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Apoptosis Signal-Regulating Kinase 1 Mediates Cellular
Senescence Induced by High Glucose in Endothelial Cells
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Vascular ageing is accelerated in patients with diabetes.

However, the underlying mechanism remains unclear.

Here, we show that high glucose induces activation of

apoptosis signal-regulating kinase 1 (ASK1), an apoptosis-

inducing signal that mediates endothelial cell senescence

induced by hyperglycemia. High glucose induced a time-

dependent increase in the levels of ASK1 expression and

its activity in human umbilical vein endothelial cells

(HUVECs). Incubation of endothelial cells with high glu-

cose increased the proportion of cells expressing senes-

cence-associated �-galactosidase (SA-�-gal) activity.

However, transfection with an adenoviral construct includ-

ing a dominant negative form of ASK1 gene significantly

inhibited SA-�-gal activity induced by high glucose. In

addition, infection with an adenoviral construct expressing

the constitutively active ASK1 gene directly induced an

increase in the levels of SA-�-gal activity. Activation of the

ASK1 signal also enhanced plasminogen activator inhibi-

tor-1 (PAI-1) expression in HUVECs. Induction of senes-

cent endothelial cells in aortas and elevation of plasma

PAI-1 levels were observed in streptozotocin (STZ) dia-

betic mice, whereas these changes induced by STZ were

attenuated in ASK1-knockout mice. Our results suggest

that hyperglycemia accelerates endothelial cell senescence

and upregulation of PAI-1 expression through activation of

the ASK1 signal. Thus, ASK1 may be a new therapeutic

target to prevent vascular ageing and thrombosis in dia-

betic patients. Diabetes 55:1660–1665, 2006

A
geing is an independent risk factor for athero-
sclerosis, and the incidence of cardiovascular
events increases with age. Previous studies
have shown that endothelial cells in atheroscle-

rotic lesions show features of cellular senescence includ-
ing senescence-associated �-galactosidase (SA-�-gal)
staining and telomere shortening (1,2). Since repeated
injuries of the endothelium and subsequent turnover of
medial cells have been implicated in the genesis of athero-
sclerosis, the rate of telomere shortening appears to be
higher in vascular cells susceptible to atherogenesis (3).
Importantly, senescent vascular cell behaviors are consis-
tent with the changes seen in atherosclerosis. For exam-
ple, expression of inflammatory cytokines and adhesion
molecules is upregulated in senescent vascular cells, and
nitric oxide (NO) production is dramatically reduced in
senescent endothelial cells (4–6). Conversely, NO is able
to activate telomerase and delay endothelial cell senes-
cence (7). In addition, introduction of telomerase catalytic
component into endothelial cells extends life span and
restores NO production in senescent endothelial cells (8).
These findings suggest that vascular senescence may
participate in the genesis of atherosclerosis.

Senescence was originally defined by the observation
that primary cells limit their proliferative potential in cell
culture (9). It has been proposed that some aspect of
excessive telomere shortening induces cell-cycle arrest
and characteristic features of senescence (10). Cellular
senescence, however, can be induced prematurely in early
passage cells by oxidative stress that causes DNA damage
(11,12) or by strong mitogenic signals (13,14). A number of
in vitro and in vivo studies have shown that oxidative
stress is increased in diabetic patients (15,16). Thus,
premature senescence might be accelerated in diabetic
patients. Actually, it is reported that hyperglycemia in-
duces premature senescence in human skin fibroblast
(17), and glycated collagen I induces premature senes-
cence-like phenotypic changes in association with reduced
NO production in endothelial cells (18). However, the
molecular mechanism by which hyperglycemia induces
endothelial premature senescence remains unclear. Apop-
tosis signal-regulating kinase 1 (ASK1) is a member of the
mitogen-activated protein (MAP) kinase kinase kinase
group that activates the c-Jun NH2-terminal kinase and p38
MAP kinase signal pathways (19). Recent studies have
shown that mitochondria contain ASK1, which releases
cytochrome C by an unknown mechanism that does not
activate MAP kinases (20). Since mitochondria play a
pivotal role in the genesis of both diabetes and cellular
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senescence (21,22), we asked if ASK1 might be involved in
the mechanism underlying the development of endothelial
cell senescence induced by hyperglycemia. We found that
ASK1 signaling is activated by hyperglycemia, and ASK1
activation may mediate cellular senescence induced by
hyperglycemia in endothelial cells.

