the most

sophisticated defensive systems in the ocean, including

activated chemical defenses, differential allocation of
noxious compounds into softer newer growths, and the

ability of producing new, more susceptible shoots at

night when herbivores are less active (Hay et al.,

1988b).

Epiphytism can enhance or decrease the palatability

of a host alga. Wahl and Hay (1995) used the term

‘‘shared doom’’ to designate associations in which a

more palatable epiphyte enhances the susceptibility of a

less palatable host by growing on it. Without the

epiphyte, the host loses less biomass due to its own

defensive mechanisms, but these are ‘‘masked’’ by the

attractiveness of the palatable epiphyte. On the contrary,

palatable hosts might be protected by unpalatable

epiphytes that are avoided by grazers. It is not known

whether similar interactions develop between microbial

epiphytes and macroalgae, however, the potential for

microbial metabolites to alter the palatability of a host

has been shown for some marine sponges (Unson and

Faulkner, 1993; Unson et al., 1994; Bewley et al., 1996).

Just as palatable and unpalatable hosts may influence

the intake of G. toxicus by herbivores, the compounds

produced by the dinoflagellate could potentially alter

the palatability of the host.

These examples emphasize the complexities of

marine plant–herbivore interactions. Current under-

standing of ciguatoxin fluxes largely overlooks the role

of different host algae as sources or sinks of ciguatoxins

(but see Anderson and Lobel, 1987), although some

authors have argued that specific groups of algae,

particularly filamentous turfs, are mainly responsible

for the intake of toxins by fishes (Anderson and Lobel,

1987; Lewis and Holmes, 1993; Abbott, 1995; Lehane

and Lewis, 2000). Turf algae can contain large numbers

of Gambierdiscus (Table 1), but turfs themselves may

be comprised of palatable or unpalatable species. Until

now the underlying mechanisms leading to such

differences in algal palatability have not been addressed

comprehensively as important factors regulating cigua-

toxin flux.

3.2. Spatial variation in herbivory, herbivore

selectivity and algal abundance

In addition to the role that chemical and/or structural

defenses play in modifying grazing rates at a single site,

grazing may be affected by spatial location within the

reef complex. Herbivory decreases with depth and with

distance from the shore, being lower in lagoons and high

energy areas such as reef crests and higher in the upper

reef slope (Hay, 1981a, 1981b, 1984; Hay et al., 1983;

Lewis, 1985). Herbivory is also lower in mangrove

channels and shallow reef flats. Thus, all other things
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being equal, ciguatoxin influx to food webs could be

potentially faster in these environments than in low

energy areas such as lagoons and mangroves.

Because of these variations, palatable seaweeds can

find spatial escapes by growing where herbivory is low.

Species in genera such as Turbinaria and Sargassum,

both of which have often been sampled for Gambier-

discus toxicus, often form dense bands in shallow flats

or lagoons. High densities of dinoflagellates in these

algae might reflect accumulation on hosts that are

disturbed less often by herbivore feeding, and in fact

represent food sources that are spatially protected from

where most herbivores forage. While both these genera

contain species that are chemically or structurally

defended (Appendix A), some evidence has shown that

these genera will be consumed in areas where herbivory

is high (Lewis, 1985; Cruz-Rivera and Paul, 2002).

While many defensive mechanisms have been shown

in seaweeds, it is important to note that susceptibility to

herbivores is relative. Starvation, for example, can

cause consumers to be less selective and more likely to

eat defended hosts (Cronin and Hay, 1996). In Guam,

seasonal recruitment of juvenile rabbittfishes (Siganus

spp.) can sometimes be so high that both palatable and

normally unpalatable or lower preference algae are

completely consumed (E. Cruz-Rivera, personal obser-

vation). More importantly, the same algal host is often

differentially palatable to different fishes and inverte-

brates.

Herbivore selectivity has not been included in current

models of ciguatoxin flux, but it is very likely that

incidental consumption of Gambierdiscus is heteroge-

neous depending on the fish species involved. Behavioral

traits such as feeding preference interact with evolu-

tionary adaptations such as biomechanical properties of

mouthparts to influence foraging. For example, certain

fishes like the surgeonfish Ctenochaetus striatus that

forage on macroalgae, actually target epiphytes and

detritus accumulated on the surface of larger seaweeds

(Polunin et al., 1995; Choat et al., 2004). In this sense,

these fishes are omnivores and might depend less on

chemical or nutritional traits of macroalgae than strictly

herbivorous fishes. Yet these fish can be important links

on the transfer of ciguatoxins between trophic levels

(Campbell et al., 1987; Hokama et al., 1988; Lewis et al.,

1994b and references therein). Similarly, some small

invertebrate consumers that feed at microscopic scales

and pick cells directly from the surface of host algae

could depend less on macroalgal traits and still be

important links on the ciguatera food web. Such an

alternative food web has been described for floating

communities in pelagic Sargassum (Kelly et al., 1992).
Just as herbivory varies spatially overall, the

dominant herbivores in a region determine algal

community structure. For example, Cruz-Rivera and

Paul (2002) exposed similar arrays of macroalgae and

cyanobacteria suspended in ropes at two different reefs

in Guam and found strikingly different results. At Cocos

Lagoon, five algae (but not the cyanobacteria) were

eaten significantly by the natural fish assemblage,

whereas in Western Shoals, only two macroalgal

species were consumed significantly. Observations

during the experiments noted that at Western Shoals

one herbivore was dominant (the unicornfish Naso

hexacanthus) while Cocos Lagoon had a more diverse

fish community. Even herbivorous fishes that occur

sympatrically could forage on very different resources

and the degree at which G. toxicus occurs on different

host algae might affect toxin flux by biasing certain fish

species as vectors and not others.

Because different herbivores show different prefer-

ences, the degree by which an alga can be a source of

ciguatoxins or a refuge for Gambierdiscus is variable. In

particular, little is known of invertebrates as vectors of

ciguatoxins. This is important, because mesograzers

often show preference or specialize on algae that are

unpalatable to macrograzers (Hay, 1992; Hay and

Steinberg, 1992; Paul et al., 2001). If these smaller

invertebrate herbivores incidentally consume G. tox-

icus, they could represent an underappreciated link in

the ciguatera food web. Kelly et al. (1992) have noted

such a food web where crustaceans appear to play an

important role.

