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Abstract 
 
 
 
 
 
Testing using manually generated test cases is the primary technique used in industry to improve 

reliability  of software—in  fact,  such ad hoc testing  accounts  for over half of the  typical  cost  of 

software  development.   I  propose  new methods  for systematically  and automatically  testing 

sequential and concurrent programs.  The methods are based on three new techniques:  concolic 

testing, race-detection and flipping, and predictive monitoring.  Concolic testing combines concrete 

and symbolic testing to avoid redundant test cases as Ill as false warnings.  Concolic testing can 

catch generic errors such as assertion violations, uncaught exceptions, and segmentation faults. 

Large real-world programs are almost always concurrent.   Because of the inherent non- 

determinism  of such programs,  testing  is  notoriously  hard.  I  extend  concolic testing  with  a 

method called race-detection  and flipping,  which provides ways of reducing,  often exponentially, 

the exploration space for concolic testing.  This combined method provides the first technique to 

effectively test concurrent programs with complex data inputs. 

Concolic testing may also be combined with formal specifications by using runtime monitors. 

Runtime monitors are small software units which are synthesized automatically from the formal 

specification for the software and Iaved into the code to dynamically check if the specification is 

violated.  For multi-threaded concurrent programs, I developed a novel technique which allows 

efficient predictive monitoring to enable the detection of a violation by observing some related, but 

possibly bug-free execution of a concurrent program. Predictive monitoring dramatically improves 

the efficiency of testing. 

Based on the above methods I have developed tools for testing both C and Java programs.  I have 

used the tools to find bugs in several real-world software systems including SGLIB, a popular C data 

structure library  used in a commercial tool,  implementations of the Needham-Schroeder protocol 

and the TMN  protocol, the scheduler of HoneyIll’s DEOS real-time operating system, and the Sun 

Microsystems’ JDK 1.4 collection framework. 
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Chapter 1 
 
 

Introduction 
 

Software  pervades  every aspect  of our life:  businesses,  financial services,  medical  services,  

communication  systems,  entertainment,  and education  are  invariably dependent  on software.   

With this increasing dependency on software, I expect software to be reliable, robust, safe, and 

secure. Unfortunately, at the present time the reliability of day-to-day software is questionable.  In 

fact, NIST estimated in 2002 that software failures cost the US economy alone about $59.5 billion 

every year, and that improvements in software testing infrastructure might save one-third of this 

cost. 

Testing remains the primary way to improve reliability of software.  Billions of dollars are spent 

on testing  in the  software  industry,  as  testing  usually  accounts  for more than  half the  cost  of 

software development.  In spite of its success in both commercial and open-source software, testing 

suffers from at least four limitations. First, the primary method of generating test inputs is manual. 

Automated test input generation techniques, which are less widely-used, have limitations:  random 

testing can only detect a few bugs; symbolic execution based testing,  which is more exhaustive, 

depends on automated theorem proving techniques and hence limited by the poIr of underlying 

theorem prover.  Second, testing becomes notoriously hard for large concurrent programs due to 

the inherent non-determinism in such programs.  Third,  testing is ad hoc: the translation of the 

specification into program assertions is mostly done manually. Finally, testing can find bugs in a 

program; hoIver, it cannot prove a program correct. 

In this dissertation, I partly address these problems by developing systematic and automated 

testing methods for sequential and concurrent programs. 

I first focus on sequential programs that can get data inputs from their environments.  I assume 

that the behavior of such a program depends solely on the input that it gets from its external 

environment—for a given input the behavior of the program is deterministic.  I have developed a 

novel method to systematically and automatically test sequential programs.  The method is called 
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concolic testing.  Concolic testing combines concrete and symbolic execution to generate test inputs 

that enable a program to explore all the distinct feasible execution paths of a programs at most 

once, while avoiding redundant test inputs as Ill as false warnings.  Since concolic testing tries to 

explore all possible execution paths of a program, it can catch generic errors such as assertion 

violations, uncaught exceptions, segmentation faults, and so on. 

 

Large real-world programs are almost invariably concurrent.  In concurrent programs, several 

threads or actors or processes execute concurrently communicating with each other either through 

shared memory or message passing.  Testing concurrent programs is notoriously hard because of the 

exponentially large number of possible interleavings of concurrent events that the execution of such 

programs generate.  I have extended concolic testing with a new technique called race-detection and 

flipping which provides ways of dramatically reducing the exploration space for shared memory 

concurrent programs.  In particular, the extended method uses the concrete execution of concolic 

testing to compute the causality relation, an abstract relation, betIen the events in a concurrent 

execution.  Two executions of a concurrent program are said to be equivalent if they exhibit the 

same  events  and the  events  are  related  by the  same  causality  relation.   I  use the  computed 

causality relation to provide a novel technique for exploring non-equivalent (with respect to the 

causality  relation)  execution  paths  of a concurrent  program.  The  extended  testing  method  can 

catch concurrency related generic errors such as data races and deadlocks, in addition to generic 

errors such as assertion violations, uncaught exceptions, and segmentation faults.  This extension 

provides the first technique to effectively and systematically test concurrent programs with complex 

data inputs.  Because our testing method is designed to explore execution paths of a concurrent 

program, I term the method Explicit Path Model Checking. 

 

Errors  in a program may not  be always  generic:   they  may be due  to  the  violation  of the 

functional requirement of the program, for example,  requirements that are provided in a formal 

functional  specification  of the  program.  To test  a program against  its  formal specification,  I 

combine  concolic testing  with  runtime  monitoring.   Runtime  monitors  are  small  software  units 

which are synthesized automatically from a formal specification for the program and Iaved into the 

code to dynamically check if the specification is violated. 

 

While applying concolic testing combined with runtime monitoring to concurrent multi-threaded 
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programs, I observed that exploring only non-equivalent execution paths is not sufficient for catching 

violations of temporal properties—a temporal property may be simultaneously satisfied and 

violated by two different equivalent execution paths.  Therefore, to test a temporal specification 

against a program, I need to explore and monitor all possible execution paths of the program. 

Unfortunately,  it has been shown  that  the  number  of possible  execution  paths  of a concurrent 

program can be exponentially larger than the number of non-equivalent paths.  This makes runtime 

monitoring of all execution paths of even a relatively simple concurrent program impractical. 

 

To address  this  difficulty,  I have developed  a novel  technique  for predictive  monitoring  of 

concurrent  programs.   In this  technique  I generate,  from an observed  execution  path,  all its 

equivalent execution paths and represent them compactly as an abstract model called a computation 

lattice. I show that monitoring of temporal properties on this model can be done efficiently. Since this 

technique enables us to predict violations of properties in non-observed execution paths without re-

executing  the  program, I call the  technique  predictive  monitoring.   Observe  that  predictive 

monitoring can predict and monitor all execution paths equivalent to a given execution path; I still 

need concolic testing extended with race-detection and flipping to explore all non-equivalent 

execution paths. 

 

Based on the above methods I have developed tools for testing both C and Java programs. The 

testing tool for C is called CUTE; CUTE can only handle sequential C programs.  The testing tool 

for Java is called jCUTE; jCUTE can test multi-threaded Java programs.  Both CUTE and jCUTE  

can find generic  errors.   For Java, I have also  implemented  the  predictive  monitoring method in 

jCUTE. I have used CUTE and jCUTE to find bugs in several real-world software systems.  CUTE 

found two previously unknown errors—a segmentation fault and an infinite loop— in SGLIB, a 

popular C data structure library used in a commercial software.  Using jCUTE, I tested the thread-

safe Java Collection framework provided with the Sun Microsystems’ Java 1.4. Surprisingly,  I 

discovered  several  data  races,  deadlocks,  uncaught  exceptions,  and an infinite loop in this widely 

used library.  All of these are concurrency related potential bugs.  In addition, jCUTE found a 

previously known subtle time-partitioning error in the HoneyIll’s DEOS real-time operating system 

developed for use in small business aircraft.  jCUTE detected Ill-known security attacks in a 

concurrent implementation of the Needham-Schroeder and the TMN protocols. 



3 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: The ‘Big Picture’ 
 

 

1.1    Background 
 
 
I  describe  the  ‘big picture’  and how this  dissertation  fits  in the  big picture.   A large  fraction of 

the research in software engineering and programming languages is devoted to the problem of 

building reliable software.  The research can be broadly classified into five overlapping categories 

(see Figure 1.1) as follows. 

• Safe Programming Languages and Type Systems:  The goal of research in this area is to develop 

programs  using  programming constructs  and type  systems  that  ensure  that  the  developed 

programs  are  free  from certain  classes  of bugs  such  as memory  errors,  information  leaks, 

data races, deadlocks, etc.  The limitations of these approaches is that they cannot guarantee 

that a program is free from all kinds of bugs.  Moreover,  sophisticated type systems make 

programming a harder task. 
 

•  Static Analysis:  The methods developed by research in this area help to find bugs in programs 

by statically analyzing the source code of a program. Methods in this area include automated 

theorem proving, pointer analysis,  software model checking based on predicate abstraction 
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and refinement, and so on. Software reliability methods based on static analyses are often 

conservative, resulting in false notification of errors. 

 

 

•  Dynamic  Analysis:   Dynamic analysis  relies  on the  runtime  information  obtained  from an 

actual execution of a program. Various techniques based on dynamic program analyses in- 

clude automated testing, runtime verification, explicit state model checking, and so on. Since 

dynamic analysis based methods detect bugs by observing the actual execution of a program, 

the bugs inferred are often real bugs. Unfortunately, since dynamic program analyses based 

methods analyze a single execution of program, they cannot discover all bugs. 
 

 

• Model  Checking:   Model  checking  methods  aim to  prove  that  a program meets  it formal 

specification.   They  include  methods  based on both  static  analyses  and dynamic analyses. 

The main limitation of model checking methods is that they do not scale for large programs 

as the state space to be explored in such methods becomes enormous. 
 

 

• Model  Based Software  Development  and Analysis:   The  research  in this  area  is  based  on 

the philosophy that the development of software should begin with the design of a formal 

model.  Although this is a rigorous and systematic method of developing software, the cost 

and expertise required for developing software using this paradigm is often large.  This often 

limits the applicability of the paradigm to safety critical systems. 
 
 
 
 

The work presented in this dissertation falls under the category of dynamic program analysis. I 

believe in the philosophy that I can catch real bugs by actually executing a program. HoIver, dynamic 

analysis means that I are restricted to information that is observed in an execution.  I try to remove 

this limitation in a scalable way by directing a program to execute in all possible ways.  Moreover, 

I develop methods that can, by observing a successful execution, predict bugs with  certainty  in 

other  unobserved  executions.   In a broader  sense,  this  thesis  makes dynamic program analysis 

more systematic and rigorous; in other words, the thesis bridges some of the gap betIen model 

checking and testing. 
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1.2    Outline 
 
 
The rest of the dissertation is organized as follows.  In Chapter 2, I give an overview of our testing 

algorithms using simple examples.  I use three different examples to introduce concolic testing, race-

detection and flipping, and predictive monitoring. 

In Chapter 3, to simplify the description of our testing algorithms, I introduce a simple 

imperative shared-memory multi-threaded programming language, called Scil.  Most features of 

common high level imperative programming languages such as C and Java can be translated into 

Scil.  I then formalize the execution paths of a program written in Scil in terms of a partial 

order relation called the causality relation and show how the causality relation can be tracked at 

runtime using dynamic vector clocks. 

In Chapters  4, I describe  our testing  algorithm  for the  sequential  fragment  of Scil.   The 

method is called concolic testing.  I discuss the various advantages of concolic testing over tradi- 

tional symbolic testing. 

In Chapter 5, I extend concolic testing with race-detection and flipping to test a concurrent 

program written in Scil.  I first describe a simple inefficient testing algorithm in which I use bi- nary 

semaphores to effectively control the execution of threads. Then I modify the algorithm with the race-

detection and flipping technique to improve the efficiency of testing concurrent programs. Finally, I 

suggest a further optimization of the testing algorithm. 

In Chapter 6, I introduce predictive monitoring.  I start this chapter by briefly introducing non-

deterministic finite automata as monitors for temporal specifications.  I then describe an algorithm 

for constructing an abstract computation model, called computation lattice, by observing a concurrent 

execution path.  I show that monitoring of a non-deterministic finite automata on a computation 

lattice can be done efficiently and on-the-fly.  Finally, I propose a heuristics, called causality cone 

heuristics, to make predictive monitoring more effective. 

In Chapter 7, I describe the implementation of the testing methods in two tools CUTE and 

jCUTE for testing C and Java programs, respectively.  I then report our experience on applying 

these tools on some real-world programs.  In Chapter 8, I briefly review the literature related to the 

work in this dissertation. 
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Chapter 2 
 
 

Overview 
 

 
I give an overview of concolic testing, the race-detection and flipping algorithm, and predictive 

monitoring  through  a sequence of simple  examples.   The  examples  used to  describe  each of the 

three methods are different from each other.  This is done to keep the examples simple and relevant 

to the methods they illustrate.  I introduce concolic testing through a simple sequential program 

containing an error statement which may be executed for some input.  The example is used to show 

how concolic testing generates test inputs one by one so that the program is directed to execute 

the error statement.  The second example is a simple shared-memory multi-threaded program also 

containing an error statement.  I use this example to describe how concolic testing is extended with 

the race-detection and flipping algorithm. The third example is another simple shared-memory multi-

threaded program, which is required to obey a given temporal specification.  The example illustrate 

the use of predictive monitoring to catch temporal specification violations. 

 
 
 

2.1    Concolic Testing through an Example 
 
 
In concolic testing, our goal is to generate data inputs that would exercise all the feasible execution 

paths of a sequential program. I first describe the essential idea behind concolic testing and then use 

an example to illustrate it. 

Our algorithm for concolic testing uses concrete values as Ill as symbolic values for the inputs, and 

executes a program both concretely and symbolically.  The symbolic execution is similar to the 

traditional symbolic execution [55], except that the algorithm follows the path that the concrete 

execution takes.  During the course of the execution, it collects the constraints over the symbolic 

values  at  each branch point  (i.e.,  the  symbolic  constraints ).   At the  end of the  execution,  the 

algorithm has computed a sequence of symbolic constraints corresponding to each branch point. 
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I call the conjunction of these constraints a path constraint.  Observe that all input values that 

satisfy a given path constraint will explore the same execution path. 

The  algorithm  first  generates  a random input.   Then  the  algorithm  does the  following in a 

loop: it executes the code with the generated input.  At the same time the algorithm computes the 

symbolic constraints.  It backtracks and generates a new input and executes the program again. 

The algorithm repeats these steps until it has explored all possible distinct execution paths using 

a depth first search strategy.  The choice of a new input is made as follows:  The algorithm picks a 

constraint from the symbolic constraints that Ire collected along the execution path and negates the 

constraint to define a new path constraint.  The algorithm then finds, if possible, some concrete values 

that satisfy the new path constraint.  These values are used as input for the next execution. 

A complication arises from the fact that for some symbolic constraints, our constraint solver 

may not be poIrful enough to compute concrete values that satisfy the constraints.  To address this 

difficulty, such symbolic constraints are simplified by replacing some of the symbolic values with 

concrete values.  1 

I use a simple example to illustrate how our tool CUTE performs concolic testing.  Consider 
 

the C function testme  shown in Figure 2.1. The variables p and x in this function receive input 

from the  external  environment.   (A  program gets  input  using  the  expression  input().   Observe 

that input() captures the various functions through which a program may receive data from its 

external environment.)  Note that, p is a pointer, and thus the input includes the memory graph 

reachable from that  pointer.   In this example,  the graph is a list of cell  allocation units.   The 

function testme  has an error that can be reached given some specific values of the input. 

For the example function testme, CUTE first non-randomly generates NULL for p and randomly 

generates  236 for x,  respectively.   Figure  2.1 shows this  input  to  testme.   As  a result,  the  first 

execution of testme  takes the then  branch of the first if statement and the else  branch of the 

second if.  Let p0 and x0  be the symbolic values of p and x, respectively, at the beginning of the 

execution.  CUTE collects the constraints from the predicates of the branches executed in this path: 

x0 > 0 (for the then  branch of the first if) and p0 = NULL (for the else  branch of the second if). 
 

1 Because of this, our algorithm is complete only if given an oracle that can solve all constraints in a program, and 
the length and the number of paths is finite.  Note that because the algorithm does concrete executions, it is sound, 
i.e.  all bugs it infers are real. 
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634

3 

typedef   struct   cell   { 
int   v; 
struct   cell   *next;

 

 

p 
x
 

Input 1: } cell; 
 

int 

f(int   v) { 
return   2*v +   1; 

 

 
 

p 
 
Input 2: 

NULL  
 
NULL 

236 
 
 
 

x 
 

236 

} 
 

int   testme()   { 
cell   *  p =   input(); 
int   x =   input(); 
if (x >   0) 

if (p   !=   NULL) 
if (f(x)   ==   p->v) 

 

 
 

p 
 
Input 3: 

 

 
 

NULL 
x 

 

1 

if (p->next   ==   p) 

ERROR; 

return   0; 

} 

p 
x 

Input 4: 3 1 

 

Figure 2.1: A Simple Sequential Program and the Inputs that CUTE Generates 
 

 
The constraint sequence (x0  > 0, p0 = NULL) is called a path constraint. 

CUTE  next  solves  the  path  constraint  (x0   > 0, p0  /= NULL),  obtained  by negating  the  last 

constraint, to drive the next execution along an alternative path. The solution that CUTE proposes 

is {p0  .→ non-NULL, x0 .→ 236} which requires that CUTE make p point to an allocated cell  that 

introduces two new components, p->v  and p->next, to the reachable graph.  Accordingly, CUTE 

randomly generates 634 for p->v  and non-randomly generates NULL for p->next, respectively, for 

the next execution.  In the second execution,  testme  takes the then  branch of the first and the 

second if statement and the else  branch of the third if statement.  For this execution, CUTE 

generates the path constraint (x0  > 0, p0 /= NULL, 2 · x0 + 1 /= v0), where p0, v0, n0, and x0  are the 

symbolic values of p, p->v, p->next, and x, respectively. Note that CUTE computes the expression 
 

2 · x0 + 1 (corresponding to the execution of f) through an inter-procedural, dynamic tracking of 

symbolic expressions. 

CUTE next solves the path constraint (x0  > 0, p0 /= NULL, 2 · x0 + 1 = v0), obtained by negating 
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the last constraint and generates Input 3 from Figure 2.1 for the next execution.  Note that the 

specific value of x0  has changed, but the value remains in the same equivalence class with respect 
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to the predicate where it appears, namely x0  > 0. On Input 3, testme  takes the then  branch of 

the first three if statements and the else  branch of the fourth if statement.  CUTE generates 

the path constraint (x0  > 0, p0 /= NULL, 2 · x0 + 1 = v0, p0 /= n0).  This path constraint includes 

dynamically obtained constraints on pointers.  CUTE handles constraints on pointers, but requires 

no static  alias  analysis.   To drive  the  program along an alternative  path  in the  next  execution, 

CUTE solves the constraints (x0  > 0, p0 /= NULL, 2 · x0 + 1 = v0, p0 = n0) and generates Input 4 

from Figure 2.1. On this input, the fourth execution of testme  reveals the error in the code. 
 
 
 
 

2.2    The Race-Detection and Flipping Algorithm through an 
 

Example 
 

 
For shared-memory multi-threaded programs, I extend concolic testing with the race-detection and 

flipping algorithm.  In the extension, our goal is to generate thread schedules as Ill as data inputs 

that would exercise all non-equivalent executions paths of a shared-memory multi-threaded program. 

Apart from collecting symbolic constraints, the algorithm computes the race condition betIen 

various events in the execution of a program, where, informally, an event represents the execution 

of a statement in the program by a thread.  I say that two events are in a race if they are the events 

of different threads, they access (i.e.  read, write, lock, or unlock) the same memory location  without  

holding a common lock, and the  order  of the  happening  of the  events  can be permuted by 

changing the schedule of the threads.  The race conditions are computed by analyzing the concrete 

execution of the program with the help of dynamic vector clocks for multi-threaded programs 

introduced in Chapter 3. 

The extended algorithm first generates a random input and a schedule which specifies the order 

of the execution of threads.  Then the algorithm does the following in a loop: it executes the code 

with the generated input and the schedule.  At the same time the algorithm computes the race 

conditions betIen various events as Ill as the symbolic constraints.  It backtracks and generates a new 

schedule or a new input and executes the program again. It continues until it has explored all 

possible distinct execution paths using a depth-first search strategy.  The choice of new inputs and 

schedules is made in one of the following two ways: 
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x is   a shared   variable 

z =   input(); 

 
Thread   t1 

 
1: x =   3; 

 

Thread   t2 

 
1: x =   2; 

2: if (2*z   +   1 ==   x) 
3: ERROR; 

 

 
Figure 2.2: A Simple Shared-Memory Multi-Threaded Program 

 
 

1. The algorithm picks a constraint from the symbolic constraints that Ire collected along the 

execution path and negates the constraint to define a new path constraint.  The algorithm 

then finds, if possible, some concrete values that satisfy the new path constraint. These values 

are used as input for the next execution. 

 
2. The algorithm picks two events which are in a race and generates a new schedule that at the 

point where the first event happened, the execution of the thread involved in the first event 

is postponed  or delayed  as much as possible.   This ensures that  the events involved in the 

race get flipped or re-ordered when the program is executed with the new schedule.  The new 

schedule is used for the next execution. 