RESEARCH DESIGN AND METHODS

Cell culture and reagents. Human umbilical vein endothelial cells
(HUVECs) were purchased from Sanko Junyaku (Tokyo, Japan) and cultured
in endothelial basal medium-2 (Sanko Junyaku) supplemented with 2% FCS
and antibiotics. Antibodies to ASK1, PAI-1, CD31, and �-tubulin were from
Santa-Cruz Biotech and Carbiochem.
Adenoviral constructs. Replication-defective adenovirus vectors expressing
a constitutively active form of ASK1 gene (CA-ASK1) and a dominant negative
form of ASK1 gene (DN-ASK1) (mutant Lys 709 to Met), tagged hemagglutinin
in the site of NH2-terminal, have been described previously (19,23).
Western blot analysis. Protein extract (20 �g) was fractionated on SDS-
PAGE gels and transferred to a polyvinylidine difluoride membrane (Immo-
bilon-P; Millipore). The membrane was blocked with T-phosphate–buffered
saline (1� PBS, 0.3% Tween 20) containing 3% dry milk and incubated with
primary antibody (anti-ASK1, anti–�-tubulin, and anti–phospho-ASK1) over-
night at 4°C. The immune complexes were detected by chemiluminescence
methods (ECL; Amersham International).
Animal experiments. ASK1-knockout mice (24) were made diabetic mice by
a single intraperitoneal injection of streptozotocin (STZ) (60 mg/kg; Sigma).
Age-matched control groups were also created. Tail blood glucose was
assayed 3 days after injection using glucose test strips (BM-Accutest; Roche
Diagnostics, Basel, Switzerland) to confirm diabetes. All diabetic animals had
blood glucose values �30 mmol/l. Mice were maintained under a constant
temperature (23 � 1°C) with a 12-h light and 12-h dark cycle for 1 week with
free access to water and food. All animal experiments were performed in
accordance with the Ethics Committee on Animal Experiments and Care of
the Osaka University.
Measurement of PAI-1 levels by enzyme-linked immunosorbent assay.

Total secreted PAI-1 and urokinase type plasminogen activator antigen levels
(free plus complex forms) were measured (in duplicate) in conditioned
culture media and plasma by using a commercial PAI-1 activity assay kit
(CHEMICON). Absorption was measured at 405 nm with a Dynatech plate
reader and converted to each respective antigen concentration by the use of
appropriate standards and BioLinx software (Dynatech). Total secreted PAI-1
and urokinase type plasminogen activator antigen levels (24 h) were calcu-
lated in nanograms per milliliter per well (100 ml media per well).
Senescence-associated �-galactosidase activity. Senescence-associated
�-galactosidase (SA-�-gal) activity was detected as described previously (25).
Counting cells at four random fields per dish and assessing the percentage of
SA-�-gal–positive cells from at least 1,000 cells per field obtained quantifica-
tion of SA-�-gal–positive cells.
Statistical analysis. Results are expressed as means � SE. Comparison
among groups was performed by one-way ANOVA, followed by Duncan
multiple-range test for differences between two groups; a Student’s t test was
used when appropriate. A value of P � 0.05 was considered significant.