4. Ciguatoxin fluxes and more realistic food

webs

The complexities of marine plant-herbivore interac-

tions require that a broader view of how ciguatoxin enters

marine food webs be developed. In particular, the

importance of top–down processes (i.e., herbivory)

should be evaluated in the context of algal host defenses

and palatability. In Fig. 1, we expand on the current

model of ciguatera food webs to include differences in

algal traits that lead to variability in algal susceptibility to

herbivores. Once these traits are considered, the potential

for different algae to serve as sources or sinks of

ciguatoxins becomes more evident. Algae with diverse

traits essentially represent various stages of a continuum.

At the extremes are seaweeds with no known defenses

and that tolerate herbivory by having high productivity.

This is the case of many turf-forming algae (Carpenter,

1986). The other extreme is represented by algae having

multiple defensive mechanisms such as calcification
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Fig. 1. A conceptual model illustrating potential pathways and intensity of fluxes from different algal sources. The asterisk indicates two potential

types of flux fron the same source: seaweeds of low nutritional quality may be generally avoided by herbivores. However, certain mesograzers (e.g.

some amphipods and crabs) will increase consumption as a response to low nutrient level in their food (compensatory feeding). Thus, for these algae,

different mesograzers might respond by eating less, or by accelerating consumption.
(structural defense) and noxious secondary metabolites

(chemical defense). It is not difficult to see how the same

amount of G. toxicus on each of these algal hosts might be

consumed differently by the same herbivore community.

The former might represent an available source of

ciguatoxins that enters the food web, while the latter

would decelerate toxin flux and act as a sink.

Furthermore, because they are a quickly-renewing

consumable resource, palatable and fast-growing algae

might contribute more to toxin flux even with low

densities of G. toxicus than unpalatable algae with higher

dinoflagellate burdens.

This model also includes the potential role of

mesograzers as ciguatoxin vectors. Predatory fishes are

a key determinant of population densities and dynamics

for small marine invertebrates. The potential of

mesograzers as ciguatoxin vectors is unexplored, but

could be particularly important when dealing with

species that consume defended seaweeds. These

mesograzers, in essence, would serve as a link between
algae that would ordinarily act as sinks of ciguatoxins

and higher trophic levels.

An interesting aspect of marine–plant herbivore

interactions pertains to algae with low nutritional

quality. While this can benefit the alga by causing an

herbivore to consume other resources, but it can also

elicit a compensatory response in some mesograzers

(Cruz-Rivera and Hay, 2000a, 2001, 2003). Thus, when

faced with an alga of low nutrient content, some

herbivores will respond by increasing consumption on

that alga to gain enough nutrition. Thus an alga with low

nutrient content laden with Gambierdiscus toxicus

could potentially act as a sink for herbivores that reject

it, or enhance toxin flux via consumers capable of

compensatory feeding. A similar argument can be made

for herbivores that feed on complementary resources to

balance their nutritional requirements (Pennings et al.,

1993; Cruz-Rivera and Hay, 2000b). If complementary

resources are rare, they will be consumed disproportio-

nately compared to more abundant seaweeds (Pennings
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et al., 1993). In summary, the underlying assumption

that all algae carrying G. toxicus represent equivalent

sources of ciguatoxins to enter food webs is more

context-dependent than currently appreciated.

5. Other dinoflagellates

While this review focuses on Gambierdiscus toxicus,

the diversity of symptoms in ciguatera-related cases

suggests that other dinoflagellate toxins also bioaccu-

mulate on fish tissues and that these toxins might have a

benthic origin. Species in the genera Amphidinium,

Coolia, Gonyaulax, Ostreopsis, Prorocentrum and

Scripsiella, are confirmed toxin producers and dwell

on macroalgae (e.g., Yasumoto et al., 1980; Tindall

et al., 1984; Carlson and Tindall, 1985; Bomber et al.,

1989; Tindall and Morton, 1998; Holmes et al., 1998;

Pocsidio and Dimaano, 2004). It is likely their

compounds enter fish food webs in a similar fashion

as those of Gambierdiscus, although biomagnification

to the level required to affect human health has not been

documented. Thus, the processes described above can

be applied to understand fluxes of other microbial toxins

of benthic origin.

It is important to note that, while we present a

theoretical framework based on studies of marine plant–

herbivore interactions, our purpose is not to present our

model as complete. Rather, we highlight areas in which

future research can be directed to elucidate actual

spatial and temporal variations in ciguatoxin flux, thus

contributing to a more complete understanding of the

ciguatera food web. At the base of our arguments is a

simple testable hypothesis: algal host traits affect

strongly the flux of ciguatera because different

seaweeds are differentially palatable to herbivores.

6. Conclusions

Some strong patterns do emerge from considering

available studies in marine algal–herbivore interactions.

Algae as sources of Gambierdiscus cannot be con-

sidered homogeneous or equally available to fishes
(Appendix A). The diversity of defensive strategies and

adaptations in seaweeds against herbivory demonstrates

a need for considering the ecology of host algae as a

determining factor in the routes and fluxes of

ciguatoxins. While defenses might not completely

eliminate grazing of well defended algae (e.g., against

mesograzers), they can strongly influence ciguatoxin

fluxes by diverting consumers to other sources or

reducing the per capita amount of the resource

consumed. Furthermore, because congeneric algae

can have dramatically different susceptibilities to

herbivores, surveys would benefit from identifying

algae at the species level. Also, the diversity of

herbivores in marine systems argues for the potential

role of invertebrates as vectors or even sinks (for

herbivores that are themselves defended) of ciguatox-

ins. Such pathways remain unexplored.

Assessments of ciguatera outbreaks and endemicity

can no longer be performed solely by sampling algae

that are conspicuous and readily collected because these

potentially represent species that are not consumed in

great quantities by herbivores (Anderson and Lobel,

1987). Measured in this way, the standing stock of

Gambierdiscus toxicus in a reef may not adequately

approximate toxin flux because large, slower growing

algae carrying dense dinoflagellate populations might

contribute little toxin for consumption. In contrast,

small pools of fast growing algae (e.g., palatable turfs)

could be responsible for most of the toxin flux, even at

much lower dinoflagellate densities, due to the rapid

turnover of the resource.
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8Appendix A

This table includes all algal genera from which Gambierdiscus toxicus has been recorded. When available, densities on different sources are also included.