 

I illustrate how jCUTE performs concolic testing along with race-detection and flipping using the 

sample program P in Figure 2.2. The program has two threads t1  and t2, a shared integer 

variable x, and an integer variable z which receives an input from the external environment at the 

beginning of the program. Each statement in the program is labeled.  The program reaches the 

ERROR  statement in thread t2 if the input to the program is 1 (i.e., z gets the value 1) and if the 

program executes the statements in the following order:  (t2, 1)(t1, 1)(t2, 2)(t2, 3), where each event, 

represented by a tuple of the form (t, l), in the sequence denotes that the thread t executes the 

statement labeled l. 
 

jCUTE first generates a random input for z and executes P with a default schedule.  Without 

loss  of generality,  the  default  schedule  always  picks  the  thread  which is  enabled  and which has 
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the  loIst  index.   Thus,  the  first  execution  of P  is  (t1, 1)(t2, 1)(t2, 2).  Let  z0  be the  symbolic 

value of z at the beginning of the execution.  jCUTE collects the constraints from the predicates 

of the branches executed in this path.  For this execution, jCUTE generates the path constraint 

(2 ∗ z0 + 1! = 2). jCUTE also decides that there is a race condition betIen the first and the second 

event because both the events access the same variable x in different threads without holding a 

common lock and one of the accesses is a write of x. 

Following the depth-first search strategy, jCUTE picks the only constraint 2∗z0 +1! = 2, negates 
 

it, and tries to solve the negated constraint 2 ∗ z0 + 1 = 2. This has no solution.  Therefore, jCUTE 
 

backtracks and generates a schedule such that the next execution becomes (t2, 1)(t2, 2)(t1, 1) (here 

the thread involved in the first event of the race in the previous execution is delayed as much as 

possible).  This execution re-orders the events involved in the race in the previous execution. 

During the above execution, jCUTE generates the path constraint (2 ∗z0 + 1! = 2) and computes 
 

that there is a race betIen the second and the third events. Since the negated constraint 2∗z0 +1 = 
 

2 cannot  be solved,  jCUTE  backtracks  and generates  a schedule  such that  the  next  execution 

becomes (t2, 1)(t1, 1)(t2, 2). This execution re-orders the events involved in the race in the previous 

execution. 

In the above execution, jCUTE generates the path constraint (2 ∗ z0 + 1! = 3). jCUTE solves 
 

the negated constraint 2 ∗ z0 + 1 = 3 to obtain z0 = 1. In the next execution, it follows the same 

schedule as the previous execution.  HoIver, jCUTE starts the execution with the input variable 

z set to 1 which is the value of z that jCUTE computed by solving the constraint.  The resultant 

execution becomes (t2, 1)(t1, 1)(t2, 2)(t2, 3) which hits the ERROR  statement of the program. 

 
 

2.3    Predictive Monitoring through an Example 
 
 
Concolic testing extended with the race-detection and flipping algorithm tries to explore all non- 

equivalent  execution  paths  of a program.  As  such  this  method  can catch  generic  errors  such 

as assertion  violations,  uncaught  exceptions,  data  races,  and deadlocks.   HoIver, sometime  I may 

also want to test a program against a formal specification,  rather than hunting for generic errors.  

A trivial way to enable concolic testing to test a program against a formal specification would be  

to  combine  it with  runtime  monitoring.   Unfortunately,  if  our program is  a shared- 
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Initially   x =   0 and y  =   0 

z =   input(); 

 
Thread   t1 

 

1: if (z ==   100)   { 
2: x =   4; 
3: } else   { 
4: x =   5;} 

Thread   t2 

 
1: y =   2; 

 

Figure 2.3: Another Simple Shared-Memory Multi-Threaded Program 
 
 
memory  multi-threaded  program, and if our specification  is  some safety  formula in a temporal 

logic, then the combination of concolic testing and runtime monitoring might miss violations of 

the specification.  This is because a temporal safety property may be simultaneously satisfied and 

violated by two different execution paths that are equivalent.  Since concolic testing extended with 

the race-detection and flipping algorithm explores non-equivalent execution paths, the combined 

method may miss violations of a temporal property. 

To illustrate the above mentioned limitation,  consider the simple multi-threaded program in 

Figure 2.3. The method of concolic testing extended with the race-detection and flipping algorithm 

would explore two non-equivalent execution paths of the program, namely (t1, 1)(t1, 3)(t1, 4)(t2, 1) 

and (t1, 1)(t1, 2)(t2, 1). Since the program cannot exhibit any other non-equivalent execution path, 

concolic testing will stop after exploring the two paths. 

Suppose I want to test the program against the temporal property ‘‘Always   x is   greater 

than   equal   to   y,’’   also  written  as  O(x   ≥ y) in linear  temporal  logic.  Both  the  executions 
 

explored  by concolic testing  do not  violate  the  property  because none  of the  executions  reach 

a state  where  x is  less  than  y.    HoIver,  there  exists  two  other  execution  paths,  namely 

(t2, 1)(t1, 1)(t1, 3)(t1, 4) and (t2, 1)(t1, 1)(t1, 2) each of which violates the property.  Unfortunately, 
 

concolic testing would not explore these paths as each one of them is equivalent to some already 

explored path. 

One way to address this problem is to generate a runtime monitor which simply checks if  x 

is greater than y.  The monitor is then inserted into the code through instrumentation so that 

whenever x or y is updated the monitor check is invoked.  The instrumented program is given in 
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Figure 2.4. 
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Initially   x =   0 and y  =   0 

z =   input(); 

 
Thread   t1 

 

1: if (z ==   100){ 
2: x =   4; 
3: assert(x   >=   y); 
4: } else   { 
5: x =   5; 
6: assert(x   >=   y);} 

 

Thread   t2 

 
1: y =   2; 

2: assert(x   >=   y); 

 

Figure 2.4: Instrumented Program 
 
 

If I apply concolic testing to the instrumented program in Figure 2.4, eight distinct execution 

paths of the program will be explored and a violation of the property will be reported.  Note that 

this simple solution results in the exploration of considerably large number of execution paths 

compared to the number of paths explored by concolic testing of the original program. 

I have developed predictive monitoring to test shared-memory multi-threaded programs ef- 

ficiently.  In predictive monitoring for each execution path explored by concolic testing, I infer 

other equivalent execution paths statically without re-executing the program for each such equiv- 

alent path.  All  the equivalent execution paths corresponding to an observed execution path are 

then monitored against the temporal property efficiently. 

For example, consider the execution path (t1, 1)(t1, 3)(t1, 4)(t2, 1) explored by concolic testing 

of the original program. Since there is no causal connection betIen any event of the thread t1 and 

the event of the thread t2, I can permute the event from the thread t2 with any event from thread 

t1. This allows us to construct an alternate feasible execution path (t2, 1)(t1, 1)(t1, 3)(t1, 4) equivalent  

to  the  observed  execution  path.   This  alternate  path  violates  the  temporal  property. Thus by 

combining concolic testing with predictive monitoring, I have detected the violation of the temporal 

property by executing the program exactly twice. 
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Chapter 3 
 
 

Programming and Execution Model 
 

 
 
 
 
 
 
 
I introduce a simple shared-memory multi-threaded programming language called Scil.  In the 

subsequent  chapters,  I use this  programming language  to  describe  our testing  algorithms.   To 

simplify the description of our testing algorithms, I keep Scil free from function calls, function 

definitions, and other high-level programming features.  In Chapter 7, I briefly discuss how I handle  

function  calls  found in general  imperative  languages.   In the  multi-threaded  fragment  of Scil, I 

do not include concurrency primitives such as wait, notify, or join.  This is again done to simplify 

the exposition.  Our implementation for Java handles all these primitives.  In Section 3.2, I define a 

partial order relation, called the causality relation, to abstract the concurrent execution of a program. 

I describe a novel dynamic vector clock algorithm that keeps track of this causality relation at runtime.  

I use the partial order abstraction of a concurrent execution to describe the race-flipping  and 

detection  algorithm  in Chapter  5 and the  predictive  monitoring  algorithm  in Chapter 6. Finally, 

in Section 3.3, I use the execution model to formally state the problems that I solve in the subsequent 

chapters. 

 
 
 

3.1    Programming Model 
 
 
In order  to  simplify  the  description  of our testing  methods,  I define a simple  shared-memory 

multi-threaded imperative language, Scil (Figure 3.1). A Scil program is a set of threads that 

are executed concurrently, where each thread executes a sequence of statements.  Note that each 

statement in a program is labeled.  Threads in a program communicate by acquiring and releasing 

locks and by accessing (i.e., by reading or writing) shared memory locations. 

A Scil program may receive data inputs from its environment.  Observe that the availability of 

an input earlier than its use does not affect an execution. Without loss of generality, I assume that 
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P ::= Stmt ∗ 
Stmt  ::= l : S 

S ::= v ← lv | ∗lv ← lv | lv ← e | if p goto   lt 
| fork (l) | lock (&v) | unlock (&v) | START | HALT | ERROR 

e   ::= v | &v | ∗lv | c | lv | lv op lv | input () 
where op ∈ {+, −, /, ∗, %, . . .}, v is a shared variable, 
lv is a variable local to a thread, c is a constant 

p   ::= lv = lv | lv /= lv | lv < lv | lv ≤ lv | lv ≥ lv | lv > lv 
 

 
Figure 3.1: Syntax of Scil 

 
 

 
all such inputs are available from the beginning of an execution; again this assumption simplifies 

the description of our algorithm. 

I now informally describe the semantics of Scil.  Consider a Scil program P . The execution 

of a thread terminates when it executes a HALT or an ERROR  statement.  START represents the first 

statement of a program under test.  CUTE uses the CIL framework [68] to convert more complex 

statements (with no function calls) into this simplified form by introducing temporary variables. 

Some examples of converting complex code snippets into Scil code1  is given in Table 3.1. Details 

of handling of function calls using a symbolic stack are discussed in Section 7.1. 

During the execution of a Scil program, a single thread, namely tmain, starts by executing the 

first statement of the program. This thread tmain is comparable to the main  thread in Java. The 

initial thread tmain or any subsequently created thread in the program can create new threads by 

calling the statement fork (l), where l is the label of the statement to be executed by the newly 

created thread of the program. 
 

A Scil program gets input using the expression input ().  Observe that input () captures the 

various functions through which a program in Java may receive data from its external environment. 

A program may have two kinds of variables:  variables local to a thread (denoted by lv) and 

variables  shared  among threads  (denoted  by v).  The  expression  &v denotes  the  address  of the 

variable v, and ∗v  denotes the value of the address stored in v.  Note that associated with each 

address is a value that is either a primitive value or another memory address (i.e., pointer ) and a 
 

1 In the converted code, I do not label every statement as required by Scil.  This is done to keep the converted 
code relatively clean. 
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Original Code Transformed Code

 
**v =   3; 

t1   =   *v; //t1   is   a new   variable 

*t1   =   3; 

 

 
p[i]   =   q[j]; 

t1   =   p  +   i;  //t1   is   a new   variable 

t2   =   q  +   j;  //t2   is   a new   variable 

*t2   =   *t1; 

 
assert(x   >   0); 

x =   10; 

if (x >   10)   goto   L; 

ERROR; 

L:   x =   10; 

if (x >   0)   { 
x =   1; 

} else   { 
x =   -1; 

} 
y =   x +   y; 

if (x <=   0)   goto   L1; 

x =   1; 
if (true)   goto   L2; 
L1:   x =   -1; 
L2:   y =   x +   y; 

switch   (c)   { 
case 1: 

x =   x +   1; 
break; 

case 2: 
x =   x - 1; 
break; 

default: 
x =   0; 
break; 

} 
x =   x +   c; 

 
 
if (c !=   1)   goto   L1; 

x =   x +   1; 
if (true)   goto   L3; 
L1:   if (c !=   2)   goto   L2; 
x =   x - 1; 
if (true)   goto   L3; 
L2:   x =0; 
L3:   x =   x +   c; 

 
sum   =   i =   0; 

while   (i <   10)   { 
sum   =   sum   +   i; 
i++; 

} 
i =   sum; 

sum   =   0; 

i =   0; 
L1:   if (i >=   10)   goto   L2; 
sum   =   sum   +   i; 
i =   i +   1; 
if (true)   goto   L1; 
L2:   i =   sum; 

 

Table 3.1: Examples of Converting Code Snippets Involving High-Level Programming Constructs 
to Scil 
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execute  program(P ) 

while there is an enabled thread 
tcurrent  = Non-deterministically pick a thread from the set of enabled threads; 
execute the next statement of thread tcurrent; 

if there is an active thread 
print “Found deadlock”; 

 
 

Figure 3.2: Default Scheduler for Scil 
 

 
 

given statement can have at most one shared variable access (i.e.  read, write, lock, or unlock). 
 

A program supports mutual exclusion by using locks:  lock (&v) denotes the acquisition of the 

lock on the shared variable v and unlock (&v) denotes the release of the same.  A thread suspends 

its  execution  if it tries  to  acquire  a lock which is  already  acquired  by another  thread.   Normal 

execution of the thread resumes when the lock is released by the other thread.  I assume that the 

acquire and release of locks take place in a nested fashion as in Java. Locks are assumed to be re-

entrant : if a thread already holds a lock on a shared variable, then an acquire of the lock on the 

same variable by the same thread does not deadlock.  When a thread executes HALT or ERROR, all 

the locks held by the thread are released.  For technical simplicity, I assume that the set of memory 

locations that can be locked or unlocked is disjoint from the set of memory locations that can be 

read or write. 
 

The semantics of a program in the language is given using a scheduler.  The scheduler runs in 

a loop (see Figure 3.2). I use the term schedule  to refer to the sequence of choices of threads 

made by the scheduler during an execution.  I assume that each execution of a program under test 

terminates. 

On executing  a statement  lock (&v),  a thread  waits  if the  lock v is  already  held  by another 

thread.  Otherwise, the thread acquires the lock and continues its execution.  A lock v already held 

by a thread t is released when t executes a statement of the form unlock (&v).  Initially, the thread 

tmain is enabled.  A thread is said to be active if it has been created and it has not already executed 

a HALT or an ERROR  statement.  A thread is said to be enabled if it is active and it is not waiting to 

acquire a lock. 
 

The execution of a statement of the form fork (l) creates a new thread, makes it active, and sets 
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the program counter of the newly created thread to l. The loop of the scheduler terminates when 

the set of enabled threads is empty.  The termination of the scheduler indicates either the normal 

termination of a program execution when the set of active threads is empty, or a deadlock state 

when the set of active threads is non-empty. 

 

 
 

3.2    Execution Model 
 

Let  us consider  a program P .  The  execution  of each statement  in P is  an event.   Note  that  a 

statement  may involve  access  to  a shared  memory  location.   I  represent  an event  as (t, l, a), 

where l is the label of the statement  executed by thread t and a is the type of shared memory 

access in the statement.  If the execution of the statement accesses a shared memory location, then 

a = r if the access is a read, a = w if the access is a write, a = l if the access is a lock, and a = u if 

the access is an unlock; otherwise, a = ⊥. If the execution of a fork statement labeled l by a thread t 

creates a new thread tt, then I get two events:  (t, l, ⊥) representing the fork event on the thread t and 

(tt, ⊥, ⊥) representing the creation of the new thread.  Thus the event (tt, ⊥, ⊥) represents the first 

event of any newly created thread tt.  I use the term access to represent a read, a write, a lock, or an 

unlock of a shared memory location.  I use the term update to represent a write, a lock, or an unlock 

of a shared memory location.  I call an event 
 

 

•  a fork event, if the event is of the form (t, l, ⊥) and l is the label of a fork statement, 
 

 

•  a new thread event, if the event is of the form (t, ⊥, ⊥), 
 

 

•  a read, a write, a lock, an unlock, an access, or an update event, if the event reads, writes, 

locks, unlocks, accesses, or updates a memory location, respectively, 
 

 

•  an internal event, if the event is not a fork event, a new thread event, or an access event. 
 

An execution of P can be seen as a sequence of events.  I call such a sequence an execution path. Note 

that the execution of P on several inputs may result in the same execution path.  Let Ex(P ) be the 

set of all feasible execution paths exhibited by the program P on all possible inputs and all possible 

choices by the scheduler. 



20 | P a g e  
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.3: Time increases from left to right.  e3   e10, e9 <: e4, e10 <:/ 
e1  � e12,  e1  <l e9,  e3  <l e4,  e3  1 e12, etc. 

e5, e3 <: e12, 

e1 <:/ 
e10,  e1  � e10, 

 

If I view each event in an execution path as a node, then Ex(P ) can be seen as a tree.  Such a 

tree is called the computation tree of a program. The goal of our testing method for concurrent 

programs is to systematically explore a minimum possible subset of the execution paths of Ex(P ) 
 

such that  if a statement  of P is  reachable  by a thread  for some input  and some schedule,  the 

subset must contain an execution path in which that statement is executed.  To achieve this, I 

abstract an execution path in terms of a partial order relation called causal relation.  Any partial 

order represents a set of equivalent execution paths.  In our testing algorithm, the goal is to exactly 

explore one execution path corresponding to each partial order.  HoIver, in the actual algorithm, I 

are able to guarantee that at least one—not at most one—execution path corresponding to each 

partial order is explored if a program has no data input (see Chapter 5 for a discussion on the effect 

of data input).  I next define the various binary relations that I use to define a partial order. 

In an execution path τ ∈ Ex(P ), any two events e = (ti, li, ai) and et = (tj , lj , aj ) appearing in 

τ are sequentially related  (denoted by e <l et) iff: 
 

 

1. e = et, or 
 

 

2. ti = tj  and e appears before et  in τ , or 
 

 

3. ti /= tj , ti created the thread tj , and e appears before ett  in τ , where ett  is the fork event on 
 

ti creating the thread tj , or 
 

4. there exists an event ett  in τ such that e <l ett and ett <l et. 

 

Thus <l is a partial order relation.  I say e 1 et  iff e 1 et  and et 1 e. 
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In an execution path τ ∈ Ex(P ), any two events e = (ti, li, ai) and et = (tj , lj , aj ) appearing in 

τ are shared-memory access precedence related  (denoted by e <m et) iff: 
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1. e appears before et  in τ , and 
 
 

2. e and et  both access the same memory location m, and 
 
 

3. one of them is an update of m. 
 

 
In the above definition, it is worth remembering that the memory locations that can be locked or 

unlocked are disjoint from the memory locations that can be read or write.  Therefore, if e <m et 

and e (or et) is a lock or unlock of m, then the et  (or e) is also a lock or unlock of m. Similarly, if e 

<m et  and e (or et) is a write of m, then the et  (or e) is a read or write of m. 

Given the definition of the sequential relation and the shared-memory access precedence relation, 
 

I can define another relation, called causal relation, as follows.  In an execution path τ ∈ Ex(P ), any 

two events e = (ti, li, ai) and et  = (tj , lj , aj ) appearing in τ are causally related  (denoted by e � 

et) iff: 

 
1. e <l et, or 

 

 

2. e <m et  for some shared-memory location m, or 
 

3. there exists ett such  that e � ett  and ett � et. 
 

 

The causal relation is a partial-order relation.  I say that e     et  iff e /� et  and et /� e.  If e � et, 

then I say e causally precedes et. 
 

I next define a relation <:, called race relation, that captures the race condition betIen two events.  

I say that any two events e = (ti, li, ai) and et = (tj , lj , aj ) are race related  (denoted by e <: et) iff 

 

1. e 1 et, 
 

 

2. if e is a lock event and ett  is the corresponding unlock event, then ett <m et  and there exists 

no e1  such that e1 /= ett, e1  /= et, ett � e1, and e1  � et, and 

 

3. if e is a read or a write event, then e <m et  and there exists no e1  such that e1 /= e, e1 /= 

et, 

e � e1, and e1  � et. 
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If two events in an execution path are related by <:, then there exists an immediate race (data race 

or lock race) betIen the two events.  Therefore, I call <: a race relation. 

Figure 3.3 gives an example of the various relations defined above. 
 

Given  two  execution  paths  τ  and τ t  in Ex(P ), I say that  τ  and τ t  are  causally equivalent, 

denoted by τ ≡� τ t, iff τ and τ t have the same set of events and they are linearizations of the same 

� relation.  I use [τ ]≡�  to denote the set of all executions in Ex that are equivalent to τ . 

I  define a representative  set  of executions  REx ⊆ Ex as the  set  that  contains  exactly  one 

candidate  from each equivalence  class  [τ ]≡�  for all τ  ∈  Ex.   Formally,  REx is  a set  such that 

following properties hold: 
 

 

1. REx ⊆ Ex, 
 

2. Ex = 
U

τ ∈REx[τ ]≡� , and 

 

3. for all τ, τ t ∈ REx, it is the case that τ /≡� τ t. 
 
 

The following result shows that a systematic and automatic exploration of each element in REx 
 

is sufficient for testing. 
 
 
Proposition 1. If a statement is reachable in a program P for some input and schedule, then there 

exists a τ ∈ REx such that the statement is executed in τ . 

 

The proof of this proposition is straight-forward.  If a statement is reachable then there exists 

an execution τ in Ex such that the execution τ executes the statement.  By the definition of ≡�, 

any execution in [τ ]≡�  executes the statement.  Hence, the execution in REx that is equivalent to τ 
 

executes the statement. 
 

 
Dynamic Vector Clock 

 

The causal relation betIen the events in an execution can be tracked efficiently at runtime using 

dynamic vector clocks  (DVC).  Dynamic vector clocks, which respect the fact that two reads can 

be permuted, extend the standard vector clocks [30] found in message passing systems.  A dynamic 

vector  clock V : T  → N, where  T is  the  set  of threads  that  are  present  in the  execution.   I call 

such a map a dynamic  vector  clock (DVC)  because its  partiality  reflects  the  intuition  that 
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m m

m

m m

m m

threads are dynamically created and destroyed.  HoIver, in order to simplify the exposition and the 

implementation, I represent each DVC V as a total map, where V (t) = 0 whenever V is not defined 

on thread t (i.e., if t has not been created). 

I  associate  a DVC with  every thread  t and denote  it by Vt.   Moreover,  I associate  two 
 

DVCs V a 

 

and V w 

 

with every shared memory m; I call the former access DVC and the latter 

 

update DVC. For any two maps V and V t, I say that V ≤ V t  if and only if V (t) ≤ V t(t) for all t ∈ 
T .  I say that V /= V t  if and only if V /≤ V t  and V t  /≤ V .  max{V, V t} is the DVC with 

max{V, V t}(t) = max{V (t), V t(t)} for each t ∈ T . 

