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Molecular Aspects of Regulation of Collagen Gene
Expression in Fibrosis
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Fibrosis, the hyper-accumulation of scar tissue, is characterized
by the overproduction and deposition of type I and III collagen by
fibroblasts and is the one of the main pathologic outcomes of the
autoimmune disorder scleroderma. While the causes of fibrosis
in scleroderma are unknown, cytokines such as TGF-β, IL-4 and
IL-13, play a crucial role in the stimulation of collagen produc-
tion have been implicated in the disease process. In fibroblasts
stimulation of collagen production by these cytokines is de-
pendent on the Smad and STAT6 signaling pathways induced
by TGF-β and IL-4, IL-13 respectively. Furthermore, mounting
evidence suggest cytokine crosstalk is relevant in the sclerotic
process. Our laboratory demonstrated an increase in TGF-β1
gene transcription from fibroblasts stimulated with IL-4. In ad-
dition, TSK/+ mice lacking the IL-4α receptor show impaired
transcription of the TGF-β1 gene and did not display fibrosis.
Likewise, it appears that STAT6 plays a role in fibroblast TGF-
β1 transcription after IL-4 or IL-13 stimulation. These findings
suggest that an epistatic interaction between IL-4 and TGF-β
may exist which is crucial for pathologic sclerotic activity.

KEY WORDS: Fibrosis; scleroderma; pro-fibrogenic cytokines;
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INTRODUCTION

The extracellular matrix (ECM) is comprised of numer-
ous multifaceted structures that provide structural in-
tegrity to the connective tissue. The building blocks of the
ECM consist of collagens, glycoproteins (fibronectins,
tenascins, fibrillins), glycoaminoglycans and proteogly-
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cans. The ECM acts as a “skeleton” for cells to adhere
to grow, maneuver and differentiate. The most abundant
proteins in the ECM are members of the collagen family.
The collagen protein superfamily consists of 26 geneti-
cally distinct proteins. A common feature of the collagen
family is to form highly organized polymers (1). For ex-
ample, the COL1A1 gene generates an element of type
I collagen, called the pro-α1(I) chain. This chain com-
bines with another pro-α1(I) chain and also with a pro-
α2(I) chain (produced by the COL1A2 gene) to make a
molecule of type 1 pro-collagen. These triple-stranded,
rope-like pro-collagen molecules are enzymatically pro-
cessed outside the cell. They then arrange themselves
into long, thin fibrils that cross-link to one another in
the extracellular space. This results in a collagen mesh
which gives connective tissue its tensile strength and
elasticity (2–4).

Type I collagen is the most plentiful and well-studied
member of the collagen family; it is classified as one of
the fibrillar collagens and is one of the most widely ex-
pressed proteins in the body being a major constituent of
the skin, ligaments, tendons, bone, and numerous intersti-
tial connective tissues, excluding brain, hyaline cartilage
and vitreous body. The main function of type I collagen
is to provide strength, and elasticity to connective tissue.
Other types of collagen are often more restricted in expres-
sion profile. For example, type X collagen is exclusively
found in hypertrophic cartilage (4).

Normally, the ECM is engaged in a constant flux of
remodeling via regulated phases of synthesis and degrada-
tion of its components. Fibroblasts are the key players for
the generation, deposition, and remodeling of the ECM (5)
during development, response to injury and fibrotic disor-
ders. This homeostasis is changed during wound healing
when the balance is favored towards an increase in pro-
duction and deposition of ECM proteins. Fibroblasts are
recruited to the wound site by the release of inflamma-
tory mediators, TGF-β and platelet derived growth factor
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(PDGF). There they are stimulated by local growth factor
release to produce a ECM protein constituents such as type
I and III collagen and fibronectin (5, 6). Proteolytic en-
zymes such as matrix metalloproteinases, help to degrade
collagen in the wounds, and are secreted by macrophages
in addition to fibroblasts (7).

Abnormalities in wound healing result in keloids and
hypertrophic scars- these are both defined by an excess
of accumulation of collagen within the wound. More im-
portantly, increased activity of pro-fibrogenic cytokines
such as TGF-β1 and IL-13, have also been implicated in
abnormal scar tissue accumulation (8, 9). An excessive
deposition of connective tissue components, particularly
collagen, is the major pathological finding in fibrotic dis-
orders such as scleroderma, osteogenesis imperfecta, and
fibrosis of the lungs, kidneys and liver. In fibrotic disor-
ders, ECM homeostasis is disturbed favoring a situation
where a permanent imbalance exists resulting in the re-
placement of the normal connective tissue architecture
with amorphous sclerotic material consisting of type I
and III collagen (9).