Because only genera are recorded, highest and lowest G. toxicus cell densities might correspond to different congeneric seaweeds. Remarks on macroalgal

relative palatability were evaluated by reviewing >200 articles on algal–herbivore interactions. See ‘‘Refs.’’ for full citations.

Algal genus Remarks Gambierdiscus toxicus

densities (cells/gwm alga)

References

Acanthophora Branching red algae either epiphytic or on primary substrate (Gacia et al., 1999; Littler and Littler, 2000).

Palatable to fishes, urchins, crabs and sea turtles (Hay, 1981a, 1984; Hay et al., 1989, 1990b; Lewis, 1985;

Paul and Hay, 1986;Paul, 1987; Russell and Balazs, 1994; Stimson et al., 2001; Cruz-Rivera and Paul, 2002;

Pillans et al., 2004)

15–6095 Withers (1981),

Shimizu et al.

(1982), Carlson

(1984), Taylor

(1985), Ballantine

et al. (1985),

Bourdeau and

Durand-Clement

(1991), Morton

and Faust (1997),

Tindall and

Morton (1998)

Acetabularia Calcified algae (Kingsley et al., 2003; Kerkar, 1994). Secondary metabolites have also been observed in some

species and chemical defenses have been suggested (Cetrulo and Hay, 2000). However, urchins and fishes can

readily consume some species (Hay, 1984; Bulleri et al., 2002)

19 Bomber et al. (1989)

Acrochaetium Filamentous, epiphytic red alga (Wear et al., 1999; Sanson et al., 2002; N’Yeurt and Payri, 2004). This genus

has been revised repeatedly with different species now belonging to different genera such as Audouinella

(Harper and Saunders, 2002; Woelkerling, 1983). No data on palatability is available for this genus, although

some data exist for related or revised genera (e.g., Wahl and Hay, 1995)

Densities not

explicitly stated

Bourdeau and

Durand-Clement

(1991)

Actinotrichia Calcified red algae (Kerkar, 1994). No studies available on palatability 2 in Koike et al. (1991),

0–7 cells/cm2 in Abuso

et al. (2000)

Koike et al. (1991),

Abuso et al. (2000)

Amphiroa Heavily calcified red algae (Kerkar, 1994; Payri, 1995), which likely offers some structural defense. Field

experiments showed some species to be unpalatable to tropical fishes (Hay, 1981a; Hay et al., 1989; Paul and

Hay, 1986), although some gastropods and urchins will consume these algae (Klumpp et al., 1993; Tahil and

Juinio-Menez, 1999). Palatability in this genus is variable with some tropical species being less palatable than

their temperate counterparts (Bolser and Hay, 1996)

21–34 Gillespie et al.

(1985a), Chinain

et al. (1999a)

Asparagopsis

(Falkenbergia)

Produces halogenated compounds (McConnell and Fenical, 1977; Bruneau et al., 1978; Combaut et al., 1978;

Marshall et al., 1999) although their function as feeding deterrents has not been explicitly tested. Urchins show

decreased consumption, growth and fitness when confined with some species of Asparagopsis (Frantzis et al.,

1992; Frantzis and Gremare, 1993). While Asparagopsis and Falkenbergia were originally placed in different

genera, and have been sampled for dinoflagellates as such, it is now known that these are the gametophyte and

sporophyte stages (respectively) of the same alga (Guiry and Dawes, 1992)

17–660 Densities not

explicitly stated in

Bourdeau and

Durand-Clement (1991)

Gillespie et al.

(1985a), Bourdeau

and Durand-Clement

(1991)

Avrainvillea Some species known to be of low preference to fishes (Hay, 1984; Paul and Hay, 1986; Paul et al., 1987a) and

chemically defended by producing the feeding deterrent avrainvilleol (Sun et al., 1983; Hay et al., 1990b,

Meyer et al., 1994). Certain mesograzers exploit this genus as food and refuge (Gavagnin et al., 2000; Hay et al.,

1990b, E. Cruz-Rivera, unpublished). Other bioactive secondary metabolites have been isolated from Avrainvillea

spp. but their role in plant-herbivore interactions is unknown (Colon et al., 1987; Chen et al., 1994)

31 Gillespie et al.

(1985a)
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Boodlea Green filamentous turf alga with a spongy thallus (Littler and Littler, 2000). Little data available on palatability

although it is consumed to some extent by certain crabs (Sato and Wada, 2000)

10–78 Kaly and Jones

(1994)

Bryopsis Chemically defended species are unpalatable to some fishes and serve as food and sources of sequestered

chemicals for certain gastropods (Meyer et al., 1994; Hamann et al., 1996; Horgen et al., 2000; Becerro

et al., 2001). Some fishes, including territorial damselfishes, however, may prefer Bryopsis as food (Paul and

Hay, 1986; Hixon and Brostoff, 1996; Ferreira et al., 1998). Certain compounds from this algal genus induce

ecdysis in G. toxicus (Sakamoto et al., 2000)

2–680 Shimizu et al. (1982),

Asuncion et al. (1995)

Bryothamnion Toxicity towards fish has been suggested, but not rigorously tested (De Lara-Isassi et al., 2000). Transplant

experiments, however, showed one species to be unpalatable (Hay, 1981a)

1–531 Taylor and Gustavson

(1985), Popowski

et al. (2001)

Calothrix Cyanobacterium. A number of toxic and bioactive secondary metabolites have been isolated mostly from

freshwater species. (Rickards et al., 1999; Hockelmann and Juttner, 2004). Less is known about marine species

Densities not

explicitly stated

Bourdeau and

Durand-Clement

(1991)

Caulerpa Chemical defenses against fishes and gastropods are known in this genus (Paul and Fenical, 1982, 1986; Paul

and Hay, 1986; Paul et al., 1987b; Pennings and Paul, 1992). However, the palatability of the same species,

and of species containing the same secondary metabolites varies strongly among herbivores (e.g., Hay, 1981a;

Hay, 1984; Lewis, 1985; Paul and Fenical, 1985; Paul and Hay, 1986; Morrison, 1988; Meyer and Paul, 1992;

Cruz-Rivera and Paul, 2002; McClanahan et al., 2002; Andre et al., 2005)

0.03–209 Ballantine et al.