At the beginning of an execution, all vector clocks associated with threads and memory locations 

are empty.  Whenever a thread t with current DVC Vt  generates an event e, the following algorithm 

A is executed: 
 

1. If e is not a fork event or a new thread event, then Vt(t) ← Vt(t) + 1. 
 

2. If e is a read of a shared memory location m then 
 

Vt  ← max{Vt, V w } 
 

V a  a
 

m ← max{Vm, Vt} 
 

3. If e is a write, lock, or unlock of a shared memory location m then 
 

V w  a  a
 

m  ← Vm ← Vt  ← max{Vm, Vt} 
 

4. If e is a fork event and if tt  is the newly created thread then 
 

Vt!  ← Vt 
 

Vt(t) ← Vt(t) + 1 

Vt! (tt) ← Vt! (tt) + 1 
 
I call the algorithm A the dynamic vector clock algorithm.  If e is an event of thread t, then I 

 

use V {e} to denote the DVC of t after the event e, V {e}w
 

 

to denote the DVC V w  after the event 

 

e, and V {e}a
 

 

to denote the DVC V a  after the event e. If e is an event of thread t, then the event 

 

in thread t that happened immediately before e is denoted by prev (e).  Similarly, if e is an event of 

thread t, then the event in thread t that happened immediately after e is denoted by next (e). 

In an execution, if I update the DVCs according to A, I want to show that the causality 
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relation  is  tracked  by the  dynamic vector  clocks,  i.e.,  For any two  events  e  and et,  e  � et  iff 
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t

m

m

t 

t

t 

V {e} ≤ V {et}.  In order to prove this result, I first introduce some definitions and then state and 

prove the following four lemmas. 

Let us fix an arbitrary but fixed execution path τ . Let Et be the set of events of t in τ . Let T 
 

be the set of all threads created in τ . Let E = ∪t∈T Et. I use ei  to denote the ith  event of the 
 

thread t in C. Given an event e ∈ E, I define (e], (e]t, (e]a , (e]w 
 

as follows. 
m  m 

 

 

• (e] = {et | et ∈ E and et � e}, 

 
•  (e]t  = Et ∩ (e], 

 

 

•  (e]a 
 

and 

= {ett | ett � etand  et  is an access of m and et  is equal to or appears before e in the sequence τ }, 

 

 

• (e]w  = {ett | ett � etand  et  is an update of m and et  is equal to or appears before e in the sequence τ }. 
 

For any Et ⊆ E, I use |Et|t  to denote |Et ∩ Et|.  I say that a set E t ⊆ E is a monotonic set  if and 

only if the following fact holds:  if ek  ∈ E t, then ei  ∈ E t  for all 1 ≤ i ≤ k. 
t t 

 
Lemma  2. Given an event e, (e], (e]w , and (e]a are monotonic sets. 

m  m 

 
Proof. Follows from the definition of (e], (e]w , and (e]a and the fact that ei  � ek , for all 1 ≤ i ≤ 

m  m  t t 
 

k. 
 

 

Lemma  3. Given any two monotonic sets Et  ⊆ E and E tt  ⊆ E and a thread t ∈ T , |Et ∪ E tt|t  = 

max(|E t|t, |E tt|t). 
 

 

Proof. Let 
U

1≤i≤k! {ei } be the set E t ∩ Et and 
U

 
 

1≤i≤k!! {ei } be the set Ett ∩ Et. Then (E t ∪ Ett) ∩ Et 

is the set 
U

1≤i≤k {ei }, where k = max (kt, ktt).  Since |E t|t  = kt, |Ett|t  = ktt, and |Et ∪ Ett|t  = k, I 

have |E t ∪ E tt|t  = max (|Et|t, |E tt|t). 
 

 

Lemma  4. Let ek  be an event in τ and let el be the event that appears immediately before ek  in 

t t! t 
 

τ . Then the following holds. 
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t 

 

(1)  If ek  is a read of a memory location m, then 
 

 

(a)  (ek ] = (ek−1] ∪ {ek } ∪ (el  ]w , t t t t!  m 



27 

t 

t 

t 

t 

(b)  (ek ]a = (ek ] ∪ (el  ]a , 

t m  t t!  m 

 

(c)  (ek ]a = (el  ]a , for mt /= m, 

t m! t! m! 

 

(d)  (ek ]w = (el  ]w  , for any mt. 

t m! t! m! 

 

(2)  If ek  is a write, lock, or unlock of a memory location m, then 
 

(a)  (ek ] = (ek−1] ∪ {ek } ∪ (el  ]a , t 
 

(b)  (ek ]a 

t t 
 

= (ek ], 

t!  m 

t m  t 
 

(c)  (ek ]w  = (ek ], t m  t 
 

(d)  (ek ]a = (el  ]a , for mt /= m, 

t m! t! m! 

 

(e)  (ek ]w = (el  ]w  , for mt /= m. 

t m! t! m! 

 

(3)  If ek  is an internal event, then 
 

 

(a)  (ek ] = (ek ] ∪ {ek }, 
t 

 

(b)  (ek ]a 

t−1 
 

= (el  ]a 

t 
 

, for any mt, 

t m! t! m! 

 

(c)  (ek ]w = (el  ]w  , for any mt. 

t m! t! m! 

 

(4)  If ek  is a fork event, then 
 

(a)  (ek ] = (ek−1] ∪ {ek }, t 
 

(b)  (ek ]a 

t 
 

= (el  ]a 

t 
 

, for any mt, 

t m! t! m! 

 

(c)  (ek ]w = (el  ]w  , for any mt. 

t m! t! m! 

 

(5)  If ek  is a new thread event, then  
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(a)  (ek ] = (ek! −1] ∪ {ek }, where ek!  
 

 
is the fork event that created the thread t, t 

 

(b)  (ek ]a 

t!! 
 

= (el  ]a 

t 
 

, for any mt, 

t!! 

t m! t! m! 

 

(c)  (ek ]w = (el  ]w  , for any mt. 

t m! t! m! 

 

Proof. (1)  (a) Let Et  = (ek−1] ∪ {ek } ∪ (el  ]w . I want to prove (ek ] ⊆ Et.  Let e ∈ (ek ]. Since 
t  t  t! m  t t 

 

ek
 

t is read of m, by the definition of � one of the following must hold: 
 

• e = ek . In this case e ∈ {ek } ⊆ E t. t t 
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t 

t 

t 

t

t 

t!  m

(e  ] .

• e � ek−1. In this case e ∈ (ek−1] ⊆ Et. t t 

• e � et,  where et  <m ek .  By the definition of <m, et  is a write of m and et  appears 

before or equals to el  . This implies (et] ⊆ (el  ]w . Therefore, e ∈ (el  ]w  ⊆ Et. t! 
 

Hence, (ek ] ⊆ E t. 

t!  m t!  m 

 

I want to prove E t ⊆ (ek ]. Let e ∈ E t.  Then one of the following must hold: 
 

• e ∈ (ek−1].  Since ek−1 � ek , (ek−1] ⊆ (ek ]. Therefore, e ∈ (ek ]. t t t t t t 
 

• e = ek . In this case, e ∈ (ek ]. t t 
 

• e ∈ (el  ]w . Then by the definition of (el  ]w , there is a et such that et is a write2  of m, t!  m t!  m 

(et] ⊆ (el  ]w , and e � et.  Since ek  is a read of m, et <m ek . This implies that et � ek 
t! m  t t t 

which implies e ∈ (ek ]. 
 

Hence, E t ⊆ (ek ]. 
 

(b)  Let E t = (ek ] ∪ (el  ]a . I want to prove that (ek ]a 

 

 
 

⊆ E t.  Let e ∈ (ek ]a . Then there are 
t 

 

two cases: 

t!  m t m  t m 

 

• e � ek , in this case e ∈ (ek ], or t t 

• e � et,  where et  is an access of m and appears before ek .  This implies et  ∈ (el  ]a . 
 

Therefore, e ∈ (el  ]a . 

t  t!  m 

 

Hence, (ek ]a ⊆ E t. 

t m 
 

I want to prove that E t ⊆ (ek ]a . Let e ∈ E t.  Then one of the following must hold: t  m 
 

• e ∈ (ek ]. Since ek  is a read of m, (ek ] ⊆ (ek ]a . Therefore, e ∈ (ek ]a . t t t t m  t m 
 

• e ∈ (el  ]a . Since el 
 

appears before ek , (el  ]a 
 

⊆ (ek ]a . Therefore, e ∈ (ek ]a . 

t! m  t! 
 

Hence E t ⊆ (ek ]a . 

t  t! m  t m  t m 

t m 
 

(c) Since ek is not accessing mt,  (ek ]a = (el  ]a follows from the definitions of (ek ]a and 

t 
 

l  a 
t! m! 

t m! t! m! t m! 

 

(d)  Since ek is not updating mt,  (ek ]w = (el  ]w follows from the definitions of (ek ]w and 



30
 

(e  ] . 

t 

t 
 

l  w 
t! m! 

t m! t! m! t m! 

 
2 Since ek  reads m, m can only be read or write in τ . This is because I assume that the memory locations that 

can be locked or unlocked are disjoint from the memory locations that can be read or write. 



31 

t 

t 

t 

t 

t 

t 

(e  ] .

(2)  (a) Let E t = (ek−1] ∪ {ek } ∪ (el  ]a . I want to prove (ek ] ⊆ E t.  Let e ∈ (ek ]. Since ek  is an 
t  t  t! m t t t 

update of m, by the definition of � one of the following must hold: 
 

• e = ek . In this case e ∈ {ek } ⊆ E t. t t 

• e � ek−1. In this case e ∈ (ek−1] ⊆ Et. t t 

• e � et, where et <m ek . By the definition of <m, et  is an access of m and et  appears 

before or equals to el  . This implies (et] ⊆ (el  ]a . Therefore, e ∈ (el  ]a ⊆ E t. 

t! 
 

Hence, (ek ] ⊆ E t. 

t!  m t!  m 

 

I want to prove E t ⊆ (ek ]. Let e ∈ E t.  Then one of the following must hold: 

• e ∈ (ek−1].  Since ek−1 � ek , (ek−1] ⊆ (ek ]. Therefore, e ∈ (ek ]. t t t t t t 
 

• e = ek . In this case, e ∈ (ek ]. t t 
 

• e ∈ (el  ]a . Then by the definition of (el  ]a , there is a et such  that et  is an access of t!  m t!  m 

m, (et] ⊆ (el  ]a , and e � et.  Since ek  is an update of m, et <m ek . This implies that t! m  t t 

et � ek  which implies e ∈ (ek ]. t 
 

Hence, E t ⊆ (ek ]. 
 

(b)  I want to prove (ek ]a 

t 
 
 
 

= (ek ].  Let e ∈ (ek ]a .  Therefore,  e � et  where et  accesses  m 

t m  t  t m 
 

and appears before or equals to ek . Since ek  is an update of m, by the definition of <m, t t 

et <m ek . Therefore, e � ek  or e ∈ (ek ]. t t t 
 

Let e ∈ (ek ]. Since ek is an update of m, by the definition of (ek ]a, (ek ] ⊆ (ek ]a . Therefore, t t 
 

e ∈ (ek ]. 
 

(c) I want to prove (ek ]w 

t t  t  t m 
 

 
 

= (ek ].  Let e ∈ (ek ]w .  Therefore,  e � et  where et  updates m 

t m  t  t m 
 

and appears before or equals to ek . Since ek  is an update of m, by the definition of <m, t t 

et <m ek . Therefore, e � ek  or e ∈ (ek ]. t t t 
 

Let e ∈ (ek ]. Since ek is an update of m, by the definition of (ek ]w , (ek ] ⊆ (ek ]w . Therefore, t t 
 

e ∈ (ek ]. 

t t  t  t m 

 

(d)  Since ek is not accessing mt,  (ek ]a = (el  ]a follows from the definitions of (ek ]a and 

t 
 

l  a 

t! 
m

! 

t m! t! m! 
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(e  ] . 

t m! 

 

(e)  Since ek 
 

is not updating mt,  (ek ]w 
 

= (el  ]w 
 

follows from the definitions of (ek ]w 
 

and 

t 
 

l  w 
t! m! 

t m! t! m! t m! 
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t

(e  ] 

(e  ] . 

t 

(e  ] 

(e  ] . 

.

.

(3)  (a) Since each (ek ] ⊆ (ek ] and {ek } ⊆ (ek ], (ek ] ∪ {ek } ⊆ (ek ].  Let e ∈ (ek ].  Since ek 

t−1 t t t t−1 t t t t 

 

accesses  no shared  memory  location,  there  are  two  cases  to  consider  here:   e  = ek  or 

e � ek 
 

. In either case, e ∈ (ek 
 

] ∪ {ek }.  Hence, (ek ] ⊆ (ek 
 

] ∪ {ek }. 

t−1 t−1 t t t−1 t 

 

(b)  Since ek is not accessing mt,  (ek ]a = (el  ]a follows from the definitions of (ek ]a and 

t 
 

l  a 
t! m! 

t m! t! m! t m! 

 

(c) Since ek is not updating mt,  (ek ]w = (el  ]w follows from the definitions of (ek ]w and 

t 
 

l  w 
t! m! 

t m! t! m! t m! 

 

 

(4) The proof is similar to the previous case. 
 

(5)  (a) Let E t = (ek! −1] ∪ {ek }.  I want to prove (ek ] ⊆ E t.  Let e ∈ (ek ]. By the definition of � 
t!! t t t 

 

one of the following must hold: 
 

• e = ek . This implies that e ∈ {ek } ⊆ E t. t t 

• e � et, where et  is any event of ttt  and et  appears before ek! 
. Therefore, et  = ei 

 

for 

 

1 ≤ i ≤ kt − 1. This implies that e � ek! −1 or e ∈ (ek! −1]. 
t!! t!! 

 

 

Hence, (ek ] ⊆ (ek! −1] ∪ {ek }. 

t!! t!! 

t t!! t 
 

I want to prove E t ⊆ (ek ]. Let e ∈ E t.  Then one of the following must hold: 
 

• e = ek . Therefore, e ∈ (ek ]. t t 

• e ∈ (ek! −1]. In this case (ek! −1] <l ek , e � (ek ]. t!! 
 

Hence, (ek! −1] ∪ {ek } ⊆ (ek ]. 

t!! t t 

t!! t t 
 

(b)  Since ek is not accessing mt,  (ek ]a = (el  ]a follows from the definitions of (ek ]a and 

t 
 

l  a 
t! m! 

t m! t! m! t m! 

 

(c) Since ek is not updating mt,  (ek ]w = (el  ]w follows from the definitions of (ek ]w and 

t 
 

l  
w 
t

! 
m
! 

t m! 
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t! m! t m! 

 
 
 
 

Lemma  5.  For any event  e  in τ , for any t ∈ T , and for any shared  memory  location  m, the 
 

following holds: 
 

 

(1)  V {e}(t) = |(e]|t, 
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t t

(2)  V {e}w (t) = |(e]w |t, and 
m  m 

 

 

(3)  V {e}a  (t) = |(e]a  |t. m  m 
 

 

Proof. Let  τ  = e1e2 . . . en.   I  prove  this  by induction.   The  lemma  clearly  holds  for e1.   Let us 

assume that  the  lemma  holds  for all ei,  where  1 ≤ i ≤ p < n.   I  need to  show that  it also  

holds  for ep+1.   The  equalities  (1), (2), and (3) follows  from the  various  cases of Lemma  4 

and the algorithm A.  In the following I show it for one case.  The equalities for the remaining 
 

cases can be derived  in a similar  way.  Let  ep+1  = ek 

 

and ek 

 

be a read event  of m.  By (1)(a) 

 

of Lemma  4, for any ttt  ∈ T , |(ek ]|t!!    = |(ek−1] ∪ {ek } ∪ (el  ]w |t!! .  Since  ek 
 

/∈ (ek−1]  and ek   

/∈ 
t t t t!  m t t t 

(el  ]w , I have |(ek ]|t!!   = |(ek−1] ∪ (el  ]w |t!!  + 1. Therefore, by Lemma 2 and Lemma 3, I have 
t!  m t  t  t! m 

|(ek ]|t!!  = max (|(ek−1]|t!! , |(el  ]w |t!! ) + 1 = max (V {ek−1}(ttt), V {el  }w (ttt)) + 1. By the algorithm A, t  t  t! m t  t!   m 

V {ek }(ttt) = max (V {ek−1}(ttt), V {el  }w (ttt)) + 1. Therefore, V {ek }(ttt) = |(ek ]|t!! . t  t  t!  m  t t 
 
 

Now I are ready to prove the following theorem. 
 
Theorem 6. For any two events e and et, e � et  iff V {e} ≤ V {et}. 

 

Proof. Let  us assume that  e  � et.   This  implies  that  (e] ⊆ (et].   Since  each of (e] and (et]  are 

monotonic sets, for all t ∈ T , I have (e]t  ⊆ (et]t.  This implies |(e]|t  ≤ |(et]|t.  Therefore, by (1) of 

Lemma 5, I have V {e}(t) ≤ V {et}(t), for all t ∈ T . In other words, V {e} ≤ V {et}. 
 

 
Sequential Vector Clock 

 

The sequential relation betIen the events in an execution can be tracked efficiently at runtime 

using sequential vector clocks  (SVC). A sequential vector clock VS : T → N, where T is the set of 

threads that are present in the execution.  I call such a map a sequential  vector  clock (SVC). Such 

a map can be partial because threads are created dynamically at runtime.  To simplify the 

exposition and the implementation, I assume that each SVC VS is a total map, where VS (t) = 0 

whenever VS is not defined on thread t. 
 

I associate a SVC with every thread t and denote it by VS t. At the beginning of an execution, all 
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sequential vector clocks associated with threads are empty.  Whenever a thread t with current SVC 

VS t generates an event e, the following algorithm A∫  is executed: 
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1. If e is not a fork event or a new thread event, then VS t(t) ← VS t(t) + 1. 
 

 

2. If e is a fork event and if tt  is the newly created thread then 
 

VS t! ← VS t 
 

VS t(t) ← VS t(t) + 1 

VS t! (tt) ← VS t! (tt) + 1 
 

 

The algorithm A∫  is called the sequential vector  clock algorithm.  I can associate a SVC with 

every event e, denoted by VS e as follows.  If e is executed by t and if VS t is the vector clock of t 

just after the event e, then VS e = VS t. 
 

In an execution, if I update the SVCs according to A∫ , then the following theorem holds: 
 

Theorem 7. For any two events e and et, e <l et  iff VSe ≤ VSe! . 
 
 

The proof of this theorem is a special case of the proof of Theorem 6, where I assume each 

access event as an internal event. 

 

Theorem 8. For any two event e and et, if the following holds: 
 
 

1. V 
{e} =/ 

V {prev(et)} given that prev(et) exists, and 

 
 

2. V 
{next(e)} =/ 

V {et} given that next(e) exists, and 

 
 

3. V {e} ≤ V {et}, and 
 

 

4. VSe /= VSe! 

. then 

 

•  if each of e and et  is a read or a write event, then e <: et, 
 

 

•  if e is an unlock event and et  is a lock event, then ett <: et, where ett  is the lock event corre- 
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sponding to e. 
 

 
The proof follows from the definition of <:, Theorem 6, and Theorem 7. 
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3.3    Results in Terms of the Execution Model 
 

In Chapter 4, I describe concolic testing which tries to explore all paths in Ex(P ) for a sequential 

program P . Note that for a sequential program P , Ex(P ) = REx(P ). HoIver, for shared-memory 

multi-threaded  programs,  REx(P ) ⊆ Ex(P ).  In Chapter  5, I extend  concolic testing  with  the 

race-detection and flipping algorithm.  The extended method tries to explore all paths in a superset 

of REx(P ) and a small  subset  of Ex(P ).   As  such the  method  would not  explore  all the  paths 

in an equivalence  class  [τ ]≡� .   HoIver,  if I have a formal temporal  specification,  then  it is 

possible that one path in [τ ]≡�  satisfies the specification and another path in [τ ]≡�  violates the 

specification. Therefore, monitoring the execution paths explored by concolic testing extended with 

race-detection and flipping may not be sufficient to find a violation of the formal specification.  To 

eliminate this limitation, I describe predictive monitoring in Chapter 6. Predictive monitoring 

enables us to use an execution path τ to monitor all paths in [τ ]≡�  without re-executing each of 

these paths. 
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Chapter 4 
 
 

Testing Sequential Programs 
 

 
 
 
 
 
 
 

In this chapter, I present concolic testing,1  a novel automatic and systematic technique for testing 

sequential  programs.   Concolic testing  automates  the  exploration  of feasible  execution  paths  of 

sequential programs.   Our technique repeatedly generates inputs  that  make the code under  test 

execute different paths.  The process continues until the code executes all different feasible paths 

(up to  a given  length).   Our technique  uses a symbolic  execution;  unlike  the  traditional  testing 

techniques  based on symbolic  execution  or static  analysis  [24, 118, 75, 115, 10, 14, 73, 22], our 

technique tightly couples the concrete and symbolic executions of the code under test.  Specifically, 

our technique simultaneously runs both concrete and symbolic executions such that each of them 

gets  feedback from the  other.   I  call this  technique  concolic  testing,  as  it uses  a cooperative 

CONCrete and symbOLIC execution. 

Our technique work as follows. Given a program to test, our technique generates concrete inputs 

one by one.  After generating each input,  the program is executed on that input simultaneously 

both concretely and symbolically.  The symbolic execution follows the path taken by the concrete 

execution and maintains a symbolic state and generates symbolic path constraints. The information 

collected by the concrete-execution guided symbolic execution is then used to generate an input 

for the next execution that will lead the program through an execution path that was not explored 

before by the program. This process continues until all different feasible paths are executed exactly 

once. 