Cytokines and growth factors are two components that
contribute to the metabolic regulation of the expression
of collagen genes. The synthesis of collagen in fibrob-
lasts is increased by pro-fibrogenic cytokines including
TGF-β1, IL-4, IL-13, IL-6, and PDGF. However, collagen
production can be downregulated by pro-inflammatory
cytokines such as IFN-γ and TNF-α (10–14). Herein, we
will present our current knowledge on the pro-fibrogenic
cytokines and the signaling pathways they are involved in
the regulation of collagen synthesis and its affects in the
fibrotic disorder, systemic scleroderma (SSc) (15).

SSc is a complex, multisystemic, connective tissue
disorder believed to be of autoimmune origin char-
acterized by an overproduction of, and local or dif-
fuse deposition of collagen in the skin and some in-
ternal organs. Genetic and environmental factors may
be involved in the pathogenesis of the disease. Vascu-
lar damages, excessive collagen accumulation, and im-
mune activation are commonly identified in patients with
SSc.

Vascular injury is best illustrated by the Raynaud’s phe-
nomenon, scleroderma renal crisis and pulmonary hyper-
tension. Accumulation of collagen results in fibrosis on
the skin and internal organs. Autoimmunity associated
with SSc is illustrated by the presence of autoantibodies
to DNA topoisomerase I, centromere, RNA polymerase I
and III, U3-RNP, NOR-90, PN-Scl and fibrillin-1, in sera
of patients (15–17).

The Tight Skin (TSK) mouse represents the most thor-
oughly investigated animal model of human scleroderma.
TSK syndrome is manifested by an increased thickness

of the dermis (cutaneous hyperplasia), connective tissue
hyperplasia of ventral side of xyfoid cartilage, kidney and
adrenal gland (18), pulmonary emphysema (19) and car-
diac hypertrophy (20). TSK mice spontaneously produce
autoantibodies specific for scleroderma autoantigens such
as topoisomerase I, RNA polymerase I, fibrillin-I and nu-
cleoli (16, 21).

In contradistinction with human scleroderma which is a
multifactorial disease, TSK syndrome is due to a tandem,
in frame, duplication of exons 17–40 of the Fibrillin-1
(Fbn-1) gene (22). The TSK Fbn-1 gene displays several
mutations in exons 1–17 and 4 replacing mutations in du-
plicated exons when compared to the Fbn-1 gene of other
murine strains (23). It was shown that mutated Fbn-1 is
synthesized and secreted by COS cells transfected with
TSK Fbn-1 gene or fibroblasts from transgenic mice bear-
ing a high copy number of mutated Fbn-1 gene (24, 25).
Expression of the TSK Fbn-1 gene in mouse embryonic
fibroblasts increases deposition of type I collagen and of
matrix associated glycoprotein (MAGP)-2 in the ECM.
This finding suggests that mutated Fbn-1 plays an im-
portant role in skin fibrosis in TSK mice since MAGP-2
was increased in the dermis of TSK mice, and more in-
terestingly in fibrotic SSc skin. Furthermore, fibroblasts
over-expressing MAGP-2 were found to express three-
fold more type I collagen via post-translational effects on
protein stabilization suggesting a direct link between mu-
tant Fbn-1, MAGP-2, and increased collagen deposition
(26).

MOLECULAR MECHANISMS MEDIATING THE INDUC-
TION OF FIBROSIS BY PROFIBROGENIC CYTOKINES

There is an abundance of experimental and clinical
findings to suggest that TGF-β, IL-4 and IL-13 are pro-
fibrogenic cytokines by virtue of their ability to enhance
collagen gene expression and deposition of collagen that
lead to long lasting-fibrosis in certain diseases.

Transforming Growth Factor-β1 (TGF-β1)

The TGF-β family of cytokines, characterized by 6
conserved cysteine residues, has a wide distribution of ex-
pression in terms of cell and tissue type. To date, there are
nearly 30 proteins in the TGF-β superfamily. The TGF-β
superfamily is one of the important signaling pathways
used for normal developmental processes such as tissue
patterning, apoptosis, and cell cycle progression. The α-
granules of platelets represent a major source of TGF-β,
which is also produced by macrophages, and regulatory-T
cells (27–29). The prototypical, and best studied, member
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of the family is TGF-β1. TGF-β1 possesses diverse func-
tional characteristics depending on the cell type in ques-
tion. For example, TGF-β1 inhibits T cell and macrophage
function and suppresses epithelial cell growth yet it serves
as a mitogen for fibroblasts inducing proliferation, migra-
tion, and synthesis of a host of cellular products. In par-
ticular it has been found to be a potent inducer of ECM
protein production. As such, TGF-β1 has been implicated
as a key cytokine involved in mechanisms of pathogenic
fibrosis (30, 31).