(1985), Gillespie

et al. (1985a), Inoue

and Gawel (1986),

Bomber et al. (1989),

Bourdeau and

Durand-Clement

(1991), Kaly et al.

(1991), Kaly and

Jones (1994)

Centroceras Filamentous turf on primary substrate or epiphytic (Littler and Littler, 2000). Palatable to surgeonfishes, parrot

fishes, and kyphosids (in higher latitudes) (Barry and Ehret, 1993; Hixon and Brostoff, 1996). However, it can be

of low or high preference to different species of ‘‘gardening’’ damselfishes (Hixon and Brostoff, 1996; Ferreira

et al., 1998). As an epiphyte on seagrasses it is readily consumed by gastropods (Klumpp et al., 1992)

Densities not

explicitly stated

Bourdeau and

Durand-Clement

(1991)

Ceramium Filamentous turf on primary substrate or epiphytic (Littler and Littler, 2000; Kamer et al., 2001; Anderson et al.,

1998; Jagtap, 1998). Some species are known to be fast growing (Pedersen and Borum, 1997) and can form

large blooms under eutrophic conditions (Kamer et al., 2001). Species can be very low to high preference foods

for fishes, including tropical ‘‘gardening’’ damselfishes (Paul and Hay, 1986; Hixon and Brostoff, 1996;

Ferreira et al., 1998) and temperate species are known to be consumed by some mesograzers

(Anderson et al., 1998)

Densities not

explicitly stated

Bourdeau and

Durand-Clement

(1991)

Chaetomorpha Filamentous, mat forming algae (Littler and Littler, 2000). No defenses are known against larger grazers,

although some species can be unpalatable to some mesograzers (Cruz-Rivera and Hay, 2001). It is a common

food item for green turtles (Seminoff et al., 2002).

75793 Withers (1981),

Carlson et al. (1984),

Carlson and Tindall

(1985), Bourdeau and

Durand-Clement

(1991)

Chlorodesmis Chemically defended algae (Paul, 1987) that serves as host for specialist crabs and gastropods that use this

alga as refuge (Hay et al., 1989). Some rabbittfish will consume Chlorodesmis (Tsuda and Bryan, 1973; Paul

et al., 1990)

26 Yasumoto et al.

(1979), Hahn (1991

as cited in Lehane,

1999)

Chnoospora Branching wiry brown alga (Littler and Littler, 2000). No data available on palatability. Some species can

enhance productivity quickly after nutrient pulses (Schaffelke, 1999), suggesting fast growth rate

240 Heil et al. (1998)
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Algal genus Remarks Gambierdiscus toxicus

densities (cells/gwm alga)

References

Cladophora Green filamentous turf algae growing on primary substrate or epiphytic (Gacia et al., 1999). This is a

ubiquitous marine and freshwater genus often associated with eutrophication and considered an important

food source for a diverse array of organisms (Littler and Arnold, 1982; Dodds and Gudder, 1992; Ferreira

et al., 1998). Some marine species are fast growing and can form large accumulations under eutrophic

conditions (Littler and Arnold, 1982; Dodds and Gudder, 1992; Peckol and Rivers, 1995; Pedersen and Borum,

1997; Hauxwell et al., 1998). This genus is preferred by diverse temperate (Friedlander et al., 1996) and

tropical fishes such as ‘‘gardening’’ damselfishes (Hixon and Brostoff, 1996; Lison de Loma and Ballesteros,

2002) and rabbitfishes (Elsayed, 1994), although some species are of low preference to Caribbean fishes

(Paul and Hay, 1986). Also consumed by crustaceans (Hauxwell et al., 1998)

1.8–8.1 Carlson and Tindall

(1985), Taylor (1985),

Bourdeau and

Durand-Clement (1991),

Hahn (1991 as cited

in Lehane, 1999)

Codium Spongy green alga. Studies on temperate (Hay et al., 1988c, but see Hay et al., 1986) and tropical (Paul

and Hay, 1986) species have shown low palatability to fish or invertebrates. Suggested defensive mechanisms

range from low nutritional quality (Cruz-Rivera and Hay, 2001), and structural defenses (Cruz-Rivera, 2001) to

activated chemical defenses (Van Alstyne et al., 2001). Some species are food items for sea turtles and urchins

(Seminoff et al., 2002)

Densities not

explicitly stated

Bourdeau and Durand-

Clement (1991),

Koike et al. (1991)

Colpomenia Brown alga with a smooth, hollow, rigid, irregularly globular thallus; almost with a plastic-like appearance and

consistency (Littler and Littler, 2000; E. Cruz-Rivera, personal observation). Palatability for larger herbivores

is unknown, although it is possible that the crisp thallus could provide some protection against

certain grazers. Studies on temperate amphipods found this alga unpalatable and suggest low nutritional

quality as the reason for avoidance (Poore and Steinberg, 1999)

68–250 Yasumoto et al.

(1979), Heil et al. (1998)

Delisea Chemically defended red algae (de Nys et al., 1996; Williamson et al., 2004; Wright et al., 2004). Furanones

from this alga deter feeding in invertebrates and inhibit biofouling by bacteria and other epiphytes

305 Gillespie et al. (1985a)

Dictyota Diterpenoid chemical defenses are widespread in this genus of brown algae and many studies have shown

Dictyota spp. to be low preference or unpalatable to a variety of vertebrate and invertebrate grazers (Hay,

1981a, 1984; Paul and Hay, 1986; Paul, 1987; Hay et al., 1987a, 1987b, 1990a,b; Hay and Steinberg, 1992;

Duffy and Hay, 1994; Faulkner, 1994; Cronin and Hay, 1996; Cronin et al., 1997; Cruz-Rivera and Hay,

2003; Barbosa et al., 2004; Pillans et al., 2004). However, particular fishes and urchins will consume

certain Dictyota species (Paul et al., 1987a; Morrison, 1988; Thacker et al., 2001; Tuya et al., 2001;

McClanahan et al., 2002), and some mesograzers exploit certain species as food and chemically defended

shelter or cover (Hay et al., 1987a, 1988c, 1990a; Duffy and Hay, 1991, 1994; Stachowicz and Hay, 1996,

1999; Cruz-Rivera, 2001). More than 230 compounds have been isolated from Dictyota spp. (Paul et al., 2001)

2–45532 Withers (1981),

Ballantine et al. (1985),

Carlson et al. (1984),

Carlson and Tindall

(1985), Gillespie et al.