I  have implemented  our technique  in two  publicly available  tools,  called  CUTE  (concolic 

Unit  Testing  Engine)  and jCUTE,  for testing  C and Java programs  respectively.   jCUTE  also 

implements the race-detection and flipping algorithm described in Chapter 5.  In the rest of the 
 

 
1 This work is done partly in collaboration with Gul Agha, Patrice Godefroid, Nils Klarlund, and Darko Marinov. 

Part of this work appeared in [41, 87, 86]. 
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chapter I will only refer to C programs and CUTE. Note the same principles are also applicable to 

sequential Java programs.  For C programs,  the basic testing unit can be either one function or a 

small number of related functions or the whole program. Such testing units can have pointer inputs, 

and thus the inputs consist not only of primitive values but of the whole memory graphs. The 

symbolic execution in CUTE builds constraints on pointer variables (pointer constraints ) and 

primitive variables (arithmetic constraints ), unlike some previous techniques that use only concrete 

values for pointers [41, 115, 118]. I have developed a novel solver for both arithmetic constraints and 

pointer constraints, which enables CUTE to generate memory graphs as inputs to the code under 

test.  Our solver exploits the domain of this particular problem to efficiently generate inputs that are 

similar to the previous inputs.  CUTE can also generate complex data structures, either through 

function sequences or from the code for data structure invariants (Section 4.2). 

The rest of the chapter is organized as follows.  In Section 4.1, I describe the various com- 

ponents  of concolic testing.   I  show how to  apply concolic testing  to  test  data  structures  in 

Section 4.2. Finally, I conclude the chapter by discussing the advantages of concolic testing over the 

existing methods. 

 
 

4.1    Concolic Testing 
 
 
I describe the details of concolic testing for sequential programs written in Scil.  To restrict a Scil 

program to be sequential, I disallow the use of the concurrency primitives fork (l), lock (v), unlock 

(v). Because of this restriction, a Scil program is always single-threaded and all the variables and 

memory locations are local to the initial thread tmain.  The simplified syntax of a restricted Scil 

program is given in Figure 4.1. 

I first define the input logical input map that CUTE uses to represent inputs.  I present how 

CUTE instruments programs and performs concolic execution.  I then describe how CUTE solves  

the  constraints  after  every execution.   I  finally discuss  the  approximations  that  CUTE uses for 

pointer  constraints.   In the  next  section,  I present  how CUTE  handles  complex  data structures. 

To explore execution paths, CUTE first instruments the code under test.  CUTE then builds a 

logical input map I for the code under test.  Such a logical input map can represent a memory 
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P ::= Stmt ∗ 
Stmt  ::= l : S 

S ::= v ← e | ∗v ← e | if p goto   lt 
| START | HALT | ERROR 

e   ::= v | &v | ∗v | c | v op v | input () 
where op ∈ {+, −, /, ∗, %, . . .}, v is a variable, 
c is a constant 

p   ::= v = v | v /= v | v < v | v ≤ v | v ≥ v | v > v 
 

 
Figure 4.1: Syntax of Sequential Scil 

 
 

 
graph in a symbolic way. CUTE then repeatedly runs the instrumented code as follows: 

 
 

1. It uses the logical input map I to generate a concrete input memory graph for the program 

and two symbolic states, one for pointer values and another for primitive values. 
 

2. It runs the code on the concrete input graph, collecting constraints (in terms of the symbolic 

values in the symbolic state) that characterize the set of inputs that would take the same 

execution path as the current execution path. 

3. It negates one of the collected constraints and solves the resulting constraint system to obtain a 

new logical input map It  that is similar to I but (likely) leads the execution through a 

different path.  It then sets I = It  and repeats the process. 
 

 
 

4.1.1    Logical Input Map 
 

CUTE keeps track of input memory graphs as a logical input map I that maps logical addresses to 

values that are either logical addresses or primitive values.  This map symbolically represents the 

input memory graph at the beginning of an execution.  The reason that CUTE introduces logical 

addresses is that actual concrete addresses of dynamically allocated cells may change in different 

executions.  Also, the concrete addresses themselves are not necessary to represent memory graphs; 

it suffices to know how the cells are connected.  Finally, CUTE attempts to make consecutive inputs 

similar, and this can be done with logical addresses.  If CUTE used the actual physical addresses, it 

would depend on malloc  and free  (to return the same addresses) and more importantly, it would 

need to handle destructive updates of the input by the code under test:  after CUTE generates one 
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input, the code changes it, and CUTE would need to know what changed to reconstruct the next 

input. 

Let N be the set of natural numbers and V be the set of all primitive values.  Then, I : N → 
 

N ∪ V. The values in the domain and the range of I belonging to the set N represents the logical 

addresses.  I also assume that each logical address l ∈ N has a type associated with it.  A type can 

be T * (a pointer of type T) (where T can be primitive type or struct type) or Tp  (a primitive type).  

The function typeOf (l) returns this type.  Let the function sizeOf (T) returns the number of memory 

cells that an object of type T uses. If typeOf (l) is T * and I(l) /=NULL, then the sequence I(v), . . . 

, I(v + n − 1) stores the value of the object pointed by the logical address l (each element in the  

sequence represents  the  content  of each cell  of the  object  in order),  where  v =  I(l)  and n =sizeOf 

(T). This representation of a logical input map essentially gives a simple way to serialize a memory 

graph. 
 

I illustrate logical inputs on an example.  Recall the example Input 3 from Figure 2.1. CUTE 
 

represents this input with the following logical input: (3, 1, 3, 0), where logical addresses range from 
 

1 to 4. The first value 3 corresponds to the value of p: it points to the location with logical address 
 

3. The second value 1 corresponds to x.  The third value corresponds to p->v  and the fourth to 

p->next (0 represents NULL). This logical input encodes a set of concrete inputs that have the same 

underlying graph but reside at different concrete addresses.  Similarly, the logical input map for 

Input 4 from Figure 2.1 is (3, 1, 3, 3). 
 
 
4.1.2    Instrumentation 

 

 
To test a program P , CUTE tries to explore all execution paths of P . To explore all paths, CUTE 

first instruments the program under test.  Then, it repeatedly runs the instrumented program P as 

follows: 

 
 

 
// input:  P is the instrumented program to test 

 

// depth is the depth of bounded DFS 
 

run CUTE (P ,depth ) 
 

I = [ ]; h = (number of arguments in P ) + 1; 
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Before Instrumentation After Instrumentation
// program start 
l :  START 

global vars A = P = path c = M = [ ]; 
global vars i =inputNumber = 0; 
l :  START

// input
l :  v ← input(); 

l : inputNumber = inputNumber+1; 
init input (&v, inputNumber ); 

// input
l :  ∗v ← input(); 

l : inputNumber = inputNumber+1; 
init input (v, inputNumber ); 

// assignment 
l :  v ← e; 

l : execute symbolic(&v,“e”);
v ← e; 

// assignment 
l :  ∗v ← e; 

l : execute symbolic(v,“e”);
∗v ← e; 

// conditional 
l :  if (p)  goto   l 

l : evaluate predicate(“p”, p);
if (p)  goto  l 

// normal termination
l :  HALT 

l : compute next input();
HALT; 

// program error 
l :  ERROR 

l : print “Found Error with Input ” . I ; 
compute next input (); 
ERROR; 

 

Table 4.1: Code that CUTE’s Instrumentation Adds 
 
 
 
 
 

completed =false; branch hist =[ ]; 
 

while not  completed 
 

execute P 
 
 
 
 
 

Before starting the execution loop, CUTE initializes the logical input map I to an empty map 

and the  variable  h representing  the  next  available  logical address  to  the  number  of arguments 

to the instrumented program plus one.  (CUTE  gives a logical address to each argument at the 

very beginning.)  The integer variable depth  specifies the depth in the bounded DFS described in 

Section 4.1.4. 

 
Table 4.1 shows the code that CUTE adds during instrumentation.  The expressions enclosed in 

double quotes (“e”) represent syntactic objects.  I describe the instrumentation for function calls in 

Section 7.1. In the following section,  I describe the various global variables and procedures that 

CUTE inserts. 
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4.1.3    Concolic Execution 
 

 
Recall  that  a program instrumented  by CUTE  runs  concretely  and at  the  same time  performs 

symbolic computation through the instrumented function calls.  The symbolic execution follows the 

path taken by the concrete execution and replaces with the concrete value any symbolic expression 

that cannot be handled by our constraint solver. 

An instrumented program maintains at the runtime two symbolic states A and P , where A maps 
 

memory locations to symbolic arithmetic expressions, and P maps memory locations to symbolic 

pointer  expressions.   The  symbolic  arithmetic  expressions  in CUTE  are  linear,  i.e.   of the  form 

a1x1 + . . . + anxn  + c, where n ≥ 1, each xi  is a symbolic variable, each ai  is an integer constant, 

and c is an integer constant.  Note that n must be greater than 0.  Otherwise, the expression is 

a constant,  and CUTE does not keep constant expressions in A, because it keeps A small:  if a 

symbolic expression is constant, its value can be obtained from the concrete state.  The arithmetic 

constraints are of the form a1x1 + . . . + anxn  + c l><J 0, where l><J ∈ {<, >, ≤, ≥, =, /=}.  The pointer 

expressions are simpler:  each is of the form xp, where xp  is a symbolic variable, or the constant 

NULL. The pointer constraints are of the form x ∼= y or x ∼= NULL, where ∼= ∈ {=, /=}. 

Given any map M (e.g., A or P ), I use Mt = M[m .→ v] to denote the map that is the same as 

M except that Mt(m) = v. I use Mt  = M − m to denote the map that is the same as M except 

that Mt(m) is undefined. I say m ∈domain (M) if M(m) is defined. 
 
 
Input Initialization using Logical Input Map 

 

 

Figure 4.2 shows the procedure init input (m, l) that uses the logical input map I to initialize the 

memory location m, to update the symbolic states A and P , and to update the input map I with 

new mappings. 
 

M  maps logical addresses to physical addresses of memory cells already allocated in an execu- 

tion, and malloc(n) allocates n fresh cells for an object of size n and returns the addresses of these 

cells as a sequence.  The global variable h keeps track of the next unused logical address available 

for a newly allocated object. 

For a logical address l passed as an argument to init input, I(l) can be undefined in two cases: 
 

(1) in the first execution when I is the empty map, and (2) when l is some logical address that 



38 

 
// input:  m is the physical address to initialize 
// l is the corresponding logical address 
// modifies h, I, A, P 
init input (m, l) 

if l /∈ domain (I) 
if (typeOf (∗m) ==pointer to T) ∗m =NULL; 
else ∗m =random (); 
I = I[l .→ ∗m]; 

else 
vt = v = I(l); 
if (typeOf (v) ==pointer to T) 

if (v ∈ domain (M )) 
∗m = M (v); 

else 
n = sizeOf (T); 
{m1, . . . , mn} =malloc(n); 
if (v ==non-NULL) 

vt = h; h = h + n; // h is the next logical address 
∗m = m1; I = I[l .→ vt];  M = M [v .→ m1]; 
for j = 1 to n 

init input (mj , vt + j − 1); 
else 

∗m = v; I = I[l .→ v]; 
// xl is a symbolic variable for logical address l 
if (typeOf (m) ==pointer to T) P = P [m .→ xl ]; 
else A = A[m .→ xl ]; 

 
 

Figure 4.2: Input Initialization 
 
 
 
 
 
 

 
got allocated in the process of initialization.  If I(l) is undefined and if typeOf (l) is not a pointer, 

 

then the content of the memory is initialized randomly ; otherwise,  if the typeOf (l) is a pointer, 

then the contents of l and m are both initialized to NULL. Note that CUTE does not attempt to 

generate random pointer graphs but assigns all new pointers to NULL. If typeOf (I(l)) is a pointer 

to T (i.e., T*) and M (l) is defined, then I know that the object pointed by the logical address l is 

already allocated and I simply initialize the content of m by M (l). Otherwise, I allocate sufficient 

physical memory for the object pointed by *m using malloc and initialize them recursively. In the 

process, I also allocate logical addresses by incrementing h if necessary. 
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Symbolic Execution 
 

 
Figure  4.3 shows  the  pseudo-code for the  symbolic  manipulations  done by the  procedure  exe- 

cute symbolic which is inserted by CUTE in the program under test during instrumentation.  The 

procedure execute symbolic(m, e) evaluates the expression e symbolically and maps it to the mem- 

ory location m in the appropriate symbolic state. 

Recall  that  CUTE replaces a symbolic expression  that  the  CUTE’s  constraint  solver  cannot 

handle  with  the  concrete  value  from the  execution.   Assume,  for instance,  that  the  solver  can 

solve only linear constraints.  In particular, when a symbolic expression becomes non-linear, as in 

the multiplication of two non-constant sub-expressions, CUTE simplifies the symbolic expression 

by replacing one of the sub-expressions by its current concrete value (see line L in Figure. 4.3). 

Similarly, if the statement is for instance vtt ← v/vt  (see line D in Figure. 4.3), and both v and vt 

are symbolic, CUTE removes the memory location &vtt  from both A and P to reflect the fact that 

the symbolic value for vtt is undefined. 
 

Figure 4.4 shows the function evaluate predicate (p, b) that symbolically evaluates p and updates 
 

path c. In case of pointers, CUTE only considers predicates of the form x = y, x /= y, x =NULL, 

and x /=NULL, where x and y are symbolic pointer variables.  I discuss this in Section 4.1.6. If a 

symbolic predicate expression is constant, then true  or false  is returned. 

At the  time  symbolic  evaluation  of predicates  in the  procedure evaluate predicate,  symbolic 

predicate expressions from branching points are collected in the array path c.  At the end of the 

execution,  path c[0 . . . i − 1], where  i is  the  number  of conditional  statements  of P that  CUTE 

executes, contains all predicates whose conjunction holds for the execution path. 
 

Note  that  in both  the  procedures  execute symbolic  and evaluate predicate,  I skip  symbolic 

execution if the number of predicates executed so far (recorded in the global variable i) becomes 

greater than the parameter depth which gives the depth of bounded DFS described next. 

 
 

4.1.4    Bounded  Depth-First Search 
 

 
To explore paths in the execution tree, CUTE implements a (bounded) depth-first strategy (bounded 

DFS). In the bounded DFS, each run (except the first) is executed with the help of a record of 

the  conditional  statements  (which is  the  array branch hist ) executed  in the  previous  run.   For 
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// inputs:  m is a memory location 
// e is an expression to evaluate 
// modifies A and P by symbolically executing ∗m ← e 
execute symbolic(m, e) 

if (i ≤depth ) 
match e: 

case “v1”: 
m1 = &v1; 
if (m1 ∈ domain (P )) 

A = A − m; P = P [m .→ P (m1)]; // remove if A contains m 
else if (m1 ∈ domain (A)) 

A = A[m .→ A(m1)]; P = P − m; 
else P = P − m; A = A − m; 

case “v1 ± v2”:  // where ± ∈ {+, −} 
m1 = &v1; m2 = &v2; 
if (m1 ∈ domain (A) and m2 ∈ domain (A)) 

v = “A(m1) ± A(m2)”; // symbolic addition or subtraction 
else if (m1 ∈ domain (A)) 

v = “A(m1) ± v2”; // symbolic addition or subtraction 
else if (m2 ∈ domain (A)) 

v = “v1 ± A(m2)”; // symbolic addition or subtraction 
else A = A − m; P = P − m; return; 
A = A[m .→ v]; P = P − m; 

case “v1 ∗ v2”: 
m1 = &v1; m2 = &v2; 
if (m1 ∈ domain (A) and m2 ∈ domain (A)) 

L:  v = “v1 ∗ A(m2)”; // replace one with concrete value 
else if (m1 ∈ domain (A)) 

v = “A(m1) ∗ v2”; // symbolic multiplication 
else if (m2 ∈ domain (A)) 

v = “v1 ∗ A(m2)”; // symbolic multiplication 
else A = A − m; P = P − m; return; 
A = A[m .→ v]; P = P − m; 

case “∗v1”: 
m2 = v1; 
if (m2 ∈ domain (P )) A = A − m; P = P [m .→ P (m2)]; 
else if (m2 ∈ domain (A))  A = A[m .→ A(m2)]; P = P − m; 

else A = A − m; P = P − m; 
default: 

D:  A = A − m; P = P − m; 
 

Figure 4.3: Symbolic Execution 
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// inputs:  p is a predicate to evaluate 
// b is the concrete value of the predicate in S 
// modifies path c, i 
evaluate predicate (p, b) 

if (i ≤depth ) 
match p: 

case “v1  l><J v2”:  // where l><J ∈ {<, ≤, ≥, >} 
m1 = &v1; m2 = &v2; 
if (m1 ∈ domain (A) and m2 ∈ domain (A)) 

c = “A(m1) − A(m2) l><J 0”; 
else if (m1 ∈ domain (A)) 

c = “A(m1) − v2 l><J 0”; 
else if (m2 ∈ domain (A)) 

c = “v1 − A(m2) l><J 0”; 
else c = b; 

case “v1  
∼= v2”:  // where ∼=  ∈ {=, /=} 

m1 = &v1; m2 = &v2; 
if (m1 ∈ domain (P ) and m2 ∈ domain (P )) 

c = “P (m1) ∼= P (m2)”; 
else if (m1 ∈ domain (P ) and v2 ==NULL) 

c = “P (m1) ∼= NULL”; 
else if (m2 ∈ domain (P ) and v1 ==NULL) 

c = “P (m2) ∼= NULL”; 
else if (m1 ∈ domain (A) and m2 ∈ domain (A)) 

c = “A(m1) − A(m2) ∼= 0”; 
else if (m1 ∈ domain (A))  c = “A(m1) − v2 

∼= 0”; 
else if (m2 ∈ domain (A))  c = “v1 − A(m2) ∼= 0”; 
else c = b; 

if (b) path c[i] = c; 
else path c[i] =neg(c); 

cmp n set branch hist (b); 
i = i + 1; 

 
Figure 4.4: Symbolic Evaluation of Predicates 
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each conditional, CUTE records a branch  value which is either true  (if the then  branch is taken) 

or false  (if  the  else  branch is  taken),  as  Ill  as  a done  value  which is  false  when only one 

branch of the  conditional  has executed  in prior runs  (with  the  same history  up to  the  branch 

point) and is true  otherwise.  The information associated with each conditional statement of the 

last  execution  path  is  stored  in the  array branch hist,  kept  in a file  betIen  executions.   For i, 

0 ≤ i < |branch hist |,  branch hist [i]  = (branch hist [i].branch,  branch hist [i].done ) is  the  record 

corresponding to the (i + 1)th  conditional executed. 
 
 
 
 

The procedure cmp and set branch hist in Figure 4.5 checks whether the current execution path 

matches the one predicted at the end of the previous execution and represented in branch hist passed 

betIen runs.  Specifically, our algorithm maintains the invariant that when run program is called, 

branch hist [|branch hist | − 1].done =false  holds.  This value is changed to true  if the execution 

proceeds according to all the branches in branch hist  as checked  by cmp n set branch hist.  Note 

that I use the parameter depth to restrict the depth of search in the bounded DFS. I observed in our 

experiments  that  the  execution  almost  always  follows  a prediction  of the  outcome  of a 

conditional. HoIver, it could happen that a prediction is not fulfilled because CUTE approximates, 

when necessary,  symbolic  expressions  with  concrete  values  (as  explained  in Section  4.1.3), and 

the  constraint  solver  could then  produce a solution  that  changes  the  outcome  of some  earlier 

branch. (Note that even when there is an approximation, the solution does not necessary change 

the outcome.)  If it ever happens that a prediction is not fulfilled, an exception is raised to restart 

run CUTE with a fresh random input. 
 
 
 
 
 

Bounded depth-first search proves useful when the length of execution paths are infinite or long 

enough to prevent exhaustively search the whole computation tree.  Particularly, it is important for 

generating finite sized data structures when using preconditions such as data structure invariants 

(see section 4.2. For example, if I use an invariant to generate sorted binary trees, then a non- 

bounded depth-first search would end up generating infinite number of trees whose every node has 

at most one left children and no right children. 
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// modifies branch hist 
cmp n set branch hist (branch ) 

if (i < |branch hist |) 
if (branch hist [i].branch /=branch ) 

print “Prediction Failed”; 
raise an exception; // restart run CUTE 

else if (i == |branch hist | − 1) 
branch hist [i].done =true; 

else branch hist [i].branch = branch ; 
branch hist [i].done = false; 

 
Figure 4.5: Prediction Checking 

 

 
 

// modifies branch hist, I, completed 
compute next input () 

j = i − 1; 
while (j ≥ 0) 

if (branch hist [j].done == false) 
branch hist [j].branch = ¬branch hist [j].branch ; 
if (∃It  that satisfies neg last (path c[0 . . . j])) 

branch hist =branch hist [0 . . . j]; 
I = It; 
return; 

else j = j − 1; 
else j = j − 1; 

if (j < 0) completed =true; 
 

Figure 4.6: Compute Next Input 
 
 

 
4.1.5    Computing an Input 

 

After the termination of the instrumented program execution, an input for the next execution is 

computed using the procedure compute  next  input  (see Figure 4.6). The procedure computes the 

input that will direct the next program execution along an alternative execution path.  To do so, it 

loops over the elements of path c from the end until it has generated an input that would force the 

program in the next execution to execute the last unexplored and feasible branch of a conditional 

along the current execution.  Specifically, the procedure finds the last constraint path c[j] such that 

the following holds: 
 

 

•  path c[j] that has not been negated before, and 
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•  there   exists   a   logical   input   map   It    such   that   It    is   a   satisfying   solution   of 

neg last (path c[0 . . . j]), where neg last (path c[0 . . . j]) denote the expression path c[0] ∧ . . . ∧ 
path c[j − 1] ∧ ¬ path c[j], where only the last predicate is negated. 

 

If such a constraint is found then It is used as the input for the next execution.  Otherwise, concolic 

testing is terminated indicating the completion of a depth-first search. 

I   next   present   how  CUTE   solves   path   constraints. Given   a   path   constraint 
 

C =neg last (path c[0 . . . j]), CUTE checks if C is satisfiable, and if so, finds a satisfying solution It. 
 

I have implemented an incremental constraint solver for CUTE to optimize solving of the path 

constraints that arise in concolic execution.  Our solver is built on top of lp  solve [61], a constraint 

solver for linear arithmetic constraints.  Our solver provides three important optimizations for path 

constraints: 
 

(OPT 1)  Fast  unsatisfiability  check:  The solver checks if the last constraint is syntactically 

the negation of any preceding constraint; if it is, the solver does not need to invoke the expensive 

semantic check. (Experimental results show that this optimization reduces the number of semantic 

checks by 60-95%.) 