TGF-β1 itself is secreted complexed to latent associ-
ated peptide (LAP). TGF-β1 and LAP are synthesized as
a single polypeptide which is cleaved by furin to generate
the non-covalently associated TGF-β1/LAP termed the
small latent complex (SLC). Upon secretion the SLC be-
comes disulfide linked to latent TGF-β1 binding protein-
1 (LTBP1) to form the large latent complex (LLC). The
LLC is fixed to the ECM via interactions if the C-terminal
region of LTBP1 with the N-terminal region of the Fbn-1
component of the microfibrils. Thus, the ECM acts as a
reservoir of TGF-β1 activity (29–30).

The TGF-β receptor family is also quite diverse con-
sisting of 7 type I and 5 type II serine/threonine kinase re-
ceptors (30, 31). Receptor complexes are heterotetrameric
in nature and consist of two type II receptors (TGF-βRII)
(75–85 kDa), which can bind TGF-β directly and two sig-
nal transducing type I receptors (TGF-βRI) (50–60 kDa)
which only interact with the bound TGF-β/TGF-βRII
complex (30–32). The TGF-β receptors are glycopro-
teins of about 500 amino acid residues that contain small
cysteine-rich extracellular domains. The type I receptor
has a single hydrophobic transmembrane domain and a C-
terminal cytoplasmic glycine/serine region (GS domain)
that precedes the receptor kinase domain (33). Binding of
TGF-β to the TGF-βRII is believed to induce conforma-
tional change in the TGF-β exposing binding sites which
recruits the TGF-βRI to form a heterotetrameric recep-
tor complex. TGF-βRII by virtue of its intrinsic kinase
activity, phosphorylates TGF-βRI on multiple residues in
the GS domain leading to a conformational change which
provides a binding site for Smad 2 and 3. This action fur-
ther increases the specificity of the kinase domain for the
C-terminal serine residues of its intracellular downstream
effectors, and allows for the subsequent phosphorylation
of the Smad proteins (31, 34, 35).

The intracellular signaling pathway of TGF-β was il-
luminated in studies carried out in Drosophila and C.
elegans (36, 37). While there are eight currently iden-
tified members of the Smad family in humans, only the
receptor-activated (R)-Smads 2 and 3 are phosphorylated
and activated by the TGF-β receptor complex. When the
TGF-β ligand is bound by the receptor, the R-Smads bind

to areas in and around the phosphorylated GS region of the
TGF-βRI and are subsequently phosphorylated on a C-
terminal SSXS motif. Phosphorylated Smad2 and Smad3
form a dimer and further bind to Smad4 (a co-activator
Smad) to then translocate into the nucleus. Therefore,
Smads in the heteromeric form enter the nucleus to acti-
vate transcription of selective genes. Inside the nucleus,
the heteromeric Smad complex may bind directly to a
CAGAC sequence called the minimal Smad binding el-
ement (SBE). However, the Smad interaction with the
SBE is weak (≈10−7 M). Thus, it is only by association
with binding partners that Smads can achieve high affin-
ity protein/DNA interactions. To this end, the Smads have
been shown to interact with numerous transcription factors
including ATF-2, Sp1, GATA-3, AP1, TFE3 and FAST-
1 (34, 38–40). Smad3 assists in activating transcription
by using co-activators p300 and cAMP response element
binding protein (CBP) (39). The cellular level of Smads
is controlled by proteolysis, a process in which Smurfs
(Smad ubiquitin regulatory factor) plays an important
role (41).

Another group of Smad proteins are known as the in-
hibitory Smads (I-Smad); these include Smad6 or Smad7.
These inhibitory Smads prevent R-Smad phosphorylation
and further translocation of the heterocomplex consisting
of Smad2, Smad3, and Smad4 to the nucleus (42).

Stimulation of fibroblasts with TGF-β1 has been found
to rapidly induce a sustained increase in transcription from
the type I pro-collagen and fibronectin genes (43, 44).
This has lead to the hypothesis that TGF-β may play
a central role in the development of pathologic tissue
fibrosis (45). In particular scleroderma fibroblasts have
been shown to express elevated levels of the TGF-βRI
and TGF-βRII mRNA (46). Furthermore, the increased
expression of TGF-βR mRNA correlates well with el-
evated levels of collagenα 2 type I (COL1A2) mRNA
levels in the fibroblasts. It is thought that the altered phe-
notype of the SSc fibroblast is due to over-expression of
TGF-βRI and II leading to enhanced autocrine synthesis
of TGF-β (46). Supporting this notion, blockade of en-
dogenous TGF-β signaling with antibodies or anti-sense
TGF-β oligonucleotides can prevent the over-expression
of collagen genes in SSc fibroblasts (47). Likewise, ele-
vated phosphorylation levels of Smad3 and an increased
nuclear localization of Smad2 and 3 in SSc fibroblasts sug-
gest chronic autocrine TGF-β-mediated activation (48).