(1985a), Taylor (1985),

Taylor and Gustavson

(1985), Inoue and Gawel

(1986), Bomber et al.

(1989), Bourdeau and

Durand-Clement (1991),

Kohler and Kohler

(1992), Morton and Faust

(1997), Tindall and

Morton (1998), Popowski

et al. (2001), Villareal and

Morton (2002)

Dictyopteris Some tropical species are low preference foods for fishes (Paul and Hay, 1986) and a variety of feeding

deterrents against macro- and mesograzers have been studied in tropical and temperate species of this genus

(Hay et al., 1988a; Taniguchi et al., 1993; Bolser and Hay, 1996; Poore and Steinberg, 1999; Schnitzler

et al., 2001), although some species are highly palatable to tropical fishes (Paul et al., 1987a)

12–589 Koike et al. (1991),

Popowski et al. (2001)
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Digenia Finely branched, wiry red alga (Littler and Littler, 2000). Field experiments suggest it is of intermediate to

low palatability to some fishes (Hay, 1984; Paul and Hay, 1986; Hay et al., 1989; Lapointe et al., 2004),

but preferred by some species of surgeonfishes (Lewis, 1985)

158–2180 Densities

not explicitly stated

in Bourdeau and

Durand-Clement

(1991)

Gillespie et al.

(1985a, 1985b),

Bourdeau and

Durand-Clement

(1991)

Enantiocladia Branching red algae. No data available on palatability 114 Gillespie et al.

(1985a)

Enteromorpha Palatable algae that can occur as short turfs or longer tubular thalli, either epiphytic or on primary substrate

(Gacia et al., 1999; Littler and Littler, 2000; McClanahan et al., 2002). They are consumed by a variety of

tropical and temperate herbivores including fishes (Littler and Arnold, 1982; Hay, 1986; Paul, 1987; Barry and

Ehret, 1993; Friedlander et al., 1996; Hixon and Brostoff, 1996; Ferreira et al., 1998; Cruz-Rivera and Hay,

2000b, 2001; Cruz-Rivera and Paul, 2002; Lison de Loma and Ballesteros, 2002); often used as basic diet in

studies testing chemical defenses of other algae due to its lack of structural or chemical defenses (Hay et al.,

1998). The existence of activated chemical defenses against invertebrates has been recently shown for two

temperate species (Van Alstyne and Houser, 2003; Van Alstyne et al., 2001), but no tropical species have

been tested. Some species are fast growing and can form blooms under eutrophic conditions (Littler and

Arnold, 1982; Cohen and Fong, 2004; Bintz et al., 2003; McClanahan et al., 2002; Nelson et al., 2003).

The genus Enteromorpha has recently been changed to Ulva (Hayden et al., 2003)

Densities not

explicitly stated

Bourdeau and

Durand-Clement

(1991)

Galaxaura Calcified red algae (Kerkar, 1994) that also produce unusual, and sometimes cytotoxic, secondary metabolites

(Paul and Hay, 1986; Sheu et al., 1996, 1997a) although their function as feeding deterrents has not been

rigorously tested. Some species are abundant in areas of high fish herbivory (Cruz-Rivera personal observation)

and filed experiments have shown intermediate to low palatability of various tropical species (Paul and Hay,

1986). Some Galaxaura spp. will be consumed by tropical urchins (Solandt and Campbell, 2001)

0.05–395 Inoue and Raj (1985),

Taylor (1985), Inoue

and Gawel (1986),

Bourdeau and

Durand-Clement

(1991), Koike et al.

(1991), Ichinotsubo

et al. (1994), Tindall

and Morton (1998),

Popowski et al. (2001)

Gelidiella Finely branched red turfs (Littler and Littler, 2000). Field experiments suggest moderate to low palatability

depending on the species (Hay, 1984; Hixon and Brostoff, 1996). Species are sometimes found within

damselfish territories (Hixon and Brostoff, 1996)

Data from mixed

algal collections

(Gillespie et al.,

1985a); 7 cells/cm2

(Abuso et al., 2000)

Gillespie et al.

(1985a), Abuso et al.

(2000)

Gelidiopsis Finely branched red turfs (Littler and Littler, 2000). Some species are a preferred food for territorial

damselfishes (Lison de Loma and Ballesteros, 2002)

Data from mixed

algal collections

Gillespie et al. (1985a)

Gelidium Finely branched red turfs (Littler and Littler, 2000). Field experiments suggest this is a palatable genus to

fishes, often found within damselfish territories (Hixon and Brostoff, 1996; Ferreira et al., 1998; Ojeda and

Munoz, 1999), and consumed also by marine reptiles, crabs and gastropods (Kyomo, 1999; Lopez et al.,

2003; Rubenstein and Wikelski, 2003)

Densities not

explicitly stated

Bourdeau and

Durand-Clement (1991)

Gracilaria Some toxins have been isolated from this red algal genus and consumption has lead to human fatalities

(Higa and Kuniyoshi, 2000; Yotsu-Yamashita et al., 2004; Yasumoto, 2005), but the compounds are likely

produced by cyanobacterial epiphytes, not the host alga (Yasumoto, 2005). This genus is consumed by

fishes, sea turtles, urchins, gastropods and crustaceans (Nelson and Tsutsui, 1980; Hay, 1981a, 1986;

Hay et al., 1986; Paul and Hay, 1986; Friedlander et al., 1996; Upatham et al., 1998; Brand-Gardner

et al., 1999; Cruz-Rivera and Hay, 2001; Elfwing and Tedengren, 2002; Seminoff et al., 2002; Pillans

et al., 2004, but see Hay, 1984; Hay et al., 1989). This genus is capable of fast growth under eutrophic

conditions (Peckol and Rivers, 1995), likely an advantage for aquaculture of this agarophyte

Data from mixed

algal collections

Hurbungs et al. (2002)
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Appendix A (Continued )
Algal genus Remarks Gambierdiscus toxicus

densities (cells/gwm alga)

References

Halimeda Chemically and structurally (calcified- Wefer, 1980; Payri, 1995) defended green algae (Hay, 1984; Paul

and Hay, 1986). This group contains some of the most sophisticated defensive systems known including

differential allocation of defensive metabolites to softer tissues, nocturnal growth (when herbivores are

mostly inactive), activated chemical defenses, and heavy calcification which interacts with chemistry to

decrease palatability (Hay, 1981a, 1984; Paul and Fenical, 1983; Lewis, 1985; Paul and Hay, 1986;

Hay et al., 1988b, 1990b, 1994; Paul and Van Alstyne, 1988, 1992; Pennings and Paul, 1992; Meyer et al.,

1994; Schupp and Paul, 1994). Some parrotfishes, sea urchins, and specialized mesograzers represent

the few consumers that will eat Halimeda (Paul and Van Alstyne, 1992; Stachowicz and Hay, 1996;

Overholtzer and Motta, 1999; Munoz and Motta, 2000; Solandt and Campbell, 2001)

0.01–4774 Yasumoto et al. (1979),

Bergmann and

Alam (1981), Withers

(1981), Ballantine et al.