(OPT 2) Common sub-constraints elimination: The solver identifies and eliminates common 

arithmetic sub-constraints before passing them to the lp  solve.  (This simple optimization, along 

with the next one, is significant in practice as it can reduce the number of sub-constraints by 64% 

to 90%.) 
 

(OPT 3)  Incremental  solving:  The solver identifies dependency betIen sub-constraints and 

exploits it to solve the constraints faster and keep the solutions similar. I explain this optimization in 

detail. 

Given a predicate p in C , I define vars (p) to be the set of all symbolic variables that appear in 

p. Given two predicates p and pt in C , I say that p and pt are dependent if one of the following 

conditions holds: 

 

1. vars (p)∩ vars (pt) /= ∅, or 
 

2. there exists a predicate ptt in C such that p and ptt are dependent and pt and ptt are dependent. 

Two predicates are independent if they are not dependent. 
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The  following is  an important  observation  about  the  path  constraints  C and C t   from two 

consecutive concolic executions:  C and C t  differ in the small number of predicates (more precisely, 

only in the last predicate when there is no backtracking), and thus their respective solutions I and 

It  must agree on many mappings.  Our solver exploits this observation to provide more efficient, 
 

incremental  constraint  solving.   The  solver  collects  all the  predicates  in C that  are  dependent 

on ¬path c[j].   Let  this  set  of predicates  be D.   Note  that  all predicates  in D  are  either  linear 

arithmetic  predicates  or pointer  predicates,  because no predicate  in C contains  both  arithmetic 

symbolic  variables  and pointer  symbolic  variables.   The  solver  then  finds  a solution  Itt  for the 

conjunction of all predicates from D.  The input for the next run is then It  = I[Itt] which is the 

same as I except that for every l for which Itt(l) is defined, It(l) = Itt(l).  In practice, I have 

found that the size of D is almost one-eighth the size of C on average. 
 

If all predicates in D are linear arithmetic predicates, then CUTE uses integer linear program- 

ming  to compute Itt.  If all predicates in D are pointer predicates, then CUTE uses the following 

procedure to compute Itt. 
 

Let us consider only pointer constraints which are either equalities or disequalities.  The solver 

first builds an equivalence graph based on (dis)equalities (similar to checking satisfiability in theory 

of equality [12]) and then based on this graph, assigns values to pointers. The values assigned to the 

pointers can be a logical address in the domain of I, the constant non-NULL  (a special constant), 

or the constant NULL (represented by 0). The solver views NULL as a symbolic variable.  Thus, all 

predicates in D are of the form x = y or x /= y, where x and y are symbolic variables.  Let Dt  be 

the subset of D that does not contain the predicate ¬path c[j].  The solver first checks if ¬path c[j] 

is consistent with the predicates in D.  For this, the solver constructs an undirected graph whose 

nodes are  the  equivalence classes (with  respect  to  the  relation  =) of all symbolic variables that 

appear in Dt.  I use [x]= to denote the equivalence class of the symbolic variable x.  Given two 

nodes denoted by the equivalence classes [x]= and [y]=, the solver adds an edge betIen [x]= and [y]=  

iff there  exists  symbolic  variables  u and v such that  u /= v exists  in Dt  and u ∈ [x]=  and v ∈ 

[y]=.  Given the graph, the solver finds that ¬path c[j] is satisfiable if ¬path c[j] is of the form x = 

y and there is no edge betIen [x]= and [y]=  in the graph; otherwise, if ¬path c[j] is of the form x 

/= y, then ¬path c[j] is satisfiable if [x]= and [y]=  are not the same equivalence class.  If 
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// inputs:  p is a symbolic pointer predicate 
// I is the previous solution 
// returns:  a new solution Itt 
solve pointer (p, I) 

match p: 
case “x /=NULL”: Itt = {y .→non-NULL| y ∈ [x]=}; 
case “x =NULL”: Itt = {y .→NULL| y ∈ [x]=}; 
case “x = y”:  Itt = {z .→ v | z ∈ [y]=  and I(x) = v}; 
case “x /= y”:  Itt = {z .→ non-NULL| z ∈ [y]=}; 

return Itt; 
 

Figure 4.7: Assigning Values to Pointers 
 
 
 

¬path c[j]  is  satisfiable,  the  solver  computes  Itt  using  the  procedure solve pointer (¬path c[j], I) 
 

shown in Figure 4.7. 

Note  that  after  solving  the  pointer  constraints,  I  either  add (by  assigning  a pointer  to 

non-NULL) or remove a node (by assigning a pointer NULL) from the current input graph, or alias or 

non-alias two existing pointers.  This keeps the consecutive solutions similar.  Keeping consecutive 

solutions for pointers similar is important because of the logical input map: if inputs Ire very 

different, CUTE would need to rebuild parts of the logical input map. 
 

 
 

4.1.6    Approximations for Scalable Symbolic Execution 
 

 
CUTE uses simple symbolic expressions for pointers and builds only (dis)equality constraints for 

pointers.  I believe that these constraints,  which approximate the exact path condition,  are a good 

trade-off.  To exactly track the pointer constraints, it would be necessary to use the theory of 

arrays/memory with updates and selections [66]. HoIver, it would make the symbolic execution 

more expensive  and could result  in constraints  whose solution  is  intractable.   Therefore,  CUTE 

does not use the theory of arrays but handles arrays by concretely instantiating them and making 

each element of the array a scalar symbolic variable. 

It is important to note that, although CUTE uses simple pointer constraints, it still keeps a 

precise relationship betIen pointers:  the logical input map (through types), maintains a relation- ship 

betIen pointers to structs and their fields and betIen pointers to arrays and their elements. For 

example, from the logical input map (3, 1, 3, 0) for Input 3 from Figure 2.1, CUTE knows that 
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p->next  is at the (logical) address 4 because p has value 3, and the field next  is at the offset 1 in 

the struct   cell.  Indeed, the logical input map allows CUTE to use only simple scalar symbolic 

variables to represent the memory and still obtain fairly precise constraints. 

Finally, I show that CUTE does not keep the exact pointer constraints.  Consider for example 

the  code snippet  *p=0;   *q=1;   if (*p   ==   1)   ERROR  (and assume that  p and q are  not  NULL). 

CUTE  cannot  generate  the  constraint  p==q that  would enable  the  program to  take  the  “then” 

branch.  This  is  because the  program contains  no conditional  that  can generate  the  constraint. 

Analogously, for the code snippet a[i]=0;   a[j]=1;   if (a[i]==0)   ERROR, CUTE cannot generate 

i==j. 
 
 
 

4.2    Data Structure Testing 
 

I next consider testing of functions that take data structures as inputs.  More precisely, a function has 

some pointer  arguments,  and the  memory  graph reachable  from the  pointers  forms  a data 

structure.  For instance,  consider testing of a function that takes a list and removes an element 

from it.  I cannot simply test such function in isolation [115, 16, 118]—say generating random 

memory graphs as inputs—because the function requires the input memory graph to satisfy the 

data structure invariant.2  If an input is invalid (i.e., violates the invariant), the function provides 

no guarantees and may even result in an error.  For instance, a function that expects an acyclic list 

may loop infinitely given a cyclic list, whereas a function that expects a cyclic list may dereference 

NULL given an acyclic list.  I want to test such functions with valid inputs only. There are two main 

approaches to obtaining valid inputs:  (1) generating inputs with call sequences [115, 118] and (2) 

solving data structure invariants [16, 115]. CUTE supports both approaches. 
 

 
 

4.2.1    Generating Inputs with Call Sequences 
 

One approach to generating data structures is to use sequences of function calls. Each data structure 

implements functions for several basic operations such as creating an empty structure, adding an 

element to the structure, removing an element from the structure, and checking if an element is 
 

2 The functions may have additional preconditions, but I omit them for brevity of discussion; for more details, 
see [16]. 



} 

48 

in the  structure.   A sequence  of these  operations  can be used to  generate  an instance  of data 

structure,  e.g., I can create  an empty  list  and add several  elements  to  it.   This  approach has two 

requirements [115]: (1) all functions must be available (and thus I cannot test each function in 

isolation), and (2) all functions must be used in generation:  for complex data structures, e.g., red-

black trees, there are memory graphs that cannot be constructed through additions only but 

require removals [115, 118]. 

 

 
4.2.2    Solving Data Structure Invariants 
 

Another  approach to  generating  data  structures  is  to  use  the  functions  that  check invariants. 

Good programming practice suggests that data structures provide such functions.  For example, 

SGLIB [102] (see Section 7.2.2) is a popular C library  for generic data structures that provides 

such functions.  I call these functions repOk  [16]. (SGLIB calls them check consistency.)  As an 

illustration, SGLIB implements operations on doubly linked lists and provides a repOk  function that 

checks if a memory graph is a valid doubly linked list; each repOk  function returns true  or false  

to indicate the validity of the input graph. 

The main idea of using repOk  functions for testing is to solve  repOk  functions, i.e., generate 

only the input memory graphs for which repOk  returns true  [16, 115]. This approach allows mod- 

ular testing of functions that implement data structure operations (i.e., does not require that all 

operations be available):  all I need for a function under test is a corresponding repOk  function. 

Previous  techniques  for solving  repOk  functions  include  a search  that  uses purely  concrete  exe- 

cution [16] and a search that uses symbolic execution for primitive data but concrete values for 

pointers [115]. CUTE, in contrast, uses symbolic execution for both primitive data and pointers. 

The  constraints  that  CUTE  builds  and solves  for pointers  allow it to  solve  repOk  functions 

asymptotically  faster  than  the  fastest  previous  techniques  [16, 115]. Consider,  for example,  the 

following check from the  invariant  for doubly linked  list:  for each node  n, n.next.prev   ==   n. 

Assume that  the  solver  is  building a doubly linked  list  with  N  nodes reachable  along the  next 

pointers.  Assume also that the solver needs to set the values for the prev  pointers.  Executing the 

check once, CUTE finds the exact value for each prev  pointer and thus takes O(N ) steps to find 

the values for all N prev  pointers.  In contrast, the previous techniques [16, 115] take O(N 2) steps 
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as they search for the value for each pointer, trying first the value NULL, then a pointer to the head 

of the list, then a pointer to the second element and so on. 
 
 
 

4.3    Discussion 
 
 
I next discuss the advantages of using CUTE over traditional symbolic execution based testing 

approaches. 

 
 

4.3.1    Pointer Casting and Arithmetic 
 

 
CUTE often has an advantage over static analysis in reasoning about linked data.  For example, to 

determine if two pointers point to the same memory location, CUTE simply checks whether their 

values are equal and does not require an alias analysis that may be inaccurate in the presence of 

pointer casting and pointer arithmetic.  For example, for the following C program: 

 
struct   foo   { 

 

int   i; 

char   c;   }; 
 

 
 

void   * memset(void   *s,char   c,size_t   n)   { 
 

for   (int   i =   0;   i <   n;   i++) 

((char   *)s)[i]   =   c;   return   s; 

} 
 

 
 

bar   (struct   foo   *a)   { 

if (a &&   a->c   ==   1)   { 

memset(a,0,sizeof(struct   foo)); 

if (a->c   !=   1) 

ERROR; 

} 



} 
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a fully sound static analysis should report that ERROR  might be reachable.  HoIver, such a sound 

static-analysis tool would be impractical as it would give too many false alarms.  More practical 

tools, such as BLAST [51], report that the code is safe because a standard alias analysis is not able 
 

to see that a->c  has been overwritten.  In contrast, CUTE easily finds a precise execution leading 

to the ERROR.  This kind of code is often found in C where memset  is widely used for fast memory 

initialization. 
 

 
 

4.3.2    Library Functions with Side-Effects 
 

The concrete execution of CUTE helps to remove false alarms, especially in the presence of library 

function calls that can have side-effects.  In the above code, for example, if the function memset 

is a library function with no source code available, static-analysis tools have no way to find out 

how the function can affect the global heap.  In such situations, they definitely give false alarms. 

HoIver, CUTE can tackle the situation as it can see the side-effect while executing the function 

concretely. 
 
 
 

4.3.3    Approximating Symbolic Values by Concrete Values 
 
 
CUTE combines the concrete and symbolic executions to make them co-operate with each other, 

which helps to handle situations where most symbolic executors would give uncertain results.  For 

example, consider testing the function f in the following C code: 

 
g(int   x) { 

 

return   x * x +   (x %  2); 

} 
 

 
 

f(int   x,   int   y) { 
 

z =   g(x); 
 

if (y ==   z) 

ERROR; 

} 



} 
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A symbolic  executor  would generate  the  path  constraint  y =   x * x +   (x %  2)  that  is  not 

in a decidable theory.  Thus, it cannot say that ERROR  is reachable with guarantee.  On the other 

hand, suppose that CUTE starts with the initial inputs x =   3,   y =   4.  In the first execution, since 

CUTE cannot handle the symbolic expression x * x +   (x %  2), it approximates z by the concrete 

value 3 *  3 +   (3   %  2)   =   10 and proceeds to generate the path constraint y !=   10.  Therefore, 

by solving  the  path  constraint  CUTE will  generate  the  inputs x =   3,   y =   10 for the  next  run 

which will reveal the ERROR. 

 

 

4.3.4    Black-Box Library Functions 
 

The same situation arises in the above code if g is a library function whose source code is not avail- 

able.  A symbolic executor would generate the path constraint y =   g(x)  involving uninterpreted 

function and would give a possible warning. HoIver, CUTE in the same way as before generates an 

input leading to the ERROR. 
 
 
4.3.5    Lazy Initialization 

 

 
One can imagine combining symbolic execution with randomization in several ways. CUTE com- 

mits  to  concrete  values  before  the  execution.   Another  approach would be to  use full  symbolic 

execution and generate concrete values on demand [115]. HoIver, this approach does not handle 

black-box library functions, executes sloIr as it needs to always check if data is initialized, and 

cannot “recover” from bad initialization as this example shows: 

 

f(int   x){ 
 

z =   x * x +   (x %  2); 

if (z ==   8)   { 
 

ERROR; 

} 
 

if (x ==   10)   { 
 

ERROR; 

} 



} 
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After executing the first if statement, a lazy initializer will initialize x to a random value in any 

run since it cannot decide the path constraint x * x +   (x %  2)   =   8.  Thus, it would not be able 

to take the then  branch of the second if.  CUTE, hoIver, would generate x =   10 for the second run 

as it simultaneously executes both concretely and symbolically. 
 
 

4.3.6    Random  Initialization 
 

 
Concolic testing uses random values to initialize the input values.  This helps concolic testing to 

mitigate the limitations of the constraint solver in many situations.  To illustrate this, consider the 

following C program: 

 

f(int   x,   int   y){ 

if (x*x*x   >   0){ 
 

if (x>0   &&   y==10) 

ERROR; 

} else   { 
 

if (x>0   &&   y==20) 

ERROR; 

} 
 

} 
 

Given a theorem prover that cannot reason about non-linear arithmetic constraints, a static analysis 

tool using predicate abstraction [11, 51] will report that both ERRORs in the above code may be 

reachable;  therefore,  the tool will give one false alarm since the second ERROR is unreachable. 

This would be true as Ill if the test (x*x*x   >   0)  is replaced by a black-box library call. On the 

other hand, a test-generation tool based on symbolic execution [115] will not be able to generate 

an input to detect any ERROR because its symbolic execution will be stuck at the condition of 

the  first  if-then-else  statement.   In contrast,  CUTE can randomly generate  an input  where  x>0 

and y!=10  with almost 0.5 probability; after the first execution with such an input, the depth-first 

search of CUTE will generate another input with the same positive value of x but with y=10, which 

will lead the program in its second run to the first ERROR. Note that if CUTE randomly generates 

a negative value for x in the first run, then CUTE will generate an input where x>0 and y==20 



53 

to satisfy the then branch of the third if-then-else statement (it will do so because no constraint 

is  generated  for the  condition  of the  first  if-then-else  statement  since  it is  non-linear);  hoIver, 

due to the concrete execution, CUTE will then not take the else  branch of the first if-then-else 

statement in such a second run.  In summary, our mixed strategy of random and directed search 

along with simultaneous concrete and symbolic execution of the program will allow us to find the 

only reachable ERROR statement in the above example with high probability. 
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Chapter 5 
 
 

Testing Concurrent Programs 
 

 
 
 
 
 
 
 
In this  chapter,  I extend  concolic testing  with  a new algorithm,  called  the  race-detection  and 

flipping algorithm,1  to effectively test shared-memory multi-threaded programs. 

I  described  concolic testing  to  systematically  and automatically  test  sequential  programs. 

HoIver, most of the real-world programs are concurrent where computation tasks are distributed 

among several threads executing simultaneously and communicating either through shared memory 

or message passing.  Testing concurrent programs is notoriously harder than testing sequential pro- 

grams because of the exponentially large number of possible interleavings of concurrent events [104]. 

Many of these interleavings share the same causal structure (also called the partial order ), and are 

thus  equivalent  with  respect  to  finding bugs in a given  program.  Techniques  for avoiding such 

redundant executions are called partial order reduction [110, 76, 38]. 

Several approaches [39, 34, 19, 17] to testing concurrent programs assume that the data inputs 

are from a small finite domain. These approaches rely on exhaustively executing the program for 

all possible inputs and perform a partial order reduction to reduce the search space. The problem 

with these approaches is that it is hard to scale them—the input set is often too large. 

A second approach is to execute a program symbolically in a customized virtual machine which 

supports  partial  order  reduction  [53, 115].  This  requires  checking  satisfiability  of complex  con- 

straints (corresponding to every branch point in a program). Unfortunately, checking such satis- 

fiability may be undecidable or computationally intractable.  Moreover,  in concurrent programs, 

partial order reduction for symbolic execution requires computing the dependency relations betIen 

memory accesses in a program. Because it involves alias analysis, such a computation is often con- 

servative resulting in extra dependencies.  Therefore, large numbers of unreachable branches may 

be explored, often causing many warnings for bugs that could never occur in an actual execution. 
 

1 This work is partly done in collaboration with Gul Agha. Part of this work appeared in [86, 85]. 



55 

Our approach is  to  extend  concolic  testing  with  a new technique  called  race-detection  and 

flipping.  To use concolic testing for multi-threaded programs,  I do the following.  For a given 

concrete execution,  at runtime,  I determine the causality relation or the exact  race conditions 

(both data race and lock race) betIen the various events in the execution path.  Subsequently, I 

systematically re-order or permute the events involved in these races by generating new thread 

schedules as Ill as generate new test inputs.  This way I explore at least one representative from each 

partial order.  The result is an efficient testing algorithm for concurrent programs which, at the 

cost of missing some potential bugs, avoids the problem of false warnings. 

I have implemented the algorithm in a publicly available tool, called jCUTE, for testing Java 

programs.  Apart from detecting assertion violations and uncaught exceptions, jCUTE reports all 

data race conditions and deadlock states encountered during the process of testing. 

The rest of the chapter is organized as follows. In Section 5.1, I describe the race-detection and 

flipping algorithm on programs having no data inputs and prove the correctness of the algorithm. 

In Section  5.2, I describe  a simple  algorithm  for extending  concolic testing  to  shared-memory 

multi-threaded programs.  The goal of this section is to familiarize the readers with various data 

structures used in the algorithms described in the subsequent sections.  In Section 5.3, I show how 

to  combine  concolic testing  with  the  race-detection  and flipping algorithm.   I  propose  a further 

optimization of the combined algorithm in Section 5.4. Finally, I conclude the chapter by discussing 

some of the advantages of the techniques described in this chapter. 

 
 

5.1    The Race-Detection and Flipping Algorithm 
 
 
In the description of the race-detection and flipping algorithm, I assume that a program under test 

has no data input.  I make this simplification to keep the exposition concise and to keep the proof of 

correctness of the race-detection and flipping algorithm simple.  In the subsequent sections, I show 

how I can combine the race-detection and flipping algorithm with concolic testing. 

The race-detection and flipping algorithm is given in Figure 5.1. Recall that Ex(P ) is the set of 

all feasible execution paths that can be exhibited by the program P on all possible values of inputs 

and all possible schedules (see Section 3.2). Similarly, REx(P ) is the set that contains exactly one 

candidate from each equivalence class of feasible execution paths of P . test program (P ) repeatedly 
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global var τ = c; // the empty sequence 
 
//input:  P is the program to test 
test program (P ) 

while testing   not   completed 

execute program (P ) 
 

execute program (P ) 
execute prefix (P, τ ); 
while there is an enabled thread 

execute the next statement of the loIst indexed enabled thread in P 
to generate the event e; 

race (τ ) = false; 
postponed (τ ) = ∅; 
append  e to τ ; 
if ∃et ∈ τ such that et <: e 

let τ = τ1etτ2  in race (τ1) = true; 
// end of the while loop 
if there is an active thread 

print ‘‘Error: found   deadlock’’; 
generate next schedule (); 

 
// modifies τ 
generate next schedule () 

if ∃e such that τ == τ1eτ2  and backtrackable (τ1) and 
there is no et such that τ == τ t etτ t  and |τ1| < |τ t | and backtrackable (τ t ) 1 2 1 1 

race (τ1) = false; 
 

 
 

else 

let (t, , ) = e in add t to postponed (τ1); 
let t = smallest indexed thread in enabled (τ1)\ postponed (τ1) in τ = τ1(t, , ); 

testing   completed; 
 

backtrackable (τ1) = 
race (τ1) ==true and |enabled (τ1)\postponed (τ1)| > 1 

 
 

 
Figure 5.1: The Race-Detection and Flipping Algorithm 
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executes the program P with different schedules until all paths in a REx(P ) have been explored. 

Given two sequences of events τ and τ t, I let τ τ t to denote the concatenation of the two sequences. 
 