Animal models such as chronic graft versus host dis-
ease (cGVHD) and TSK mice have also shed insight
into the importance of the relationship between TGF-
β signaling and over-synthesis and deposition of col-
lagen in skin fibrosis. Murine cGVHD is character-
ized by fibrosis, particularly in the skin and lungs (49).
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McCormik et al. (50) demonstrated that the administra-
tion of anti-TGF-β antibodies one and three days after
the injection of allogeneic bone marrow cells can pre-
vent the occurrence of scleroderma-like skin and lung
alterations.

We have studied the effects of halofuginone on the
TGF-β induced collagen synthesis by TSK fibroblasts as
well as on the development of TSK syndrome after ad-
ministration of this drug soon after birth. Halofuginone,
is a isoquinoline alkaloid that was shown to reduce skin
tensile strength in chickens in addition to inhibiting the
synthesis of type I collagen in human fibroblasts (51). It
was demonstrated by our laboratory that halofuginone in-
hibits type I collagen production by obstructing the TGF-β
signaling pathway. More specifically, in vitro treatment of
TSK fibroblasts with halofuginone reduced the amount
of synthesis of collagen as consequence of a reduction
in the promoter activity and transcription of the colla-
gen gene. The collagen inhibitory activity was due to
prevention of Smad3 phosphorylation, its nuclear translo-
cation and its’ binding to the Smad3 consensus site, as
assessed by EMSA (52). This is in agreement with data
showing that Smad3 −/− fibroblasts have reduced pro-
fibrotic responses (reduced levels of collagen α1 type
I (COL1A1) mRNA expression) when stimulated with
TGF-β (53).

Furthermore, the treatment of fibroblasts with halofug-
inone enhanced the phosphorylation of c-Jun paralleled
with enhanced DNA binding and transcriptional activity
of the AP-1 transcription factor composed of c-Jun and
Fos, inhibition of collagen promoter activity and a reduc-
tion in the level of COL1A2 transcript (54). In addition,
introduction of a dominant negative c-Jun construct com-
pletely ablated the effect of halofuginone on collagen syn-
thesis. C-Jun acts as an antagonist of COL1A2 promoter
activity interacting with a negative regulatory sequence
located in the −804 to −675 bp region of mouse α2(I)
collagen promoter that is suggested to negatively regulate
gene activity in TSK mouse fibroblasts (55).

The inhibitory effect on collagen synthesis was con-
firmed with in vivo studies in TSK mice. Upon admin-
istering halofuginone to newborn or adult TSK mice, a
decrease in collagenous material was seen, as well as
in the number of fibroblasts carrying the transcript of
the COL1A2 gene (54, 56). These data taken together
demonstrate the crucial role of TGF-β in fibrosis of human
diseases such SSc and in corresponding animal models.
The signaling pathway initiated by TGF-β leading to the
enhanced expression of collagen gene, is under a tight con-
trol of the activation of R-Smads, in addition to activation
of inhibitory Smads, whereas degradation is controlled by
the Smurf gene.

IL-4 and IL-13

In addition to TGF-β, other pro-fibrogenic cytokines
such IL-4 and IL-13 stimulate fibroblast collagen pro-
duction by different signaling mechanisms and are in-
volved in the development of the fibrotic disorders such
as scleroderma.

IL-4 is a pleotropic cytokine that is produced mostly
by Th2 T cells, NK1 cells and mast cells (57–59). IL-4
has been shown to have approximately 30% homology
with cytokine IL-13 (60). However, while they have sev-
eral overlapping biological activities they exhibit distinct
functionalities. For instance, IL-4 can drive differentiation
of T cells towards the Th2 polarity and serves as a B cell
mitogen, while IL-13 is the primary cytokine implicated
in murine models of granulomatous disease and allergic
lung inflammation (61, 62).

Both IL-4 and IL-13 work through the IL-4 receptor
(IL-4R) or IL-13 receptor (IL-13R) respectively. Lym-
phocytes incubated with IL-4 show that the binding to
IL-4/IL-13 receptor complex initiates a Janus-activated
kinase/STAT (JAK-STAT) signaling cascade, which re-
sults in the activation of STAT6 (63). The human IL-4R
is a heterodimer complex that is composed of the IL-4Rα

chain and γ c chain while the IL-13 receptor complex
is made of 3 different components: the IL-4Rα chain,
the low-affinity binding chain IL-13Rα1, and the high-
affinity binding chain IL-13Rα2 (64). Therefore, recep-
tors for both cytokines share the IL-4Rαchain, and support
STAT6 activation (65). The α-chain of IL-4R is associated
with JAK1 and the γ c chain of IL-4Rαis connected with
JAK2. IL-13Rα1 is associated with Tyk2. These signal-
ing factors are imperative for STAT6 activation. JAK1
and STAT6 are activated by IL-13, however JAK2 is not.
These studies suggest that STAT6 activation may be due
to STAT6 binding to the to the IL-4Rα chain (65).