(1985), Gillespie

et al. (1985a), Inoue

and Raj (1985), Inoue

and Gawel (1986),

Bomber et al.

(1988a, 1989),

Bourdeau and

Durand-Clement

(1991), Kaly and

Jones (1994), Hahn

(1991 as cited in

Lehane, 1999),

Morton and Faust

(1997), Tindall and

Morton (1998)

Halymenia Flattened branching red alga. Some large and conspicuous species are common in areas of high herbivory

(Cruz-Rivera, personal observation). Some studies have shown grazing on this genus (Hay, 1981a, 1984;

Paul and Hay, 1986), while other field assays have shown this genus to be of very low preference to fishes

(Paul et al., 1987a; Hay et al., 1988a, 1989). Some work suggests some species are chemically

defended (V.J. Paul personal communication)

<1 Grzebyk et al., 1994

Herposiphonia Filamentous red turf algae. No chemical or structural defenses known. No experimental data available

on palatability

Densities not

explicitly stated

Bourdeau and

Durand-Clement (1991)

Heterosiphonia Red turf algae either epiphytic or on primary substrate. No chemical or structural defenses known.

No experimental data on palatability

6844 Bomber et al. (1988a,

1989), Morton et al. (1992)

Hypnea Palatable fast growing red algae, either growing as epiphytes or on primary substrate (Gacia et al., 1999;

Littler and Littler, 2000). It is consumed by fishes, sea turtles, crustaceans and gastropods (Hay, 1986;

Paul and Hay, 1986; Hay et al., 1988c; Duffy and Hay, 1991; Russell and Balazs, 1994; Wood and

Buxton, 1996; Tahil and Juinio-Menez, 1999; Andre et al., 2005). Some halogenated terpenes have

been isolated from one species, but their role as feeding deterrents is unknown (Afaqhusain et al., 1991)

18–48 Shimizu et al. (1982),

Gillespie et al.

(1985a), Bourdeau and

Durand-Clement (1991),

Kaly and Jones (1994),

Heil et al. (1998),

Hurbungs et al. (2002)
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Jania Calcified red turf algae. Brominated diterpenes have also been isolated from this genus, but their

ecological function is unknown (Awad, 2004). Palatability varies among species, with some Jania spp.

being palatable to some herbivores (Barry and Ehret, 1993; McClanahan et al., 2002), but not others

(Cruz-Rivera, 2001). Some damselfish will consume considerable amounts of Jania as part of their

gardening activities, despite it being a low preference food (Ferreira et al., 1998)

0.01–41820 Yasumoto et al.

(1979), Yasumoto

(1979), Yasumoto

et al. (1980), Bagnis

et al. (1985), Bagnis

et al. (1990),

Gillespie et al.

(1985a), Inoue and

Raj (1985), Inoue and

Gawel (1986),

Bourdeau and

Durand-Clement

(1991), Kaly et al.

(1991), Shirai et al.

(1991 as cited in

Lehane, 1999),

Hokama et al., 1993,

Ichinotsubo et al.

(1994), Kaly and

Jones (1994),

Tindall and Morton

(1998), Chinain

et al., 1999a,

Hurbungs et al.

(2001)

Laurencia Over 570 secondary metabolites have been isolated from this genus (Faulkner, 1994; Paul et al., 2001),

some of which are potent chemical defenses against tropical fish, urchins and gastropods (Hay et al.,

1987b; Morrison, 1988; Granado and Caballero, 1995, 2001; Kurata et al., 1998; Biggs, 2000).

Palatability to generalist grazers varies from lower preference (Paul and Hay, 1986; Paul et al., 1987a;

Hay et al., 1989) to highly palatable species (Hay, 1981a, 1984; Paul and Hay, 1986; Hay et al.,

1990b; Lewis, 1985; Tahil and Juinio-Menez, 1999; Boaventura et al., 2002; Lapointe et al., 2004; Andre

et al., 2005). There is also considerable variance in the tolerance of marine herbivores towards

Laurencia secondary metabolites (Paul et al., 2001) Some chemically defended species are grazed by

more specialized invertebrate herbivores (Stachowicz and Hay, 1996; Rogers et al., 2000, 2002;

Jongaramruong et al., 2002)

229–2901 Withers (1981),

Carlson (1984),

Gillespie et al.

(1985a), Bomber

et al. (1989),

Bourdeau and

Durand-Clement

(1991), Shirai et al.

(1991 as cited in

Lehane, 1999),

Abbott (1995),

Tindall and Morton

(1998)

Lithothamnion Heavily calcified red algal crusts. Some species form rodoliths in deep waters (Littler and Littler,

2000). In general, crustose corallines are the most resistant algae to grazers (Littler and Littler, 1984)

Densities not

explicitly stated

Gillespie et al. (1985a)
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Algal genus Remarks Gambierdiscus toxicus

densities (cells/gwm alga)

References

Lobophora Produces polyphenolics (phlorotannins) that can deter fish grazers (Targett et al., 1995; Bolser and Hay,

1996; Arnold and Targett, 1998, 2000). Toxicity of extracts towards fish has been suggested, but not

rigorously tested (De Lara-Isassi et al., 2000). Field experiments have shown very low to moderately

high palatability of Lobophora variegata to fishes (Hay, 1981a, 1984; Lewis, 1985; Paul and Hay, 1986;