Similarly, given a sequence of events τ and an event e, I let τ e to denote the concatenation of the 

sequence and the event.  Let c be the empty sequence.  A sequence of events is called a prefix, if it 

is the prefix of a feasible execution path.  The global variable τ keeps track of the execution path 

for each execution of P . At the end of each execution, τ is appropriately truncated so that a 

depth-first search of the computation tree takes place.  execute prefix (P, τ ) executes the program 

from the beginning until the sequence of events generated by the execution is equal to the prefix τ . 

Since an execution path is solely determined by the sequence of threads that are executed in the 

path, from now onwards I will ignore the second and the third components of a tuple representing an 

event.  Thus (t, , ) represents an event on the thread t.  With every prefix τ , I associate a set, 

denoted by postponed (τ ). Moreover, with every prefix τ , I associate a boolean flag, denoted by race 

(τ ).  enabled (τ ) returns  the  set  of threads  that  are  enabled  after  executing the  prefix  τ . 

enabled (τ )\postponed (τ ) represents  the  set  of threads  that  are  enabled  but  not  postponed  after 
 

executing τ . 

In each execution of P during the testing process, P is first partly executed so that it follows the 

prefix τ computed in the previous execution.  Then P is executed with the default schedule, where 

the loIst indexed enabled thread is always chosen.  If τ = τ te before the start of an execution, 

then the execution path and the previous execution path has the same prefix τ t.  In an execution 

path  τ , for any prefix  τ t  of τ , I set  race (τ t)  to  true,  if there  exist  e, τ1, et, and τ2  such that τ 

= τ teτ1etτ2  and e <: et.  Setting race (τ t) to true flags that in a subsequent execution, I must 

postpone the execution of e after the prefix τ t  so that I may explore a possibly non-equivalent 

execution path.  At the end of an execution, if τ1 is the longest prefix of the current execution path τ 

such that race (τ1) is set to true and |enabled (τ1)\postponed (τ1)| > 1, I generate a new schedule by 

truncating τ to τ1e, where e is an event of a thread t that has not been scheduled after τ1  in any 

previous execution. 

I next prove that the race-detection and flipping algorithm explores all execution paths in a set 

REx(P ). To keep the proof simple, I assume that no execution path in P ends in a deadlock state. 
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Theorem 9. If Ext(P ) is the set of the execution paths that are explored by the race-detection and 

flipping algorithm, then there is a set REx(P ) such that REx(P ) ⊆ Ext(P ) ⊆ Ex(P ). 

 
Proof. Before I prove the theorem, I state and prove the following three lemmas. 

 

 

Lemma  10. If e <: et in an execution path τ , then e <: et in any execution path τ t ∈ [τ ]≡ 
 
The proof of the above lemma follows from the definition of �. 

 

 
Lemma  11. Given an event e and a prefix τ , if the following conditions hold: 

 
 

1. e is enabled after the prefix τ , 
 

 

2. τ τ teτ tt  is a feasible execution path, 
 

 

3. there is no event e1  in τ t  such  that e1 <: et, and 
 

 

4. there is an event e2  in τ tt such  that et <: e2, 

then τ eτ tτ tt ≡� τ τ teτ tt  and e <: e2  in τ eτ tτ tt. 

Proof. τ eτ tτ tt  ≡� τ τ teτ tt  holds if there is no event et  in τ t  such  that et  � e.  Let us assume that 

there is an event et  in τ t such  that et � e.  This is possible in three cases. 

 

i)  There is an e3  in τ t  such  that et � e3  and e3 <l e.  Because  e is enabled after both τ and τ τ t, 

for any e4  in τ , e4 1 e. Therefore, there cannot be such an e3. 
 

ii)  e is a read or a write event and there is an e3 in τ t such  that et � e3  and e3 be the latest event 

such that e3 <m e. Then e3 <: e. This contradicts condition (3). 

iii)  e is a lock acquire event, and there is an e3  in τ t  such  that e � e3  and e3  is the latest event 

such that e3 <m e. Let e4 be the lock acquire event corresponding to the lock release event e3. 

If e4  is in τ , then e cannot be enabled immediately after τ . Hence, I have a contradiction.  If e4  

is in τ t, then e4 <: e. This contradicts condition (3). 
 

 

Therefore, all the above three cases are impossible.  This proves that τ eτ tτ tt ≡� τ τ teτ tt. 
 

e <: e2  follows from Lemma 10. 
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τ

Lemma  12. If τ eτ1etτ2  is a feasible execution path and if e <: et, then et  is enabled immediately 

after τ . 
 

Proof. Let e be generated by the thread t and et be generated by the thread tt.  Let L be the set of 

locks held by t immediately before e is generated and Lt  be the set of locks held by tt  immediately 

before et is generated.  Then L ∩ Lt = ∅.  If this is not the case, then let l ∈ L ∩ Lt.  There exist two 

events e1  and e2  in τ1, such that e1  is an event of t, e2  is an event of tt, e1  is the release of l, and 

e2  is the acquire of l. Therefore, e1  � e2.  Moreover, e � e1  and e2  � et.  This violates the fact that e 

<: et. Therefore, L ∩ Lt = ∅.  Moreover, e <: et implies that e 1 et. Hence,  et is enabled immediately 

after τ . 

 
Lemma  13. If τ eτ1etτ2  is a feasible execution path and if e<:et, then there exists a feasible execution 

path of the form τ etτ3eτ4  such that et <: e holds. 

Proof. By Lemma 12, et  is enabled after τ . Therefore, τ et  is a prefix.  Because I assume that a 

path never ends in a deadlock state, there must exist a feasible execution path whose prefix is τ et 

and e is in the path.  Let τ etτ3eτ4  be the feasible execution path in which after executing τ et, I 

execute e as soon as it gets enabled.  In this path et <: e. 

 
I now get back to the proof of Theorem 9. The proof of Ext(P ) ⊆ Ex(P ) is straightforward. If I 

remove the  check race (τ1)  == true  from the  function  backtrackable (τ1),  then  after  each 

prefix τ1, I explore the events of all enabled threads.  Therefore, the algorithm explores the entire 

computation tree, that is, the algorithm explores all execution paths in Ex(P ). Clearly, if I keep the 

check race (τ1) == true in the function backtrackable (τ1), I may explore a smaller number of 

execution paths.  Therefore, Ext(P ) ⊆ Ex(P ). 

I next prove REx(P ) ⊆ Ext(P ) by induction.  Specifically, I prove that for any τ1 ∈ Ex(P ), there  

is  a τ2  ∈ Ext(P ) such that  τ1  ≡� τ2.  Let  τ  be a prefix  explored  by the  algorithm.   Let us  

define  Exτ (P )  = {τ t   |  τ t   ∈  Ex(P ) and τ is a prefix of τ t}.    Similarly,  let  Ext (P )  = {τ t   | τ t  ∈ 

Ext(P ) and τ is a prefix of τ t}.  By an argument similar to that in the previous paragraph, Ext (P 

) ⊆ Exτ (P ). 

Let Ten = {ti1 , . . . , til } be the set of threads that are enabled after executing τ , where ip  < iq 
 

if and only if p < q.   Let  ek  be the  event  generated  if I execute  the  thread  tik  after  τ .  If I 
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τ ek 

Ex 

τ ek 

τ

τ ek

τ ek

τ ek 

remove the  check race (τ1) == true  from the  function  backtrackable (τ1),  then  after  executing  τ 

our algorithm will execute all the threads in Ten  in various executions.  HoIver, if I keep the check 

race (τ1) = true in the function backtrackable (τ1), then after executing τ our algorithm may 

only execute the threads ti1 , ti2 , . . . , tik  in that order where k < l. This happens if after exploring 
 

all paths in Ext 
 

(P ), race (τ ) is false.  This happens if there exists no e in any of the paths in 

t 
τ ek (P ) such that ek <: e. By the induction hypothesis, let us assume that for each τ t ∈ Exτ ek 

 

(P ), 

there is a τ tt ∈ Ext (P ) such that τ t ≡� τ tt. I want to prove that the same holds for τ , that is, 

for each τ t  ∈ Exτ (P ), there is a τ tt ∈ Ext (P ) such that τ t  ≡� τ tt.  This holds if I can show that 

for any k + 1 ≤ m ≤ l and any τ1 ∈ Exτ em (P ), there is a τ2 ∈ Ext 
 

(P ) such that τ1 ≡� τ2. 

Consider τ1 ∈ Exτ em (P ).  Then τ1  must be of the form τ emτ tek τ tt.  I consider three cases as 

follows. 
 

(i)  If there exists no e in emτ t  such  that e <: ek , and there exists no et  ∈ τ tt  such  that ek <: ett, 

then τ ek emτ tτ tt ≡� τ emτ tek τ tt  by Lemma 11. But τ ek emτ tτ tt ∈ Exτ ek (P ). Therefore, by the 

induction hypothesis there exists τ2 ∈ Ext (P ) such that τ ek emτ tτ tt ≡� τ2. This implies that 

τ2 ≡� τ emτ tek τ tt. Therefore, the induction claim holds in this case. 
 

(ii)  Now I show the impossibility of the case that there exists no e in emτ t  such  that e <: ek , and 

there exists an et  in τ tt  such  that ek <: et.  Then τ ek emτ tτ tt  ≡� τ emτ tek τ tt  Lemma 11. Note 

that in τ ek emτ tτ tt, the fact ek <: et still holds.  By the induction hypothesis, there exists 

τ ek τ4etτ5  ∈ Ext (P ) such that  τ ek τ4etτ5  ≡� τ ek emτ tτ tt.   By Lemma  10, in τ ek τ4etτ5,  the 

fact ek <: et holds.  This contradicts the assumption that after executing tik  after τ , race (τ ) is 
 

false. 
 

(iii)  Now I show the impossibility of the case that there exists an e in emτ t such that e <: ek . Let us 

assume that there exists an e in emτ t  such  that e <: ek . Then I show that this violates the 

assumption that after executing tik  after τ , race (τ ) is false.  Consider the following two cases. 
 

 

(a) The first case is e = em.  Since em <: ek  and τ emτ tek τ tt  is a feasible execution path of 
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P , by Lemma  13, there  is  a feasible  execution  path  of P of the  form τ ek τ4emτ5  such 

that in τ ek τ4emτ5, the fact ek <: em  holds.  This implies that τ ek τ4emτ5  ∈ Exτ ek (P ).  By 



62 

τ ek
the  induction  hypothesis,  there  exists  τ ek τ6emτ7   ∈ Ext (P ) such that  τ ek τ6emτ7   ≡� 

 

τ ek τ4emτ5. By Lemma  10, in τ ek τ6emτ7,  the  fact  ek  <: em  holds. This  violates  the 

assumption that after executing tik  after τ , race (τ ) is false. 

(b)  The second  case is that e is present in τ t.  Let τ1  = τ emτ8eτ9ek τ tt.  Since e <: ek  and τ1 is  

a feasible  execution  path  of P , by Lemma  13, there  is  feasible  execution  path  of P of 

the form τ emτ8ek τ4eτ5  such that in τ emτ8ek τ4eτ5, the fact ek <: em  holds.  Therefore, τ 

emτ8ek τ4eτ5  ∈ Exτ em (P ). If there is no et in emτ8  such that et <: ek , then by case (ii), I have 

a contradiction.  Otherwise, if there is a et in emτ8  such that et <: ek , then I get the case (iii)  

with |τ8| < |τ t|.  I repeat the process until I get the case (iii)(a)  or the case (ii).  The process 

is guaranteed to terminate as at each step the length of τ8 gets smaller than the length of 

τ t. On the termination of the process I get a contradiction. 
 
 
 
 
 
 
 
 
 
 

5.2    Extending Concolic Testing to Test Concurrent Programs 
 

 
 
I  next  describe  a simple  algorithm  for testing  shared-memory  multi-threaded  programs  with data  

inputs.   The  algorithm  näıvely  extends  concolic testing:   the  algorithm  does not  combine concolic 

testing with the race-detection and flipping algorithm.  Our goal in describing the simple algorithm 

is to familiarize the readers with the various data structures that I consistently use in our algorithms. 

Given a program P in Scil, our simple algorithm explores a subset of the execution paths in 

Ex(P ). This is done by repeatedly executing P both symbolically and concretely on different inputs 

and schedules, each of which leads the program along a different execution path.  At the end of 

each execution of P , our algorithm either computes a new schedule or a new input, which is used 

in the next execution of P .  A new input is generated by solving constraints.  To generate a new 

schedule, our algorithm picks a scheduler choice recorded during the execution and generates a new 

schedule where the particular thread chosen in the scheduler choice is postponed. 
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5.2.1    Instrumentation 
 

jCUTE first instruments the program P under test.  Table 5.1 shows the code that jCUTE adds 

during instrumentation.   The  code added  by jCUTE  during instrumentation  includes  the  code 

added by CUTE as in concolic testing.  In addition, jCUTE also adds code so that it can control 

the interleaving of the various threads at runtime. Specifically, jCUTE adds a call to the procedures 

access event before any access to a potential shared memory, fork event after forking a new thread, 

and end event  after terminating a thread.  After the START statement in a program, jCUTE adds 

code to  create  a new thread  and execute  the  procedure testing scheduler  in the  newly  created 

thread.  This procedure controls the execution of the other threads at runtime.  As such jCUTE 

can execute a program according to a pre-determined schedule. 
 

After instrumentation, jCUTE repeatedly runs the instrumented program P as follows: 
 

 
 
 
 

// input:  P is the instrumented program to test 
 

// depth is the depth of bounded DFS 
 

run jCUTE (P ,depth ) 
 

I = [ ]; h = (number of arguments in P ) + 1; 
 

completed =false; branch hist =[ ]; event =[ ]; postponed =[ ]; 
 

while not  completed 
 

execute P 
 

 

In an execution, the global shared variable i counts the number of shared memory accesses and 

the number of conditional statement executions; i is incremented by 1 before any shared memory 

access  or before  the  execution  of any conditional  statement.   The  execution  points  at  which i 

is  incremented  denote  choice  points —the  execution  path  of the  program P  can be changed  at 

these choice points either by generating a different schedule or a different input.  At these choice 

points I record the information required for generating new input in the arrays branch hist  and 

path c and in the maps I, A, P , and M . The use of these data structures is already described in 

Chapter 4. In addition, I record information required for generating new schedules in the arrays event, 

enabled, postponed, race.  Since a choice point i can represent either a scheduler choice or 
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Before Instrumentation After Instrumentation
// program start 
l :  START 

shared global vars A = P = path c = enabled  = M = [ ]; 
shared global vars i = inputNumber  = 0; 
global var tcurrent  = NULL; // stores the scheduled thread 
shared global var race = [ ]; // used in the efficient algorithm 
sleep = delayed  = { }; // used in the optimized algorithm 
l :  START 

create a new thread and execute testing scheduler () in that thread 
// input 
l :  lv ← input(); 

l :  inputNumber = inputNumber+1;
init input (&lv, inputNumber ); 

// new thread 
l :  fork (l); 

l :  fork(l);
fork event (); 

// lock 
l :  lock (&v); 

l :  access event(&v, l, l);
lock (&v); 

// unlock 
l :  unlock (&v); 

l :  unlock(&v);
access event (&v, l, u); 

// assignment 
l :  v ← lv; 

l :  access event(&v, l, w);
execute symbolic(&v,“lv”); 
v ← lv; 

// assignment 
l :  ∗lv1  ← lv2; 

l :  access event(lv1, l, w); 
execute symbolic(lv1,“lv2”); 
∗lv1  ← lv2; 

// assignment 
l :  lv ← v; 

l :  access event(&v, l, r);
execute symbolic(&lv,“v”); 
lv ← v; 

// assignment 
l :  lv ← ∗lv; 

l :  access event(lv, l, r);
execute symbolic(&lv,“∗lv”); 
lv ← ∗lv; 

// assignment 
l :  lv ← e; 
where e ∈ {&v, c, lv, lv op lv} 

l :  execute symbolic(&v,“e”);
lv ← e; 

// conditional 
l :  if (p)  goto   l 

l :  evaluate predicate(“p”, p);
if (p)  goto  l 

// normal termination 
l :  HALT 

l :  HALT; 
end event(); 

// program error 
l :  ERROR 

l :  print “Found Error with Input ” . I ; 
ERROR; 
end event(); 

 

Table 5.1: Code that jCUTE’s Instrumentation Adds 
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a branch choice,  either  the  elements  event [i],  enabled [i],  postponed [i],  race [i]  are  defined or the 

elements branch hist [i], path c[i] are defined. 

The array event is used to keep track of the sequence of events generated by an execution of P . 

Thus the array event  serves the same purpose as the global variable τ in Figure 5.1. postponed [i], 

if defined, contains  a set  of threads  that  cannot  be executed  in the  next  execution  of P at  the 

choice point i.  This array, like the event array, maintains information across executions.  The other 

two arrays enabled and race are not used across executions.  enabled [i], if defined, contains a set of 

threads that are not enabled at the choice point i.  race [i] is set to true if the event stored in event [i] 

has an immediate race with some other future event in the execution path.  The simple algorithm 

does not use this field; the field will be used in the efficient algorithm described in Section 5.3. If I use 

event [0 . . . i] to represent the sequence of events event [0]event [1] . . .event [i], then postponed [i] 

is the same as postponed (event [0 . . . i − 1]) defined in Section 5.1. Similarly, race [i] is the same as 
 

race (event [0 . . . i − 1]) defined in Section 5.1. 
 

The  global variable  tcurrent  is  used by the  procedure testing scheduler  to  store  the  currently 

scheduled thread.  The global sets sleep  and delayed  are used by the further optimized algorithm 

described in Section 5.4. 

 

 
5.2.2    Controlling the Execution of Threads 

 
 
At runtime, the execution of various threads is controlled by the thread executing the procedure 

testing scheduler.   This  procedure, besides  controlling  the  execution  of various  threads,  ensures 

that  at  any time  only one  thread  is  executing.   This  serialization  of the  execution  of various 

threads ensures that there is no uncontrolled concurrency in the system.  I next describe how the 

procedure testing scheduler  controls the various threads so that it can systematically explore the 

feasible interleavings. 

Let  us denote  the  thread  running the  procedure testing scheduler  by schedulerThread .   I use 

the variable thisThread  to denote the current thread (i.e.  the thread accessing the variable 

thisThread .) The execution of various threads is controlled using binary semaphores.  The pseudo- 

code of the implementation of a binary semaphore is given in Figure 5.2. A call to the procedure 

wait  on a semaphore s makes the calling thread wait until the value of s is 1. Once the value is 
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// Semaphore s is passed by reference in the following procedures 
init (Semaphore  s){ 

s = 0 ; 
} 

 
// Also known as P () 
wait (Semaphore  s) { 

await s == 1, then s = 0 ; // must be atomic once s == 1 is detected 
} 

 
// Also known as V () 
signal (Semaphore  s) { 

s = 1 ; // must be atomic 
} 

 
 

 
Figure 5.2: Binary Semaphore 

 
 
1, it sets the value of s to 0 atomically.  A call to the procedure signal  on a semaphore s sets the 

value of s to 1 atomically; this signals any thread waiting on s. 

I associate a binary semaphore with each thread at the time of its creation and initialize it to 

0. I use t.semaphore to denote the semaphore associated with the thread t. 

The definition of the various thread controlling procedures introduced through instrumentation 

is given in Figure 5.3. In an execution, before any access to a shared memory location, a thread, 

say  t, calls  the  procedure  access event.    This  procedure  first  executes  signal (schedulerThread . 

semaphore ) to signal the schedulerThread  thread to continue its execution.  Then the procedure 

executes wait (thisThread . semaphore ) to make t wait for a signal from the schedulerThread thread. 

This way t releases the control to the schedulerThread thread and allows schedulerThread to sched- 

ule an appropriate thread from the set of enabled threads.  Note that, although, the thread trying 

to access the shared memory location is waiting on its semaphore, it is enabled  by definition. 

A thread also starts waiting on its semaphore when it forks another thread.  HoIver, in this 

case, the thread calling fork does not signal the thread schedulerThread . This is because after the 

execution  of fork the  child thread  starts  its  execution  and I want  that  at  any time  during an 

execution only one thread is executing. 