In human fibroblast cell lines, IL-4 and IL-13 stimu-
lation can both induce phosphorylation of JAK2, Tyk2,
STAT6 and IRS-1 proteins (66). Therefore, it may be
suggested that signal transduction via the IL-4 and IL-
13 receptor in the fibroblast cell lines is similar and may
be one explanation for the apparent redundant effects of
the cytokines in fibrosis pathogenesis (66).

IL-4 has been demonstrated to play a role in colla-
gen production from fibroblasts. Stimulation of collagen
using IL-4 was first seen in 1992, using fibroblastic syn-
ovial cell lines from patients with rheumatoid arthritis
and osteoarthritis (14). It was also determined that IL-
4-stimulated fibroblasts expressed higher levels of pro-
collagen α1 type 1 transcripts in comparison to controls.
Based on these preliminary observations, it was concluded
that IL-4 had an effect on collagen production at the
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pre-translational level (14). Lee and colleagues performed
studies to verify whether or not IL-4 could play a role in
transcriptional regulation of collagen gene expression in
SSc fibroblasts. They demonstrated that IL-4 could be
important in promoting biogenesis of collagen proteins in
addition to increasing stability and transcription of colla-
gen mRNA (67). Methods such as immunocytochemistry
and in situ hybridization, have also been used to determine
the effects of IL-4 on collagen production. It was shown
that antibody staining for IL-4 was significantly enhanced
in fibroblasts taken from scleroderma patients whereas
control fibroblasts were found to be negative for IL-4
(12). More interestingly, serum IL-4 levels were found to
be significantly higher in patients with SSc compared to
normal individuals (11, 68).

IL-4 is one important factor in the development of cu-
taneous fibrosis within in vivo mouse models. Our lab has
documented that in TSK/+ IL-4Rα−/− or TSK/− IL-
4−/− mice, cutaneous hyperplasia is not detected when
compared with TSK/+ mice (69, 70). In addition, when
antibodies towards IL-4 are administered to young TSK/+
mice, this treatment can prevent the development of der-
mal fibrosis (71). Ubiquitous over-expression of IL-4 in
the skin of transgenic mice show cases focal deposition
of collagen and alters the homeostasis of the skin (72).

Recently, we investigated the mechanism of up-
regulation of collagen gene expression by IL-4 in nor-
mal and TSK fibroblasts. Our results have shown that
fibrotic fibroblasts express a much higher level of IL-4Rα

and thusly exhibit a much stronger activation of STAT6
upon stimulation with IL-4 compared to wild type fi-
broblasts, correlating with increased collagen promoter
activity and COL1A1 message levels. We also found that
introduction of a dominant negative STAT6 construct ab-
rogated this effect, suggesting a critical role for STAT6
in IL-4 induced up-regulation of collagen synthesis (73).
This may be due to a direct effect of STAT6 on col-
lagen promoter activity, which is supported by recent
data.

In vitro studies indicate that in addition to IL-4, IL-13
can also stimulate collagen production in human fibrob-
lasts (14, 74). Studies in both normal and keloid fi-
broblasts have demonstrated that IL-13 is necessary for
collagen production (9). Furthermore, IL-13 is involved
in the up-regulation of collagen α2(I) expression at the
transcriptional level. Similar to IL-4, the STAT6 and
phosphoinositide-3-kinase (PI3K) signaling pathways are
required for transcription of the COL1A2 gene and type 1
collagen expression (74). Therefore, both IL-4 and IL-13
have common signaling characteristics and both are in-
volved in the enhancement of collagen in both murine
and human fibroblasts.

EFFECTS OF IL-4 AND IL-13 ON EXPRESSION
OF THE TGF-β1 GENE IN FIBROBLASTS

Studies performed on the differentiation of T cells
clearly show that cytokines in exogenous milieu may in-
fluence the program of cytokine gene expression in vari-
ous T cell subsets. For instance, it was demonstrated that
IL-4 is a necessary differentiation factor for TGF-β Th3
regulatory cells (28) and that IL-4-mediated development
of these cells from naı̈ve CD4 T cells take place through a
STAT6-independent mechanism (75). It is important to
note that TGF-β exhibits opposite effects on lympho-
cytes and fibroblasts; TGF-β displays anti-inflammatory
and immunosupressive functions on the immune system
whereas its role in fibroblasts is to stimulate the production
of ECM proteins.

The role of TGF-β and IL-4 on the development of
skin fibrosis in TSK mice is supported by our data that
targeted mutations in the IL-4Rα and in one TGF-β1
allele prevents the occurrence of cutaneous hyperplasia,
and lowers the levels of dermal hydroxyproline and serum
concentrations of autoantibodies (70). The finding that
deletion of either cytokine completely prevented fibrosis
suggested that the two molecules must work in consort to
generate the sclerotic phenotype as otherwise deletion of
either cytokine alone would have a partial effect at best.