Kennelly, 1991; Jompa and McCook, 2002; McClanahan et al., 2002; Diaz-Pulido and McCook, 2003)

depending on grazers and geographic region. Laboratory assays have shown this species to be avoided

by rabbitfish (Pillans et al., 2004). Data using the common tropical sea urchin Diadema antillarum are

contradictory with L. variegata being a high or low preference item depending on geographic location

(De Ruyter van Steveninck and Breeman, 1987; Morrison, 1988; Solandt and Campbell, 2001;

Tuya et al., 2001). Tropical populations of this alga can be considerably less palatable than temperate

ones (Bolser and Hay, 1996). As an additional defense, this alga also produces a different, more

herbivore-resistant, morphotype in areas of high herbivory (Coen and Tanner, 1989)

Densities not

explicitly stated

Gillespie et al. (1985a)

Lophosiphonia Red algal finely branched turfs (Littler and Littler, 2000). No data on palatability Densities not

explicitly stated

Bourdeau and

Durand-Clement (1991)

Lyngbya Hundreds of bioactive secondary metabolites have been isolated from this cyanobacterial genus (Paul

et al., 2001) Various studies have shown strong deterrence and toxicity of these metabolites against

vertebrate and invertebrate consumers (Nagle et al., 1996; Thacker et al., 1997; Nagle and Paul, 1999;

Cruz-Rivera and Paul, 2002), however, some specialized gastropods prefer to feed on this genus (Paul

and Pennings, 1991; Pennings et al., 1996; Nagle et al., 1998; Cruz-Rivera and Paul, 2002)

Gillespie et al. (1985a),

Bourdeau and Durand-

Clement (1991)

Martensia Epiphytic, flattened fan-like red algae Some species produce indole alkaloids (Kirkup and Moore, 1983;

Murakami et al., 1994; Takahashi et al., 1998), suggesting a potential chemical defense, but no data

are available on palatability

Densities not

explicitly stated

Withers (1981)

Melosira Colonial diatom. No chemical or structural defenses known from benthic species. This genus is a

common item in the diet of some estuarine fishes (Almeida, 2003), but it is likely grazed upon more

commonly by smaller invertebrates such as crustaceans and snails (AuriolesGamboa and PerezFlores,

1997; Jensen and Asplen, 1998; Sommer, 1999; Aikins and Kikuchi, 2002)

2 Shimizu et al. (1982)

Microdictyon Finely branched ‘‘cushion-like’’ green algae with a crisp and fragile thallus (Littler and Littler, 2000).

No data are available on palatability

9 Shimizu et al. (1982),

Gillespie et al. (1985a)

Padina Lightly to moderately calcified (Wefer, 1980; Okazaki et al., 1986; Kerkar, 1994; Payri, 1995) fan-shaped

brown algal genus, with some species also producing halogenated terpenes (Parameswaran et al., 1994)

and polyphenolics (Karez and Pereira, 1995). Some species are unpalatable to local fishes and invertebrates

(Hay, 1986; Hay et al., 1988c), are low preference items for sea urchins and crustaceans (Tuya et al., 2001;

Poore and Steinberg, 1999) or support poor growth on gastropods (Upatham et al., 1998), while others are

preferred foods for urchins and fish (Hay, 1981a, 1984; Paul and Hay, 1986; Paul et al., 1987a; Thacker

et al., 2001; Bulleri et al., 2002; McClanahan et al., 2002; Lapointe et al., 2004). There can be marked

geographic differences in relative palatability to fishes for a given species (Cruz-Rivera and Paul, 2002),

and tropical species can be significantly less palatable than temperate counterparts (Bolser and Hay, 1996).

These algae may also produce morphological phenotypes that are less susceptible to herbivory, depending

on grazing intensity (Lewis et al., 1987)

0.01–42 Gillespie et al.

(1985a), Inoue and

Raj (1985), Bomber

et al. (1989),

McCaffrey et al.

(1992), Tindall and

Morton (1998)

Penicillus Calcified and chemically defended (Wefer, 1980; Hay, 1984; Paul and Fenical, 1984; Paul and Hay, 1986)

green algal genus. Although some consumption has been observed (Hay et al., 1990b), palatability of

different species in this genus appears very low to tropical fishes (Hay, 1984; Paul and Hay, 1986)

17–5131 Ballantine et al. (1985),

Bomber et al. (1989),

Tindall and Morton (1998)
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Polysiphonia Variably palatable red turf algae, either epiphytic or on primary substrate (Littler and Littler, 2000).

Some toxic halogenated compounds have been isolated (De Rosa et al., 2001; Shoeib et al., 2004),

but their function as feeding deterrents is unknown. At least one species might contain an activated

chemical defense against grazers (Van Alstyne et al., 2001). Some experiments have shown variable

palatability to, and poor performance of, mesograzers feeding on this algal genus (Cruz-Rivera and Hay,

2000b; Duffy and Harvilicz, 2001; Norderhaug, 2004). However, some damselfishes consume, and even

maintain monocultures of, Polysiphonia in their territories (Ferreira et al., 1998; Hata and Kato, 2003).

It is a main food for some temperate fish and invertebrates (Barry and Ehret, 1993; Ito et al., 1996;

Sturm and Horn, 1998). Some species are early succesional species (Agatsuma et al., 1997;

Diaz-Pulido and McCook, 2002), and have fast growth rates (Campbell, 2001)

Observations based

on mixed algal

collections (Gillespie

et al., 1985a) or

densities not explicitly

stated (Bourdeau and

Durand-Clement, 1991)

Bourdeau and

Durand-Clement (1991)

Portieria Foliose red algae chemically defended by halogenated monoterpenes. (Paul et al., 1990, 1992; Meyer et al.,

1994; Ginsburg and Paul, 2001). Some specialized gastropods sequester chemicals from these algae and

use them as acquired defenses (Ginsburg and Paul, 2001)

120 Grzebyk et al. (1994)

Pterocladia Branching, red algae. Low preference to snails and crabs (Kennish and Williams, 1987; Wakefield and

Murray, 1998). It has been argued that morphology influences preference for some crabs, despite the high

caloric content of the alga, making some species of Pterocladia less preferred (Kennish and Williams,

1987). No data on palatability to tropical consumers

270 Densities not

explicitly stated in

Bourdeau and Durand-

Clement (1991)

Gillespie et al. (1985a),

Bourdeau and Durand-

Clement (1991),

Ichinotsubo et al. (1994)