The schedulerThread  after receiving a signal from an executing thread starts it job of picking 
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testing scheduler () 

wait (schedulerThread . semaphore ); 
while there is an enabled thread 

if i ≤ |events | 
(tcurrent,  , ) =event [i] ; 

else 
tcurrent  = loIst indexed thread in the set of enabled threads; 

signal (tcurrent  . semaphore ); // release control to the thread tcurrent 

wait (schedulerThread . semaphore ); // wait for the thread tcurrent  to give back control 
// end of the while loop 
if there is an active thread 

print ‘‘Error: found   deadlock’’; 
compute next input and schedule () ; 

 
access event (m, label, access type ) // access type can be r, w, l, u 

signal (schedulerThread . semaphore ); // release control to the testing scheduler 
wait (thisThread . semaphore ); // wait for the testing scheduler to give back control 
event [i] = (thisThread , label, access type ); 
enabled [i] = set of enabled threads; 
i = i + 1 ; 

 
fork event () 

wait (thisThread . semaphore ); // wait for the testing scheduler to give back control 
 

end event () 
signal (schedulerThread . semaphore ); // release control to the testing scheduler 

 

 
 
 

Figure 5.3: Definition of Various Thread Execution Controlling Procedures for the Simple Testing 
Algorithm 

 
 

 
the next thread to be scheduled for execution.  Whenever schedulerThread  receives a signal from 

a thread,  it knows that  all the  active  threads  in the  execution  are  waiting  to  access  a shared 

memory  location.   Then  it determines  if there  is  at  least  one thread  that  is  enabled  among the 

waiting threads, that is, if there is a thread that is not waiting to acquire a lock that is already 

acquired  by some other  thread.   If there  is  at  least  one enabled  thread,  then  it picks  the  same 

thread as the previous execution while i is less than the number of elements of event.  This ensures 

that the current execution follows the schedule computed in the previous execution while i is less 

than  or equal  to  the  length  of event.   At the  end of the  previous  execution,  the  sequence event 
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compute next input and schedule () 

for (j = i − 1 ; j ≥ 0 ; j = j − 1) 
if event [j] is defined 

// compute a new schedule 
if |enabled [j]| > |postponed [j]| + 1 

(t, , ) = event [j]; 
postponed [j] = postponed [j] ∪ {t}; 
t = smallest indexed thread in enabled [j]\ postponed [j]; 
event [j] = (t, , ) ; 
branch hist  = branch hist [0 . . . j]; 
event  = event [0 . . . j]; 
postponed  = postponed [0 . . . j]; 
return; 

else 
// compute a new input 
if (branch hist [j].done == false) 

branch hist [j].branch =¬branch hist [j].branch ; 
if (∃It  that satisfies neg last (path c[0 . . . j])) 

branch hist  = branch hist [0 . . . j]; 
event  = event [0 . . . j]; 
postponed  = postponed [0 . . . j]; 
return; 

// end of the for loop 
if (j < 0) completed  = true; 

 
Figure 5.4: Compute Next Schedule or Input for the Simple Testing Algorithm 

 
 
 
 
 
 
 
 
 
is truncated appropriately and concatenated with an event to perform a depth-first search of the 

feasible  execution  paths  of P .  Otherwise,  if i is  greater  than  the  number  of elements  in event, 

schedulerThread  selects the smallest indexed thread that it is enabled.  After selecting a thread, 

schedulerThread  signals the selected thread,  and itself starts waiting again for a signal.  If after 

getting a signal schedulerThread  determines that none of the threads are enabled and there is at 

least one active thread in the execution, then it flags that there is a deadlock situation.  Otherwise, 

if there is no enabled or active thread in the execution,  then the program execution terminates 

and schedulerThread  computes a schedule or an input for the next execution using the procedure 

compute next input and schedule described next. 
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5.2.3    Computing a Schedule and an Input 
 
 
The procedure compute next input and schedule  (see Figure 5.4) computes the schedule and the 

input that will direct the next program execution along an alternative execution path.  It loops over 

the choice points in the current execution from the end. If the selected choice point j inside the loop 

contains a scheduler choice and if not all scheduler choices at the choice point have been exercised, 

then  a new schedule  is  generated.   Specifically,  if the  thread  t executed  at  the  execution  point 

denoted by the element event [j] and if t can be added to postponed [j] without making postponed [j] 

equal to the set of enabled threads at that choice point, then t is added to the set postponed [j]. 

Moreover, the smallest indexed thread, which is in the set of enabled threads at the choice point 

and which is not in the set postponed [j], is chosen and assigned to event [j].  This ensures that in 

the next execution at the same choice point, the scheduler will pick a thread that is enabled and 

that is not in postponed [j].  Thus in subsequent executions all the threads that are enabled at the 

choice point will get scheduled one by one.  Otherwise, if at the selected choice point path c[j] is 

defined and if the constraint path c[j] has not been negated previously, then constraint solving is 

invoked to generate a new input (see 4.1.5.) 

 

 
 

5.3    Extending Concolic Testing with the Race-detection and 
 

Flipping Algorithm 
 

I next show how to extend concolic testing with the race-detection and flipping algorithm.  I call 

this  combined  algorithm  the  efficient  algorithm.   The  efficient  algorithm  explores  a much smaller 

superset of the execution paths in REx(P ). The algorithm accomplishes this by computing race  

conditions  betIen  different  events  in an execution.   Based on these  race  conditions,  the algorithm 

generates other schedules that flip  the race conditions, to provide a depth-first search of all 

permutations of the race conditions in the execution path.  More specifically, let e0e1e2 . . . en be an 

execution path of a program and let ei  and ej , where i < j, are related by the immediate race  

relation  (i.e.   ei  <: ej ).  In our efficient  testing  algorithm,  I mark the  event  ei  (by setting race [i] 

to true) to indicate that it has race with some future event and the thread of ei  must be postponed 

at that execution point in some future execution so that the race relation betIen ei 
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j+1 n! 

and ej  gets flipped.  While computing the next input and schedule at the end of the execution, if 

I  choose to  backtrack  at  the  event  ei,  then  I generate  a schedule  for the  next  execution where I 

continue the execution up to the prefix e0 . . . ei−1; hoIver, after that I postpone the 

execution of the thread of ei  as much as possible.  This ensures that the race betIen ei  and ej  gets 
 

flipped or permuted (i.e.  ej  <: ei) in the next execution and I get an execution path of the form 
 

e0 . . . ei−1ei+1 . . . ej et 
 

. . . ei . . . et 
 

. For example, if t1 : x = 1, t2 : x = 2 is an execution path, then 

 

there is a race condition in the accesses of the shared variable x. I generate a schedule such that the 

next execution is t2 : x = 2, t1 : x = 1, i.e., the accesses to x are permuted. 

 

In the efficient algorithm, I modify the definition of the thread controlling procedures described in 

Figure 5.3 by the one in Figure 5.5. (I label a statement with M: if the statement is modified or added 

to the pseudo-codes given in Figure 5.3.) I assume that the scheduler maintains a dynamic vector 

clock and a sequential vector clock with each thread and two dynamic vector clocks with each 

shared  memory  location.   The  dynamic vector  clocks  and the  sequential  vector  clocks  are updated 

using the procedure described in Section 3.2. These vector clocks are used to compute the 

<: relation in the procedure check and set race.  I omit the vector clock update procedures in the 

pseudo-code of the efficient algorithm to keep the description simple.  The access event  procedure 

calls the procedure check and set race.  The procedure check and set race determines if the current 

event has a race with any past event,  say event [j].  If such a race exists,  then the race [j] is set 

to true—assuming that the race condition was not already flipped in a previous execution.  The 

algorithm for selecting the next thread by the procedure testing scheduler  is modified so that a 

postponed  thread’s  execution  gets  delayed  as  much as  possible.   Note  that  if I postpone  the 

execution of thread as much as possible in the default schedule, then the proof of the Theorem 9 

goes through, because the proof is independent of the default scheduling policy. The computation of 

the next input and schedule is done using the modified procedure compute next input and schedule 

(see Figure 5.6). In this procedure, a new schedule, which postpones the thread associated with an 

event, is generated if the event has a race with a future event.  Note that in the simple algorithm 

(see Section 5.2), a thread is postponed at an execution point even if the corresponding event has 

no race with any future event. 

 

Soundness of our algorithm is trivial; a bug reported by our algorithm is an actual bug because 
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testing scheduler () 
wait (schedulerThread . semaphore ); 
tcurrent  = NULL; 
while there is an enabled thread 

if i ≤ |event | 
(tcurrent,  , ) =event [i] ; 

else 
M:  if tcurrent  is not enabled 

tcurrent  = loIst indexed thread in the set of enabled threads; 
// otherwise schedule the thread that was scheduled in the last iteration 
signal (tcurrent  . semaphore ); // release control to the thread tcurrent 

wait (schedulerThread . semaphore ); // wait for the thread tcurrent  to give back control 
// end of the while loop 
if there is an active thread 

print ‘‘Error: found   deadlock’’  ; 
compute next input and schedule () ; 

 
access event (m, label, access type ) // access type can be r, w, l, u 

signal (schedulerThread . semaphore ); // release control to the testing scheduler 
wait (thisThread . semaphore ); // wait for the testing scheduler to give back control 
event [i] = (thisThread , label, access type ); 
enabled [i] = set of enabled threads; 

M:  check and set race (m); 
i = i + 1 ; 

 
fork event () 

wait (thisThread . semaphore ); // wait for the testing scheduler to give back control 
 

end event () 
signal (schedulerThread . semaphore ); // release control to the testing scheduler 

 
check and set race (m) 

∀j ∈ [0, i) such that event [j] <: event [i] 
if t not in postponed [j] 

if e is a read or write event 
print ‘‘Warning: data   race   found’’; 

race [j] = true; 
 

 
 
 
Figure 5.5: Definition of Various Thread Execution Controlling Procedures for the Efficient Testing 
Algorithm 
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compute next input and schedule () 

for (j = i − 1 ; j ≥ 0 ; j = j − 1) 
if event [j] is defined 

// compute a new schedule 
if |enabled [j]| > |postponed [j]| + 1 

M:  if race [j] == true 
M:  race [j] = false; 

(t, , ) = event [j]; 
postponed [j] = postponed [j] ∪ {t}; 
t = smallest indexed thread in enabled [j]\ postponed [j]; 
event [j] = (t, , ) ; 
branch hist  = branch hist [0 . . . j]; 
event  = event [0 . . . j]; 
postponed  = postponed [0 . . . j]; 
return; 

else 
// compute a new input 
if (branch hist [j].done == false) 

branch hist [j].branch =¬branch hist [j].branch ; 
if (∃It  that satisfies neg last (path c[0 . . . j])) 

branch hist  = branch hist [0 . . . j]; 
event  = event [0 . . . j]; 
postponed  = postponed [0 . . . j]; 
return; 

// end of the for loop 
if (j < 0) completed  = true; 

 
Figure 5.6: Compute Next Schedule or Input for the Efficient Testing Algorithm 

 
 
 
our algorithm  provides  a concrete  input  and schedule  on which the  program exhibits  the  bug. 

Moreover, our algorithm can be complete in some cases. 

 

Proposition 14. (Completeness) During testing a program with our efficient algorithm, if the 

following conditions hold: 

 

• The algorithm terminates. 
 

• The algorithm makes no approximation during concolic execution and the algorithm is able 

to solve any constraint which is satisfiable. 

 
then our algorithm has executed all executions in REx and I have hit all reachable statements of 

the program. 
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j+1 n!

j+1 n! 

 

 
testing scheduler () 

wait (schedulerThread . semaphore ); 
while there is an enabled thread 

M:  if postponed [i] is defined 
M:   delayed  = delayed  ∪ postponed [i] ; 
M:  sleep = { nextEvent (t) | t ∈ delayed  } ; 
M:  tcurrent  = smallest indexed thread from set of enabled threads \ delayed ; 

signal (tcurrent  . semaphore ); // release control to the thread tcurrent 

wait (schedulerThread . semaphore ); // wait for the thread tcurrent  to give back control 
M:  ∀e ∈ sleep if e<: event [i − 1]; 
M:  let (t, , ) = e in delayed  = delayed  \t ; 

// end of the while loop 
if there is an active thread 

print ‘‘Error: found   deadlock’’  ; 
compute next input and schedule () ; 

 

 
 
 

Figure 5.7: Definition of testing scheduler  for the Further Optimized Algorithm 
 

 
5.4    A Further Optimization 

 

 

The efficient algorithm improves the simple algorithm by providing a systematic way to flip race 

relations betIen various pairs of events.  HoIver, this may result in repeated flipping of race rela- tions 

betIen the same pair of events, if the pair of events are not next to each other. As an instance, 
 

for the example in the Section 5.3, if the next execution path is e0 . . . ei−1ei+1 . . . ej et 
 

. . . ei . . . et  , 

 

then our efficient algorithm may detect that there is a race betIen ej  and ei.  As a result our 
 

algorithm would try to flip this race once again. To avoid this, I use a technique similar to sleep 
 

sets [38]. Specifically, in the execution path e0 . . . ei−1ei+1 . . . ej et 
 

. . . ei . . . et 
 

, I add the thread 

 

t, where t is the thread of the event ei, to the set delayed  of every event ei+1, . . . , ej . As a result, 

even if I have detected that there is a race betIen ej  and ei, I would not set to true the element of race 

corresponding to the event ej  (see the 2nd line of the procedure check and set race ). This ensures 

that I do not repeatedly flip race relation betIen the same pair of events.  The pseudo- code of the 

modified procedure testing scheduler  is given in Figure 5.7. The procedure nextEvent takes a thread 

t as an argument and returns the event that will happen if the thread t executes next. 
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5.5    Discussion 
 
 
I presented an efficient algorithm for testing multi-threaded programs.  An important aspect of our 

algorithm is that I treat symbolic constraint solving and race-flipping uniformly in our algo- rithm.  

In a given execution, I either do constraint solving or race-flipping.  This helps us to test concurrent 

programs in a single go. A pure symbolic execution based testing algorithm for con- current 

programs may end up exploring redundant execution paths having the same partial order. This is 

because optimal partial order reduction requires accurate knowledge of dependency rela- tion; such 

knowledge may not be computable due to inaccuracies of alias analysis during symbolic execution.  

On the other hand, a pure concrete execution based testing algorithm for concurrent programs 

requires the exploration of all partial orders for all possible inputs.  This may not scale up if the 

domain of inputs is large.  Our algorithm addresses the limitations of both these approaches by 

combining symbolic  and concrete  execution.   The  concrete  execution  helps  to  resolve  aliases 

exactly at runtime.  As a result I get the exact dependency or the causal relation betIen the events.   

The  symbolic  execution  helps  to  generate  a small  set  of inputs  from a large  domain of inputs 

through constraint solving.  Therefore, I believe that concolic testing extended with the race-

detection and flipping algorithm is an attractive technique to test concurrent programs. 
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Chapter 6 
 
 

Predictive Monitoring of Concurrent 
Programs 

 

 
 
 
 

So far I described a new method of testing multi-threaded shared-memory programs. The key goal of 

the method was to generate test inputs and schedules so that all the reachable statements of the 

program are executed when the program is run on the generated inputs and schedules.  As such, the 

proposed method can find generic bugs that are based on statement reachability.  Such bugs include 

assertion violations, segmentation faults, uncaught exceptions, and so on. In addition, the proposed 

method can discover data races and deadlocks in multi-threaded shared-memory programs. 

Although statement reachability-based bugs are an important class of bugs in programs, there 

may be bugs in a program because the program does not meet its specification.  In particular, in 

many instances, a program may be required to satisfy a formal specification given as a formula in 

a suitable logic.  For example, an operating system must satisfy the requirement that if there is 

logout by user X, then in the past the user X must have logged in. In this dissertation, I will not 

focus on how to determine these requirements.  I will assume that in many situations a formal 

specification may be available along with a program. This is, in particular, often true for programs 

written for safety critical systems. 

Given a program and its formal specification, a key research challenge is to develop scalable and 

automated methods either to prove that the program meets its specification or that the program 

has a bug with respect to the specification.  A popular approach to address this problem is model 

checking.   In model  checking  the  whole  state  space of a program is  automatically  explored  and 

checked against the formal specification.  Although model checking can prove a program correct, it 

does not scale for large programs because the state space of practical programs is often too large 

to be handled by a model checker.  This is called the state explosion problem. 

Runtime verification, also called runtime monitoring, is an emerging approach which tries to 

address the state explosion problem by checking at runtime the execution of a program against 
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its formal specification.  In particular, this approach combines testing and formal specification as 

follows.   Given  a specification,  a code fragment  called  a runtime  monitor  is  generated  from the 

formal specification.   The  monitor  is  then  Iaved into  the  program through  instrumentation  so that 

whenever the instrumented program is executed, the monitor can check at runtime whether the 

specification is violated.  The instrumented program is then executed on various test inputs to check 

if the program meets its specification on those inputs.  Since testing is not rigorous, runtime 

monitoring can find violations of a specification a program, but it cannot prove that a program 

meets its specification. 

I can combine runtime monitoring with concolic testing to test a sequential program against its 

formal specification.  In the ideal case, if concolic testing manages to explore all feasible paths of a 

program and runtime monitoring does not detect any violation of the specification in the explored 

paths, then I can prove that the program meets its specification. 

HoIver, if our program is a shared-memory multi-threaded program, then a combination of 

runtime monitoring and concolic testing extended with the race-detection and flipping algorithm 

is not sufficient, that is, even if I find no violation of the specification by exploring one execution 

path from each feasible partial order of the program, there may exist unexplored feasible execution 

paths  that  may violate  the  property.   This  is  because exploring  only non-equivalent  execution 

paths  is  not  sufficient  for catching  violations  of temporal  properties—a  temporal  property  may 

be simultaneously  satisfied  and violated  by two  different  equivalent  execution  paths.   This  was 

illustrated by an example in Section 2.3. 

Next I present a technique to address the above problem.  The technique is called predictive 

monitoring.1    In predictive monitoring, from an observed execution path, I generate all the 

equivalent execution paths and represent them compactly in an abstract model called computation 

lattice. I show that runtime monitoring on this model can be done efficiently. Since this technique 

enables us to predict violations of properties in non-observed execution paths without re-executing 

the program, I call the technique predictive.  Observe that predictive monitoring can predict and 

monitor all execution paths equivalent to a given execution path; therefore, predictive monitoring is 

not comprehensive like model checking.  HoIver, when combined with concolic testing, predictive 
 

1 This work is done partly in collaboration with Gul Agha and Grigore Roşu.  Part of this work appeared in [90, 
92, 80, 81, 94]. 



76 

monitoring  makes  the  former  more efficient  because  it does  not  re-execute  the  program along 

equivalent paths, but relies only on the information that is already available from an execution. 

The rest of the chapter is organized as follows.  In Section 6.1, I describe a simple form of 

monitors for safety properties.  In Section 6.2, I define relevant causality which is a refinement of 

the notion of causality relation described in Section 3.2. I describe the predictive monitoring 

algorithm in Section 6.3. 

 

 
6.1    Monitors for Safety Properties 

 
 

Safety  properties  are  a very  important,  if not  the  most  important,  class  of properties  that  one 

should  consider  in monitoring.   This  is  because once a system  violates  a safety  property,  there 

is no way to continue its execution to satisfy the safety property later.  Therefore, a monitor for 

a safety property can precisely say at runtime when the property has been violated,  so that an 

external recovery action can be taken.  From a monitoring perspective, what is needed from a safety 

formula is a succinct representation of its bad prefixes which are finite sequences of states leading 

to a violation of the property.  Therefore,  one can abstract away safety properties by languages 

over finite words. 

Automata are a standard means to succinctly represent languages over finite words.  In what 

follows I define a suitable version of automata, called monitor, with the property that it has a 

“bad” state from which it never gets out: 

 

Definition:  Let  S be a finite  or infinite  set,  that  can be thought  of as the  set  of states  of the 

program to be monitored. Then an S-monitor or simply a monitor, is a tuple Mon = (M, m0, b, ρ), 
where 

 
 

•  M is the set of states of the monitor; 
 

 

•  m0 ∈ M is the initial state of the monitor; 
 

 

• b ∈ M is the final state of the monitor, also called bad state; and 
 

 

•  ρ : M × S → 2M  is a transition function with the property that ρ(b, Σ) = {b} for any Σ ∈ S. 
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Sequences in S*, where c is the empty one, are called (execution) traces. A trace π is said to be a bad 

prefix in Mon iff b ∈ ρ({m0}, π), where ρ : 2M ×S*  → 2M is recursively defined as ρ(M, c) = M and 

ρ(M, πΣ) = ρ(ρ(M, π), Σ), where ρ : 2M ×S → 2M is defined as ρ({m}∪M, Σ) = ρ(m, Σ) ∪ρ(M, Σ) 

and ρ(∅, Σ) = ∅, for all finite M ⊆ M and Σ ∈ S. 

M is not required to be finite in the above definition, but 2M represents the set of finite subsets 

of M.  In practical situations it is often the case that the monitor is not explicitly provided in a 

mathematical  form as above.   For example,  a monitor  can be a specific  type  of program whose 

execution is triggered by receiving events from the monitored program; its state can be given by 

the values of its local variables, and the bad state is a fixed unique state which once reached cannot 

be changed by any further events. 
 

There are fortunate situations in which monitors can be automatically generated from formal 

specifications, thus requiring the user to focus on system’s formal safety requirements rather than 

on low level implementation details.  In fact, this was the case in all the experiments that I have 

performed so far.  I have  so far experimented with requirements expressed either in extended 

regular expressions (ERE) or various variants of temporal logics, with both future and past time 

operators.  For example, [88, 89] show coinductive techniques to generate minimal static monitors 

from EREs  and from future  time  linear  temporal  logics,  respectively,  and [50, 13] show how to 

generate dynamic monitors, i.e., monitors that generate their states on-the-fly, as they receive the 

events, for the safety segment of temporal logic. Note, hoIver, that there may be situations in 

which the generation of a monitor may not be feasible, even for simple requirements languages.  For 

example, it is Ill-known that the equivalent automaton of an ERE may be non-elementary larger 

than the ERE in the worst case [105]; therefore, there exist relatively small EREs whose monitors 

cannot even be stored. 

 

Example  15. Consider a reactive controller that maintains the water level of a reservoir within 

safe bounds.  It consists of a water level reader and a valve controller.  The water level reader reads 

the current level of the water,  calculates the quantity of water in the reservoir and stores it in a 

shared  variable  w.  The valve  controller  controls  the  opening  of a valve  by looking  at the  current 

quantity of water in the reservoir.  A very simple and naive implementation of this system contains 

two threads:  T1, the valve controller, and T2, the water level reader.  The code snippet is given in 
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0 {} 
 

 

Thread   T1: Thread   T2: {~p} 

 
while(true)   { while(true)   { 
if(w   >   18)   delta   =   10; l =   readLevel(); 
else   delta   =   -10; w  =   calcVolume(l); 
for(i=0;   i<2;   i++)   { sleep(100); 

v =   v +   delta; } 
setValveOpening(v); 
sleep(100); 

} 

1 
 
 

{p,~q} 
 
 
2 {p,~q} 
 
 

{p,~q,~r} 

 
 
 
 
 
 
 
 
 
{q} 

} 
{q,~r} 3 

 
{p,~q} 

 
4 {q} 

 

 
{q} {q,~r} 

 
 

5 
 
 

Figure 6.1: Two Threads (T1 controls the valve and T2 reads the water level) and a Monitor. 
 
 
 
Figure 6.1. 
 

Here w is in some proper units such as mega gallons and v is in percentage.  The implementation 

is poorly synchronized and it relies on ideal thread scheduling. 
 