RESULTS

High glucose induces upregulation of the ASK1 sig-
naling in endothelial cells. We first examined whether
high glucose induces upregulation of the ASK1 signaling in
endothelial cells. As shown in Fig. 1A, incubation of
HUVECs with high glucose (33 mmol/l) resulted in a
time-dependent increase in the levels of ASK1 protein
expression, whereas incubation for 24 h with an osmotic
control mannitol had no significant effects (Fig. 1B). We
also examined the effect of high glucose on the catalytic
activity of ASK1 by using an anti–phospho-ASK1 antibody
that monitors activating phosphorylation of ASK1 (26).
High glucose induced a transient increase in the levels of
endogenous ASK1 activity in endothelial cells (Fig. 1B),
indicating that high glucose induces activation of the ASK1
signaling.

High glucose induces endothelial cell senescence
through activation of ASK1. Next, we examined
whether high glucose induces cellular senescence in en-
dothelial cells. As shown in Fig. 2, the percentage of
SA-�-gal–positive cells was increased in HUVECs after
exposure to high glucose (33 mmol/l). However, an os-
motic control mannitol had no significant effects (Fig. 2B).
To investigate the relation between the ASK1 signaling and
endothelial cell senescence, we next examined the effect
of infection of HUVECs with an adenoviral construct
expressing CA-ASK1 and DN-ASK1 on endothelial cell
senescence. Upregulation of ASK1 activity with CA-ASK1
directly increased proportion of cells expressing SA-�-gal
activity. Conversely, downregulation of ASK1 activity with
DN-ASK1 inhibited SA-�-gal activity induced by high glu-
cose, indicating that high glucose may induce endothelial
cell senescence through activation of ASK1.
Senescent endothelial cells are not observed in aor-
tas of STZ-diabetic ASK1-knockout mice. To investi-
gate a direct link between ASK1 and endothelial cell
senescence in vivo, we next examined whether senescent
endothelial cells can be detected in aortas of STZ-diabetic
ASK1-knockout mice. Western blot analysis confirmed
that ASK1 was not expressed in aortas of ASK1-knockout
mice (Fig. 3A). STZ-treated mice had an elevation of
plasma glucose associated with decreased plasma insulin
levels compared with control mice (Fig. 3B and C). SA-�-
gal activity was observed in the aorta from STZ-diabetic
mice (Fig. 3D). SA-�-gal–positive endothelial cells were
detected on the luminal surface of these aortas. In con-
trast, SA-�-gal–positive endothelial cells were not detected
in the aorta from STZ-diabetic ASK1-knockout mice (Fig.
3D–F). These results indicate that ASK1 may be essential
for the induction of endothelial cell senescence in aortas
of STZ-diabetic mice.
High glucose induces upregulation of endothelial
PAI-1 expression and its release through activation
of ASK1. Since the expression of PAI-1, a principal factor
for thrombosis, is upregulated in the elderly, we next
examined whether ASK1 mediates PAI-1 expression in
HUVECs. Upregulation of ASK1 with CA-ASK1 directly
enhanced endothelial PAI-1 expression and release into
the medium from HUVECs. However, an osmotic control
mannitol did not significantly enhance PAI-1 release from
these cells (Fig. 4B). In addition, suppression of ASK1 with
DN-ASK1 suppressed the levels of PAI-1 expression and
release induced by high glucose (Fig. 4A and B). These
results suggest that ASK1 mediates endothelial PAI-1
expression as well as endothelial cell senescence.
STZ treatment does not elevate plasma PAI-1 concen-
trations in ASK1-knockout mice. To investigate a link
between ASK1 and PAI-1 release in vivo, we examined
whether STZ treatment induces elevation of plasma PAI-1
levels in ASK1-knockout mice. As shown in Fig. 5, eleva-
tion of plasma PAI-1 levels was observed in STZ-diabetic
mice. In contrast, this increase by STZ treatment was
attenuated in ASK1-knockout mice. These results suggest
that ASK1 may play an essential role in the elevation of
plasma PAI-1 concentrations in diabetic mice.