This hypothesis was supported by our data demonstrat-
ing that IL-4 stimulation of fibroblasts increased TGF-
β1 mRNA levels and that TSK/+, IL-4−/− mice had a
80% reduction in TGF-β1 mRNA compared to TSK/+,
IL-4+/+ mice (69) (Fig. 1). Therefore, IL-4 appears to
regulate the expression of TGF-β in fibroblasts, providing
an explanation for the absence of cutaneous hyperplasia
in TSK/+, IL-4Rα-/- and TSK/+, TGFβ ± mice.

As we discussed above, the activation of collagen
genes in fibroblasts is dependent of Smad-induced sig-
naling pathway or STAT6-induced signaling pathway by
TGF-β and IL-4 respectively. In the case of CD4 Th2
cells, IL-4 activates other transcription factors such as
GATA3, c-Maf, NF-1, Sp-1 (76). Surprisingly, an inspec-
tion of sequence of TGF-β1 promoter showed that it
bears not only Smad3 and AP-1 sites transcription fac-
tors activated through TGF-β signaling pathways but also
STAT6, GATA3, NF-1, Sp1 activated by IL-4 and IL-13
(Table I).

Through Western blotting, we have found that that
STAT6, AP-1 and SP-1 are constitutively activated in 3T3,
C57BL/6 and TSK fibroblasts (73) and the transcripts
of GATA3 and cMaf genes can be detected by RT-PCR
(Fig. 2). The presence of the GATA3 transcript in fibrob-
lasts was surprising since it was considered that GATA3 is
solely expressed in hematopoietic cells (77). Because of
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Fig. 1. Northern blotting detection for TGF-β1 in murine fibroblasts. (A) Northern blotting
analysis of TGF-β1 transcript in C57BL/6 fibroblasts stimulated with various concentrations of
murine recombinant IL-4 (ng/ml). (B) Northern blotting of TGF-β1 transcript in lungs. RNA
extracted from the lungs of three TSK/+ and one TSK/TSK mice, bearing a targeted mutation
of IL-4. Two control mice are also used (TSK/+ IL-4+/+ and TSK IL-4±). Composite picture
adapted from (70).

these observations, we hypothesize a plausible crosstalk
network at the level of the IL-4 and TGF-β1 genes. To
address this question, we used several deletion constructs
of the TGF-β1 promoter containing various combinations
of these elements.

Table I. DNA Transcription Factor Binding Sites on the
Murine TGF-β1 Promoter

Transcription Factors Binding Site Location (s)

RREB1 −1785/−1772
−1523/−1510
−257/−244
−92/−79

AP1 −1402/−1394
Smad3 −1282/−1275
GATA3 −1160/−1151
NF1 −1019/−1002
IRF2 −392/−380

−348/−336
STAT6 −300/−286
p54 −53/−44
SP-1 −165/−159

−153/−147
−125/−113
−69/−57
−18/−6
+9/+21

Note. Binding sites on the murine TGF-b1 promoter sequence
was analyzed by program MatInspector (82).

Using the 5′ deletion TGF-β1 promoter-CAT fusion
construct (−406/+55), we assessed the capacity of tran-
scription factors synthesized by quiescent or IL-4 and IL-
13-stimulated fibroblasts able to increase TGF-β1 pro-
moter activity. The data in Fig. 3 shows that the three
constructs (−2/+20 bp, −113/+55 bp, −231/+20 bp)
containing the Sp-1 binding sites exhibits minimal CAT
activity in the basal state or after stimulation with either
IL-4 or IL-13. This suggests that the TGF-β1 promoter
activation does not involve Sp-1 to any large extent in
spite the fact that Sp-1 was demonstrated by EMSA to
be activated by IL-4 stimulation in normal murine and
scleroderma fibroblasts (73). In contrast, the TGF-β1 pro-
moter constructs containing the STAT6 binding element
(−406/+55 bp and −1799/+55 bp) exhibited significant
CAT activity in the basal state, which was enhanced ap-
proximately 2 fold by IL-4 and IL-13. Lack of effect of
TGF-β1 on promoter activity of the −406/+55 (−406
to +55 bp) construct may be explained by the absence
of AP-1 and Smad3 binding motif. The −1799 to +55
bp construct containing AP-1, Smad3, NF-1 and GATA3
binding sites in addition to the STAT6 binding site, ex-
hibits higher promoter activity than the −406/+55 con-
struct in basal state and after stimulation with IL-4, IL-13
and TGF-β. The significant increase in promoter activity
of this construct after stimulation with TGF-β may be ex-
plained by the presence of the AP-1 and Smad3 binding
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Fig. 2. Western blotting of constitutively active STAT6 and RT-PCR of GATA3 and
c-Maf in murine fibroblasts. (A) Western blotting analysis of constitutively activated
STAT6 (pSTAT6, Mol Wt 110 kDa) in murine C57BL/6, TSK/+ and 3T3 fibroblasts
stimulated with murine recombinant IL-4 (100 ng/ml) or IL-13 (150 ng/ml). (B) RT-
PCR analysis of c-Maf and GATA-3 genes in murine C57BL/6 and TSK/+ fibroblasts.
Spleen cells are shown as control cells containing both transcripts. R + or − represents
the presence of reverse transcription in the sample analyzed.