Rhizoclonium Freshwater and marine green filamentous algae. No data available on palatability 28 Shimizu et al. (1982)

Sargassum Conspicuous brown algae, occurring either attached to substrate or as free floating communities. Some

species are low preference items for fishes (Hay, 1981a, 1984, 1986; Paul et al., 1987a; Paul and Hay, 1986;

Hay et al., 1988c), and palatability can vary strongly among populations of the same species (Taylor et al.,

2003) or when species are compared (Bolser and Hay, 1996). Some species have a coarse consistency and

are likely structurally defended (although this remains untested), while other species are palatable (Lewis,

1985; Paul and Hay, 1986; Paul, 1987; Cruz-Rivera and Paul, 2002). This genus produces phlorotannins

(Ragan and Glombitza, 1986), but the amount of these chemical deterrents is highly variable among

species (Targett et al., 1995; Arnold and Targett, 2000). Defenses can be induced by grazing in some

species (Sotka et al., 2002; Taylor et al., 2002)

29 Withers (1981),

Gillespie et al. (1985a),

Inoue and Raj (1985),

Ballantine et al. (1985),

Bomber et al., 1988b,

Bourdeau

and Durand-Clement

(1991), Hahn (1991 as

cited in Lehane, 1999),

Holmes et al. (1998),

Tindall and Morton (1998)

Spyridia Branching red alga either growing as epiphyte or on primary substrate. Generally palatable to grazers

including gastropods (Wood and Buxton, 1996), and fish (Hay, 1981a, 1986; Paul and Hay, 1986;

Hay et al., 1989). It is a lower preference food for some urchins (Hay, 1984)

31–1036 Withers (1981), Shimizu

et al. (1982), Carlson

and Tindall (1985),

Ballantine et al. (1985),

Taylor and Gustavson

(1985), McCaffrey et al.

(1992), Bourdeau and

Durand-Clement (1991),

Shirai et al. (1991 as

cited in Lehane, 1999),

Tindall and Morton (1998)

Stypopodium Chemically defended brown algae of intermediate to very low preference to fishes (Hay, 1981a, 1984;

Paul and Hay, 1986; Paul et al., 1987a). They produce a variety of compounds, depending on species,

location and ontogenetic stage (Gerwick and Fenical, 1981; Gerwick et al., 1985; Hay et al., 1987b,

1988a, Wessels et al., 1999; Soares et al., 2003; Pereira et al., 2004)

27–250 Popowski et al. (2001)
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6Appendix A (Continued )
Algal genus Remarks Gambierdiscus toxicus

densities (cells/gwm alga)

References

Thalassia Marine angiosperm. Although they produce phenolic acids (Zapata and McMillan, 1979), it is palatable

to urchins, parrotfishes, sea turtles and dugongs (Lewis, 1985; Paul and Hay, 1986; Hay et al., 1990b;

Cebrian and Duarte, 1998; Rose et al., 1999; Valentine and Heck, 1999; Valentine et al., 2000; Macia,

2000; Sluka and Miller, 2001; Kirsch et al., 2002; Andre and Lawler, 2003; Andre et al., 2005,

but see Hay et al., 1989)

8–1463 Ballantine et al. (1985),

Morton and Faust (1997)

Tolypiocladia Hokama et al. (1993) referred to a Tolycarpidia glomurata. We believe this is a misspelling of

Toyipiocladia glomerulata as Tolycarpidia is not a valid algal genus. Tolypiocladia is a branching turf-

forming red alga either epiphytic or on primary substrate. Palatable to fishes and invertebrates although

it can rank lower in herbivore preference than other sympatric algae (Thacker et al., 2001;

E. Cruz-Rivera, unpublished)

291 Hokama et al. (1993),

Ichinotsubo et al. (1994),

Turbinaria Brown algae, which produce polyphenolics (Hay, 1984; Norris and Fenical, 1982; Targett et al., 1995),

feeding deterrents against gastropods (Sawai et al., 1994), and some cytotoxic compounds (Asari et al.,

1989; Sheu et al., 1997b; Sheu et al., 1999). It is often found in backreefs, lagoons, and protected areas,

which are places of low herbivory (Lewis, 1985). It has a tough leathery consistency, which suggests

some structural defense, however, this has yet to be tested. Field assays have shown intermediate to low

palatability of some species to fish (Hay, 1984; Lewis, 1985; Hay et al., 1989); but herbivores with strong

jaws such as parrotfishes and sea urchins can readily consume these algae (Lewis, 1985;

Lison de Loma et al., 2002)

0.01–1617 Yasumoto et al. (1979,

1980), Yasumoto (1979),

Withers (1981),

Carlson et al. (1984),

Bagnis et al. (1985),

Gillespie et al. (1985a),

Inoue and Raj (1985),

Inoue and Gawel (1986),

Bourdeau and Durand-

Clement (1991),

Hahn (1991 as cited in

Lehane, 1999),

Koike et al. (1991),

Shirai et al. (1991 as

cited in Lehane,

1999), Hokama et al.

(1993), Grzebyk et al.

(1994), Ichinotsubo

et al. (1994), Abbott

(1995), Tindall and

Morton (1998)

Tydemania Calcifed and possibly chemically defended. Various secondary metabolites, including triterpenes, have

been isolated from this genus (Paul et al., 1982a, 1982b; Govindan et al., 1994). I often occurs in areas

of high herbivory (Cruz-Rivera, personal observation), although no experimental data on

palatability are available

>235 Grzebyk et al., 1994

Udotea Calcified and chemically defended algae (Hay, 1984; Paul and Hay, 1986; Kerkar, 1994), unpalatable to

both vertebrate and invertebrate consumers (Paul and Fenical, 1984; Paul and Hay, 1986; Paul, 1987;

Hay et al., 1994; Pillans et al., 2004)

16–514 Ballantine et al. (1985),

Bomber et al. (1989)

Zonaria Leathery brown foliose algae. This genus produces phlorotannins and their role as feeding deterrents has

been suggested by various authors (Blackman et al., 1988; Targett et al., 1995; Bolser and Hay, 1996;

Poore and Steinberg, 1999; Wisespongpand and Kuniyoshi, 2003). Some species are a preferred food

for certain mesograzers (Poore, 1994)

62–112 Gillespie et al. (1985a)
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