DISCUSSION

In the present study, we demonstrated that high glucose
induces activation of the ASK1 signal and cellular senes-
cence in endothelial cells and that downregulation of
the ASK1 signal by DN-ASK1 suppresses endothelial cell
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senescence induced by high glucose. In addition, acti-
vation of the ASK1 signal by CA-ASK1 directly induced
premature senescence and upregulation of PAI-1 expres-
sion in endothelial cells. Furthermore, senescent endothe-
lial cells are detected in aortas and plasma PAI-1 levels are
elevated in STZ-diabetic wild-type mice, whereas these are
not observed in STZ-diabetic ASK1-knockout mice.

Cellular senescence appears to play an important role in
the ageing process. It is believed that accumulation of
senescent cells in the vasculature results in failure of
vascular homeostasis and function. Importantly, senes-

cence is more accelerated in patients with diabetes com-
pared with normal individuals, and these patients showed
signs of premature senescence. However, the mechanism
underlying the acceleration of senescence in these pa-
tients has not been defined. There are several stimuli
that induce cellular senescence. These include telomere
shortening, DNA damage, oxidative stress, sustained
mitogen stimulation, and other cellular stresses (27–29).
Senescence induced by telomere shortening is termed
“replicative senescence,” whereas senescence induced
independent of telomere length is termed “premature

FIG. 1. High glucose induces upregulation of
the ASK1 signal in endothelial cells. HUVECs
were incubated with high glucose (33
mmol/l) for indicated times or mannitol (33
mmol/l) for 24 h. Western blot analyses of
ASK1 expression (A and B) and phospho-
ASK1 levels (ASK1 activity) (C) were per-
formed with 20 �g of cell lysate. ASK1
expression and activities were quantified by
densitometric analysis (data are normalized
against �-tubulin and expressed as means �
SE). Data are presented as means � SE in
four experiments. *P < 0.05, significantly
different from control HUVECs cultured in
the absence of high glucose.

FIG. 2. ASK1 mediates endothelial cell se-
nescence induced by high glucose. HUVECs
were infected with CA-ASK1 or DN-ASK1 at
a multiplicity of infection of 10. HUVECs
were then treated with high glucose (33
mmol/l) or mannitol (33 mmol/l) for 24 h. A:
Cells were stained for SA-�-gal as described
in the text. B: Levels of SA-�-gal–positive
cells were counted after the treatment as
described in the text. Data are presented as
means � SE in four experiments. *P < 0.05,
significantly different from control HUVECs.
**P < 0.05, significantly different from
HUVECs treated with high glucose.
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senescence.” It has been reported that proatherogenic
factors impair telomerase activity and thereby may
promote replicative senescence in endothelial cells,
whereas NO, an anti-atherogenic factor, prevents age-
related downregulation of telomerase activity and delays
this senescence (7,30). Chen et al. (18) reported that
glycated collagen I induces a premature senescence-like
phenotype in endothelial cells. Although the molecular
mechanism underlying induction of premature senescence
is less well understood, several possible mechanisms have
been reported previously. For example, oncogenic Ras
promotes premature senescence in association with accu-
mulation of p53 as well as p16 in vascular cells, which is
mediated through activation of the MAP kinase cascade
(3,30). Interestingly, modestly overactive p53 is reported
to result in shortened life span and appearance of prema-
ture senescence, despite conferring extraordinary protec-
tion against cancer (31). Most recently, Wang et al. (32)
reported that the stress-responsive Jun–NH2-terminal ki-
nase, an apoptosis-inducing signal (33), extends life span

in Drosophila through activation of the transcription fac-
tor Foxo. These results suggest that apoptosis-related
factors might participate in the mechanism underlying
induction of premature senescence. Notably, ASK1 in-
duces apoptosis through the mitochondria-dependent
mechanism (20). Additional studies, however, are neces-
sary to clarify this point.