Fig. 3. Effects of profibrogenic cytokines on murine fibroblasts transfected with various TGF-β1 constructs.
Murine 3T3 fibroblasts were transfected (using Fugene 6, Roche) with either 1 µg of empty plasmid or with 1 µg
of five different TGF-β1 promoter/CAT constructs (regions of −2/+20, −113/+55, −231/+20, −406/+55,
−1799/+55). CAT concentrations were measured in fibroblasts cultured for 48 h in medium alone or in the
presence of murine recombinant IL-4 (100 ng/ml), IL-13 (150 ng/ml) or TGF-β (10 ng/ml). CAT concentration
was measured in cell lysates using the CAT ELISA kit (Roche). Experiments were repeated three times and
expressed as the average ± standard error of the means.
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Fig. 4. Effect of IL-4-stimulated and IL-13-stimulated murine fibroblasts. Murine 3T3 fibroblasts were
transfected with 1 µg empty plasmid, with 1 µg of the construct containing the −406 to +55 base pair (bp)
fragment of the TGF-β1 promoter/CAT construct alone, or co-transfected with 0.7 µg STAT6 wild type
(wt), 0.7 µg STAT6 constitutively activated (VT), 0.7 µg STAT6 dominant negative (dn), 0.7 µg STAT6
mutant (�C) plasmid. CAT concentration was measured in fibroblasts cultured for 48 h in medium alone
or in the presence of murine recombinant IL-4 (100 ng/ml) or IL-13 (150 ng/ml). CAT concentration was
measured in cell lysates using the CAT ELISA kit (Roche). Experiments were performed three times and
expressed as the average ± standard error of the means.

element in addition to GATA3, NF-1 and STAT6 motifs in-
teracting with corresponding transcription factors known
to be activated by IL-4 and IL-13.

To further substantiate the role of STAT6 in enhancing
TGF-β1 promoter activity in fibroblasts we studied the
activity of the −406 to +55 TGF-β1 promoter construct
alone or in conjunction with various STAT6 constructs.
These constructs included STAT6 wild type (wt), consti-
tutively activated STAT6 (VT) or two dominant negative
STAT6 (dn or �C). The promoter activity was measured
in quiescent murine fibroblasts or upon stimulation for
48 h with IL-4 or IL-13.

Figure 4 shows that stimulation with IL-4 or IL-13 in-
duces a significant increase in the TGF-β1 promoter activ-
ity in fibroblasts transfected with the −406/+55 construct,
or co-transfected with STAT6 wt respectively. While this
high promoter activity was observed in fibroblasts co-
transfected with the STAT6 VT plasmid, no further in-
crease was seen after stimulation with IL-4 or IL-13. This
is in agreement with studies carried out in lymphocytes
demonstrating that ectopic expression of STAT6 VT was
sufficient to induce maximal activation of STAT6 signal-
ing pathway in Th2 lymphocytes and the addition of IL-4
did not enhance this effect (78).

The ectopic expression of the STAT6 �C plasmid
strongly inhibited basal activity in fibroblasts transfected

with the −406/+55 TGF-β1 promoter construct, which
was completely resistant to stimulation with IL-4 and
IL-13. A significant inhibition in CAT activity was also
observed in fibroblasts transfected with STAT6 dn. The
difference in the inhibitory effect between the STAT6 dn
and STAT6 �C constructs is due to the type of deletion;
specifically the phosphorylation site in the STAT6 dn con-
struct versus the deletion of 186 C-terminal amino acids
in STAT6 �C. It is noteworthy that the same pattern of
inhibitory effect was observed on promoter activity of the
−409/+55 TGF-β1 promoter construct in fibroblasts co-
transfected with STAT6 wt or STAT6 VT and STAT6 dn
or STAT6 �C in both resting or IL-4/IL-13 stimulated
fibroblasts.

In agreement with data described above, a significant
inhibition of promoter activity in both the basal state and
after stimulation with IL-4 and separately with IL-13, was
observed in fibroblasts transfected with the −406/+55
TGF-β1 promoter construct in which the STAT6 binding
site was mutated by in-situ mutagenesis (Fig. 5) (Stoica
et al.; manuscript in preparation).

Since a STAT6-dependent increase of TGF-β1 pro-
moter activity was demonstrated, we further examined
if STAT6 has an effect on the transcription of the en-
dogenous TGF-β1 gene. We observed that stimulation of
fibroblasts by IL-4 as well as by IL-13 increased TGF-β1
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Fig. 5. Effect of mutation of the STAT6 binding motifs on TGF-β1
promoter activity. Murine 3T3 fibroblasts were transfected with 1 µg of
empty plasmid or with 1 µg of the −406 to +55 bp fragment of the TGF-
β1 promoter/CAT construct. In addition, murine 3T3 fibroblasts were
also transfected with 1mg of a mutated −406 to +55 bp fragment of
the TGF-β1 promoter/CAT construct. CAT concentration was measured
in the fibroblasts cultured for 48 h in medium alone or in the presence
of murine recombinant IL-4 (100 ng/ml) or IL-13 (150 ng/ml). CAT
concentration was measured in cell lysates using the CAT ELISA kit
(Roche). Experiments were performed three times and expressed as the
average ± standard error of the means.

message levels compared to the basal state. Ectopic ex-
pression of STAT6 wt increased TGF-β1 expression in the
basal state and this was further enhanced by the addition
of IL-4 or IL-13. In sharp contrast, the ectopic expression

of STAT6 VT showed a 5.5 increase in basal state, which
was not further enhanced upon incubation of fibroblasts
with either cytokines (Fig. 6). This is in agreement with
studies carried out in lymphocytes demonstrating that ec-
topic expression of STAT6 VT was sufficient to induce
maximal activation of STAT6 pathways in Th2 lympho-
cytes and the addition of IL-4 did not enhance this effect
(78). Additionally, expression of STAT6 dn prevented the
up-regulation of TGF-β1 message levels by IL-4 or IL-13.
These results corroborate with the promoter activity data
described above. These results further support the idea
that STAT6 plays an important role in the transcription of
TGF-β1 upon IL-4 or IL-13 stimulation. Taken together,
these results demonstrate that STAT6 is important in both
IL-4 and IL-13 stimulated activity of the TGF-β1 pro-
moter. Figure 7 depicts the mechanisms of the activation
of the collagen gene in fibroblasts through signaling path-
ways initiated by pro-fibrogenic cytokines.

Ongoing studies are aimed at measuring the levels of
TGF-β1 transcript and proteins in fibroblasts stimulated or
not with cytokines and co-transfected with the −406/+55
TGF-β1 promoter construct and wild type or two dom-
inant negative STAT6 plasmids. However, it is possible
that IL-4 may induce TGF-β expression via other mecha-
nisms. For example, it was demonstrated that a functional
Ras, an upstream element of the mitogen activated pro-
tein kinase (MAPK) signaling pathway, is necessary for
receptor tyrosine-kinase induced transcription of TGF-β
gene (79, 80). As well, it was recently shown that the p38
MAPK pathway is involved in TGF-β gene expression
(81).

Our preliminary results suggest a link between the IL-4
and IL-13 signaling pathways and TGF-β production.
We identified a STAT6 binding element in the TGF-β1

Fig. 6. Northern Blotting of the TGF-β1 and GAPDH transcripts in murine fibroblasts transfected with plasmids containing STAT6 constructs.
Murine 3T3 fibroblasts were transfected with empty plasmid or with plasmid containing STAT6 wt, STAT6 VT or STAT6 dn and then cultured
for 48 h in medium alone or in the presence of human recombinant IL-4 (100 ng/ml) or IL-13 (150 ng/ml). RNA extracted from transfected
fibroblasts were used for determining the level of TGF-β1 and GAPDH transcripts using cDNA probes specific for TGF-β1 and GAPDH. The
results were expressed as TGF-β1/GAPDH ratio subsequent to measuring the signal intensity using Adobe Photoshop software. Experiments
were repeated twice.
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Fig. 7. Activation of the type 1 collagen and TGF-β1 genes in fibroblasts via signaling pathways
induced by pro-fibrogenic cytokines. Our laboratory proposes that the pro-fibrogenic cytokines
IL-4/IL-13 can regulate the promoter activity of the TGF-β1 gene in addition to the COL1A2
gene, in fibroblasts. As well, TGF-β1 is proposed to possess both autocrine and paracrine effects
in regards to the fibroblasts.

promoter and demonstrated that this site is crucial for
IL-4 and IL-13 activation of the TGF-β1 promoter, tran-
scription and translation of the TGF-β1 gene in murine
fibroblasts. This is the first demonstration of a molec-
ular mechanism of activation of the TGF-β1 gene by
pro-fibrogenic cytokines IL-4 and IL-13. These results
illustrate the intricate nature of crosstalk in the cytokine
network and suggest that molecules interfering with either
of the IL-4 or IL-13 signaling pathway in fibroblasts may
be a potentially useful therapeutic target in the treatment
of fibrotic diseases.
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