The endothelium is a primary protective barrier that
possesses strong anti-coagulatory properties. Importantly,
senescence exaggerates vascular inflammation and throm-
bosis in the vessels, promoting the development of cardio-
vascular events (34). Senescent endothelial cells may
contribute to the development of thrombosis through
alteration of gene expressions in these cells. One of the
important key genes for ageing-associated thrombosis is
PAI-1, a major inhibitor of fibrinolysis. Accumulating evi-
dence has shown that elevation of plasma PAI-1 levels is
an independent risk factor for cardiovascular diseases as
well as a clinical marker of impaired fibrinolysis. For
example, the acute release of PAI-1 is a strong indepen-

FIG. 3. Senescent endothelial cells are not
detected in aortas of STZ-diabetic ASK1-
knockout (KO) mice. A: Western blot analy-
ses show ASK1 expression in mouse aortas.
B and C: Plasma glucose and insulin levels
were measured before and after treatment
with STZ (60 mg/kg of body wt). D: Photo-
graphs show SA-�-gal activity (blue) in
mouse aortas. E: Arrows indicate SA-�-gal–
positive cells on the luminal surface in the
cross-section of the mouse aorta. F: Section
of aortas was also stained with CD31, an
endothelial cell marker. Arrows indicate pos-
itive staining in the endothelium. STZ-dia-
betic (DM) mice were obtained as described
in the text (n � 3).

FIG. 4. Activation of the ASK1 signal induces
upregulation of PAI-1 expression in endo-
thelial cells. A: HUVECs were preinfected
with an adenovirus vector expressing the
CA-ASK1 or DN-ASK1 at a multiplicity of
infection of 10. HUVECs were then treated
with or without high glucose (33 mmol/l) or
mannitol (33 mmol/l) for 24 h. Western blot
analyses were performed as described in the
text. B: Mutant ASK1 expression was deter-
mined by using antibody to the hemaggluti-
nin (HG) tag. HUVECs were preinfected with
an adenovirus vector as described in the
legend of Fig. 4A. The medium was then
collected after treatment with high glucose.
PAI-1 concentrations in the medium were
determined as described in the text. *P <
0.05, significantly different from control
HUVECs cultured in the absence of high
glucose. Data are presented as means � SE
in four experiments. **P < 0.05, significantly
different from HUVECs treated with high
glucose.
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dent predictor of death in ST-segment elevation myocar-
dial infarction (35). High plasma PAI-1 concentrations
precede a first acute myocardial infarction in both men
and women (36). Interestingly, direct effects of PAI-1 on
cardiovascular remodeling and metabolic profiles have
been also demonstrated. PAI-1 enhances ventricular re-
modeling after myocardial infarction (37) and neointima
formation after oxidative vascular injury in atherosclerot-
ic-prone mice (38). In addition, disruption of the PAI-1
gene reduces the adiposity and improves the metabolic
profile of genetically obese and diabetic ob/ob mice (39).
These results suggest that PAI-1 plays a critical role in the
pathogenesis of atherosclerosis as well as thrombosis.
Importantly, plasma PAI-1 concentrations and PAI-1 ex-
pression in the arterial wall are elevated in patients with
diabetes (40,41). In the present study, we demonstrated
that suppression of the ASK1 signal inhibits elevation of
plasma PAI-1 levels in diabetic mice. Our preliminary
experiments also showed that ASK1 induced upregulation
of p53 activity in endothelial cells (data not shown).
Notably, previous studies suggest that p53 is implicated in
the mechanism of cellular senescence and ageing (3,32)
and that p53 phosphorylation at serine 15 is required for
transcriptional induction of the PAI-1 gene (42), suggest-
ing that ASK1-induced cellular senescence and PAI-1 up-
regulation may be mediated through the p53-dependent
signaling pathways. Thus, the ASK1 signaling may be a
new therapeutic target to prevent acceleration of the
vascular senescence and thrombosis in diabetic patients.

In conclusion, we demonstrated for the first time to our
knowledge that high glucose induces activation of the
ASK1 signal that mediates the premature senescence in
endothelial cells. Activation of ASK1 also induces upregu-
lation of endothelial PAI-1 expression. These findings may
provide a new insight into the molecular mechanism
underlying the development of vascular complications in
patients with diabetes.
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