A sample  run of the  system  can be {w  = 20, v = 40}, {w  = 24}, {v  = 50}, {w  = 27}, {v  = 
 

60}, {w  = 31}, {v  = 70}.   As I will  see  later  in the  paper,  by a run I here  mean a sequence of 

relevant variable writes.  Suppose I are interested in a safety property that says “If the water 

quantity is more than 30 mega gallons, then it is the case that sometime in the past water quantity 

exceeded 26 mega gallons and since then the valve is open by more than 55% and the water quantity 

never  Int  down below  26 mega  gallon”.   I can express  this  safety  property  in two different 

formalisms:  linear temporal logic (LTL) with both past-time and future-time operators, or extended 
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regular  expressions  (EREs)  for bad prefixes.   The atomic  propositions  that I will  consider  are p : 

(w > 26), q : (w > 30), r : (v > 55). The properties can be written as follows: 
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F1  =  O(q → ((r ∧ p)S ↑ p)) 

F2  =  {}∗{¬p}{p, ¬q}+ 

({p, ¬q, ¬r}{p, ¬q}∗{q} + {q}∗{q, ¬r}){}∗ 

The formula F1  in LTL  (↑ p is  a shorthand  for “p  and previously  not p”)  states  that “It is 

always the case that if (w > 30), then at some time in the past (w > 26) started to be true and 

since then (r > 55) and (w > 26).”  The formula F2  characterizes the prefixes that make F1  false. 

In F2 I use {p, ¬q} to denote a state where p and ¬q holds and r may or may not hold. Similarly, 
 

{} represents any state of the system.  The monitor automaton for F2 is given also in Figure 6.1. 
 
 
 

6.2    Relevant Causality 
 
 
Monitors for a multi-threaded program may refer to a small subset of the set of the variables of 

the program. In our technique, I restrict such variables to a set called path-robust  variables.  A 

variable is said to be path-robust if and only if its value remains the same along an execution path, 

that is, its value is independent of the input along any execution path.  HoIver, the value of such a 

variable may be different for different executions paths of the program. A path-robust variable is 

said to be a relevant variable, if it is referred in a monitor of the program. 

For example in the multi-threaded program in Figure 2.3, the set of path-robust variables is {x, 

y }.  Since the value of z may vary along a particular execution path depending on the input, z is 

not a path-robust variable.  If I consider a monitor for the property ‘‘Always   x greater   than 

0,’’  then  the  monitor  only refers  to  the  path-robust  variable x.   All  the  other  variables  in the 

program except x are essentially irrelevant for the monitor.  Therefore, the set of relevant variables 

is { x }. 

To minimize the number of messages, like in [65] which suggests a similar technique but for 

distributed systems in which reads and writes are not distinguished, I consider a subset R ⊆ E of 

relevant events.  I say that e ∈ E is a relevant event if and only if e writes a memory location m, x 

is a relevant variable, and m is the address of x (i.e.  m = &x).  I define the R-relevant causality 

on E as the relation �R:=� ∩(R × R),  so that e �R  et  iff e, et  ∈ R and e � et.   It is important 

to notice though that the other variables can also indirectly influence the relation �R, 
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because they can influence the relation �.  I next provide a technique based on dynamic vector 
 

clocks that correctly implements the relevant causality relation. 
 

 
 

6.2.1     Vector Clock Algorithm for Relevant Causality 
 

 
I provide a variant of the dynamic vector clock algorithm (see Section 3.2), called the relevant 

vector clock algorithm, that correctly and efficiently implements the relevant causality relation. 

The relevant causality relation betIen the events in an execution can be tracked efficiently at 

runtime using relevant vector clocks  (RVC). A relevant vector clock VR : T → N, where T is the 

set of threads that are present in the execution.  I call such a map a relevant vector clock (RVC). 

Such a map can be partial because threads are created dynamically at runtime.  To simplify the 

exposition and the implementation, I assume that each RVC VR is a total map, where VR(t) = 0 

whenever VR is not defined on thread t. 

I associate a RVC with every thread t and denote it by VRt. Moreover, I associate two RVCs 
 

VRa
 

 

and VRw
 

 

with every shared memory m; I call the former access RVC and the latter update 

 

RVC. Whenever a thread t with current RVC VRt  generates an event e, the following algorithm, 

called the relevant vector clock algorithm, is executed: 

 

1. If e is a relevant event, i.e., if e ∈ R, then 
 

VRt(t) ← VRt(t) + 1. 
 

 
2. If e is a read of a shared memory location m, then 

 

VRt  ← max{VRt, VRw } 
 

VRa
 

 

← max{VRa  , VRt} 
 

 

3. If e is a write, lock, or unlock of a shared memory location m, then 
 

VRw  ← VRa 
 

← VRt  ← max{VRa  , VRt} 
m  m  m 

 
4. If e is a fork event and if tt  is the newly created thread, then 

 

VRt!  ← VRt 
 

 
5. If e is a relevant event and if e writes the value v to the variable x, then 
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send message (t, VRt, x, v). 
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I can associate a RVC with every event e, denoted by VR{e}, as follows.  If e is executed by t and if 

VRt  is the vector clock of t just after the event e, then VR{e} = VRt.  Given a multi-threaded 

program, I instrument the program so that it runs the relevant vector clock algorithm for every 

event and sends the messages to an observer which performs predictive monitoring. 
 

 

Lemma  16. After the processing of the event ek  by thread t 
 
(a)  VRt(tt) equals the number of relevant events of t that causally precede ek . 
 
(b)  VRa (tt)  equals  the  number  of relevant  events  of t that causally precede  any event  in E that 

appears before or equals to ek  and accessed m. 

 

(c)  VRw (tt) equals the number of relevant events of tt  that causally precede the most recent write 

event of m. 

Theorem 17. For any two events e and et, e �R et  iff VR{e} ≤ VR{et}. 
 
The proof of the above two results can be done in a way similar to that of the Theorem 6. 

 
 
 

6.3    Runtime Model Generation and Predictive Monitoring 
 

In an execution of a multi-threaded program, the messages sent by the relevant vector clock algo- 

rithm are received by an observer which performs the predictive monitoring.  The observer receives 

messages of the form (t, VRt, x, v). Each such message represents an event on thread t whose RVC 

is  VRt,  and in that  event  the  value v has been assigned  to  the  relevant  variable x.  Because of 

Theorem 17, the observer can infer the causal dependency betIen the relevant events emitted by the 

execution of the multi-threaded program. I show how the observer can monitor all possible 

interleavings of events that do not violate the observed causal dependency.  Only one of these in- 

terleavings corresponds to the real execution, the others being all potential executions.  Hence, the 

presented technique can predict safety violations from successful executions. 
 
 
6.3.1    Multi-Threaded Computation Lattice 

 

 
Inspired by related definitions in [9], I define the important notions of relevant multi-threaded 

computation  and run as  follows.    A  relevant  multi-threaded  computation,  simply  called  multi- 
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threaded  computation from now on, is the partial order on the relevant events that the observer 

can infer, which is nothing but the relation �R.  A relevant multi-threaded run, also simply called 

multi-threaded run from now on, is any permutation of the relevant events, which does not violate 
 

the multi-threaded computation.  Our goal is to check safety requirements against all (relevant) 
 

multi-threaded runs of a multi-threaded computation. 
 

A relevant event can change the state of the multi-threaded program as seen by the observer; 

this is formalized next.  A relevant program state, or simply a program state, is a map from relevant 

variables to concrete values.  Any permutation of relevant events generates a sequence of program 

states in the obvious way, hoIver, not all permutations of relevant events are valid multi-threaded 

runs.  A program state is called consistent if and only if there is a multi-threaded run containing 

that state in its sequence of generated program states.  I next formalize these concepts. 

 

Definition:  [Consistent Run] For a given permutation of events in R, say R = e1e2 . . . e|R|, I say that 

R is a consistent run if for all pairs of events e and et, e �R  et  implies that e appears before et  in 

R. 
 

 

Let ek  be the kth  relevant event generated by the thread t since the start of its execution.  A 
 

cut C is a subset of R such that for all t ∈ T if ek  is present in C , then for all l < k, el 
 

is also 

t t 

present in C . In what follows, I let T = {t1, . . . , tn} to be the set of all threads created during the 

execution.  A cut is denoted by a tuple (ek1 , ek2 , ..., ekn ) where each entry in the tuple corresponds t1  t2  tn 
 

to the last relevant event for each thread included in C . If a thread t has not seen a relevant event, 

then the corresponding entry is denoted by e0.  A cut C corresponds to a relevant program state 

that has been reached after all the events in C have been executed.  Such a relevant program state 

is called a relevant global multi-threaded state, or simply a relevant global state or even just state, 

and is denoted by Σk1 k2 ...kn . 

 

Definition:  [Consistent Cut] A cut is said to be consistent if for all events e and et 
 

 
 

(e ∈ C ) ∧ (et �R e) → (et ∈ C ) 

 
A consistent global state is the one that corresponds to a consistent cut.  A relevant event el  is 

said to be enabled in a consistent global state Σk1 k2 ...kn  if and only if C ∪ {el } is a consistent cut, 
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where C is the consistent cut corresponding to the state Σk1 k2 ...kn . The following proposition holds 
 

for an enabled event: 
 
Proposition 18. A relevant event el is enabled in a consistent global state Σk1 k2 ...kn  if and only 

 

if l = ki + 1. Moreover, for all relevant events e, if e /= 

el
 

and e �R  el  , then e ∈ C , where C is 

 

the consistent cut corresponding to the state Σk1 k2 ...kn . 
 
Proof. Since el is enabled in the state Σk1 k2 ...kn , C ∪ {el  } is a cut.  This implies that for all events 

 

ek k  l  k
 

1 2 l−1
 

ti , if k < l, then eti  ∈ C ∪ {eti } and hence eti  ∈ C . In particular, all the events eti , eti , . . . , eti are 

in C .  HoIver, el−1  is the last relevant event from thread ti, which is included in C .  Therefore, 

ki  = l − 1. The other way follows trivially because eki  �R el and e �R e
ki   for all e ∈ C . 

ti ti ti 
 

Since el ∈ C ∪ {el  }, e �R el  , and C ∪ {el  } is a consistent cut, e ∈ C ∪ {el } (by the definition 

ti ti ti ti i 

of consistent cut).  Since by assumption e /= el  , I have e ∈ C . 
 

 

An immediate consequence of the above proposition is the following corollary: 
 
Corollary 19. If C is the consistent cut corresponding to the state Σk1 k2 ...kn  and if el is enabled 

 

in Σk1 k2 ...kn , then the state corresponding to the consistent cut C ∪ {el  } is Σk1 k2 ...ki−1 lki+1 ...kn  or 
 

Σk1 k2 ...ki−1 (ki +1)ki+1 ...kn  and I denote it by δ(Σk1 k2 ...kn , el 

 

 

Here the partial function δ maps  a consistent state Σ and a relevant event e enabled in that 

state to a consistent state δ(Σ, e) which is the result of executing e in Σ.  Let ΣK0  be the initial 

global state, Σ00...0, which is always consistent.  The following result holds: 

 

Lemma  20. If R = e1e2 . . . e|R|  is a consistent multi-threaded run, then it generates a sequence of 

global states ΣK0 ΣK1 . . . ΣK|R|  such that for all r ∈ [1, |R|],  ΣKr−1   is consistent,  er  is enabled in 

ΣKr−1 , and δ(ΣKr−1 , er ) = ΣKr . 
 

Proof. The proof is by induction on r. By definition the initial state ΣK0  is consistent.  Moreover, 
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e1  is enabled in ΣK0  because the cut C corresponding to the state ΣK0  is empty and hence the 

cut C ∪ {e1} = {e1} is consistent.  Since ΣK0  is consistent and e1  is enabled in ΣK0 , δ(ΣK0 , e1) is 

defined. Let ΣK1 = δ(ΣK0 , e1). 
 

Let  us  assume  that  ΣKr−1    is  consistent,  er   is  enabled  in ΣKr−1 , and δ(ΣKr−1 , er )  = ΣKr . 

Therefore, δ(ΣKr−1 , er ) = ΣKr   is also consistent.  Let C be the cut corresponding to ΣKr . To prove 
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that er+1  is enabled in ΣKr   I have to prove that C ∪ {er+1} is a cut and it is consistent.  Let 
 

er+1  = el 

 

for some t and l i.e.  er+1  is the lth relevant event of thread t. For every event ek  such 

that k < l, ek �R el . Therefore, by the definition of consistent run, ek appears before el  in R for all t t t t 
 

0 < k < l. This implies that all ek for 0 < k < l are included in C . This proves that C ∪ el  is a cut. t t 

Since C is a cut, for all events e and et  if e /= el , then (e ∈ C ∪ {el }) ∧ (et �R e) → et ∈ C ∪ {el }. t t t 

Otherwise, if e = el , then by the definition of consistent run, if et �R el , then et  appears before el 
t t t 

in R. This implies that et  is included in C ∪ {el }.  Therefore, C ∪ {el } is consistent, which proves t t 
 

that er+1  = el 

 

is enabled in the state ΣKr .  Since ΣKr   is consistent and er+1  is enabled in ΣKr , 
 

δ(ΣKr , er+1) is defined. I let δ(ΣKr , er+1) = ΣKr+1 . 
 

From now on, I identify the sequences of states ΣK0 ΣK1 . . . ΣK|R| as above with multi-threaded 

runs, and simply call them runs.  I say that Σ leads-to Σt, written Σ "V' Σt, when there is some run 

in which Σ and Σt  are consecutive states.  Let "V'∗  be  the reflexive transitive closure of the relation 

"V'. The set of all consistent global states together with the relation "V'∗ forms a lattice with 

n mutually orthogonal axes representing each thread.  For a state Σk1 k2 ...kn , I call k1 + k1 + · · · kn 
 

its level.  A path in the lattice is a sequence of consistent global states on increasing level, where 

the level increases by 1 betIen any two consecutive states in the path.  Therefore, a run is just a 

path starting with Σ00...0  and ending with Σr1 r2 ...rn , where ri is the total number of relevant events 

of thread ti. 

Therefore, a multi-threaded computation can be seen as a lattice.  This lattice, which is called 

computation lattice and referred to as L, should be seen as an abstract model of the running multi- 

threaded program, containing the relevant information needed in order to analyze the program. 

Supposing that one is able to store the computation lattice of a multi-threaded program, which 

is a non-trivial  matter because it can have an exponential number of states in the length of the 

execution, one can mechanically model-check it against the safety property. 
 

Given  a state  Σk1 k2 ...kn   I can associate  a RVC with  the  state  (denoted  by VR{Σk1 k2 ...kn }) 

such that VR{Σk1 k2 ...kn }(ti) = ki  i.e.  VR{Σk1 k2 ...kn }(ti) is equal to the number of relevant events 

of thread ti that has causally effected the state.  With this definition the following results hold: 
 

Lemma  21. If a relevant event e from a thread t is enabled in a state Σ and if δ(Σ, e) = Σt, then 
 

∀tt /= t : VR{Σ}(tt) = VR{Σt}(tt) and VR{Σ}(t) + 1 = VR{Σt}(t). 



85 

t! t!

Proof. This follows directly from the definition of RVC of a state and Corollary 19. 
 

 

Lemma  22. If a relevant event e from thread t is enabled in a state Σ, then ∀tt /= t : VR{Σ}(tt) ≥ 

VR{e}(tt) and VR{Σ}(t) + 1 = VR{e}(t). 
 

Proof. VR{Σ}(t) + 1 = VR{e}(t) follows from Lemma 21. Say k = VR{e}(tt) for some tt  /= 

t. Then by (a) of Lemma 16 I know that the kth  relevant event from thread tt  causally precedes e 

i.e.  ek  �R 
 

e. Then by proposition 18, ek  ∈ C , where C is the cut corresponding to Σ. This implies 

that k ≤ VR{Σ}(tt) which proves that ∀tt /= t : VR{Σ}(tt) ≥ VR{e}(tt). 
 
 

Lemma  23. If R = e1e2 . . . e|R|  is a consistent multi-threaded run generating the sequence of global 

states ΣK0 ΣK1 . . . ΣK|R| , then VR{ΣKi } can be recursively defined as follows: 
 

 

VR{ΣK0 }(t) = 0 for all t ∈ T 
 

VR{ΣKr }(t) = max (VR{ΣKr−1 }(t), VR{er }(t))  for all t ∈ T and 0 < r ≤ |R| 
 

 

Proof. ∀t  ∈ T : VR{ΣK0 }(t) = 0 holds  by definition.   Let  er  be from thread  tt.   By Lemma  20 

er   is  enabled  in ΣKr−1 .  Therefore,  by Lemma  22, ∀t  /= tt : VR{ΣKr−1 }(t) ≥ VR{er }(t).   This 

implies that ∀t /= tt : VR{ΣKr }(t) = VR{ΣKr−1 }(t) = max (VR{ΣKr−1 }(t), VR{er }(t)).  Otherwise 

if t = tt, by Lemma 22, VR{ΣKr−1 }(t)+1 = VR{er }(t). Therefore, VR{ΣKr }(t) = VR{ΣKr−1 }(t)+ 

1 = VR{er }(t) = max (VR{ΣKr−1 }(t), VR{er }(t)).   This  proves  that  ∀j  ∈ T : VR{ΣKr }(t) = 
 

max (VR{ΣKr−1 }(t), VR{er }(t)). 
 

 

Corollary 24. If R = e1e2 . . . e|R|  is  a consistent multi-threaded run generating the sequence of 

global states ΣK0 ΣK1 . . . ΣK|R| , then 
 
 

VR{ΣKr }(t) = max (VR{e1}(t), VR{e2}(t), . . . , VR{er }(t))  for all t ∈ T and 0 < r ≤ |R| 
 
 
Example 25. Figure 6.2 shows the causal partial order on relevant events extracted by the observer 

from the multi-threaded execution in Example 15 together with the generated computation lattice. 

The actual execution, Σ00Σ01Σ11Σ12Σ22Σ23Σ33, is marked with solid edges in the lattice.  Besides 

its  RVC, each global  state  in the  lattice  stores  its  values  for the  relevant  variables  w and v.  It 

can be readily seen from Figure 2.3 that the LTL  property F1  defined in Example 15 holds on the 
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L ( S 00 )   {} 

( w   20 , v 40 ) 

 

e1 :< w=24, T2 ,(0,1)>  
L ( S 01 )   {} 

( w   24 , v 40 ) 

 

e2 :<v=50,  T1 ,(1,1)>  
L ( S 11 )   {} 

 
L ( S 02 ) 

 
{ p} 

 

e3 :< w=27, T2 ,(0,2)> 
( w   24 , v 50 ) ( w   27 , v 40 ) 

 
L ( S 21 ) {r} L ( S 12 ) { p} L ( S 03 ) { p , q} 

 
e4 :<v=60,  T1 ,(2,1)> 

( w   24 , v 60 ) ( w   27 , v 50 ) ( w   31, v 40 ) 

 
 

e5 :< w=31, T2 ,(0,3)> L ( S 22 ) { p , r} L ( S 13 ) { p , q} 

( w   27 , v 60 ) ( w   31, v 50 ) 

 
 

L ( S 23 ) { p , q, r} 

e6 :<v=70,  T1 ,(3,3)> ( w   31, v 60 ) 

 
L ( S 33 ) { p, q , r} 

( w   31, v 70 ) 

 

 

Figure 6.2: Computation Lattice 
 
 

sample run of the system, and also that it is not in the language of bad prefixes, F2. HoIver, F1 
 

is violated on some other consistent runs, such as Σ00Σ01Σ02Σ12Σ13Σ23Σ33. On this particular run 

↑ p holds at Σ02; hoIver, r does not hold at the next state Σ12.  This makes the formula F1  false at 

the state Σ13.  The run can also be symbolically written as {}{}{p}{p}{p, q}{p, q, r}{p, q, r}.  In the  

automaton in Figure  6.1, this  corresponds  to a possible sequence of states  00123555. Hence, this 

string is accepted by F2 as a bad prefix. 
 

 
Therefore, by carefully analyzing the computation lattice extracted from a successful execution 
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one can infer safety violations in other possible consistent executions.  In what follows I propose 

effective techniques to analyze the computation lattice.  A first important observation is that one 

can generate it on-the-fly and analyze it on a level-by-level basis, discarding the previous levels. 

HoIver, even if one considers only one level, that can still contain an exponential number of states in 

the length of the current execution.  A second important observation is that the states in the 

computation lattice are not all equiprobable in practice.  By allowing an user configurable window 
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of most  likely  states  in the  lattice  centered  around the  observed  execution  trace,  the  presented 

technique becomes quite scalable, requiring O(wm) space and O(twm) time, where w is the size of 

the window, m is the size of the bad prefix monitor of the safety property, and t is the size of the 

monitored execution trace. 

 

 
6.3.2    Level by Level Analysis of the Computation Lattice 

 

Given an execution path τ of a multi-threaded program, the relevant vector clock algorithm gen- 

erates a message for each relevant event in τ . The purpose of the predictive monitoring is to check 

all execution paths in [τ ]≡� against a given monitor.  The check is performed by an observer which 

has access to the sequence of messages generated from τ . 

A näıve observer would just check the observed sequence of messages against the monitor for 

the  safety  property,  say Mon  like  in Definition  6.1, and would maintain  at  each moment  a set 

of states, say MonStates  in M.  Let Q be the sequence of messages received from the execution τ 

. For each message in the sequence, it would create the next state Σ and replace MonStates  by 

ρ(MonStates,pgmState (Σ)), where pgmState (Σ) gives the mapping of all relevant program variables 

to their values in the state Σ. If the bad state b will ever be in MonStates, then a property violation 

error would be reported, meaning that the current execution trace led to a bad prefix of the safety 

property. Here I assume that the messages are received in the order in which they are emitted, and also 

that the monitor works over the global states of the multi-threaded programs. This assumption is 

essential for the observer to deduce the actual execution path of the multi-threaded program. The 

knowledge of the actual execution path is used by the observer to apply the causal cone heuristics 

as described later.  The assumption is not necessary if I do not want to use causal cone heuristics. The 

work in [91] describes a technique for the level by level analysis of the computation lattice without 

the above assumption. 
 

The pseudo-code for the näıve observer is given in Figure 6.3. pgmState (Σ)[x  .→ v] is same as 
 

pgmState (Σ), except the value of the relevant variable x being v. 
 

A smart observer, as said before, will analyze not only the observed execution trace, but also 

all the other consistent runs of the multi-threaded system,  thus being able to predict  violations 

from successful executions.  The observer receives the messages from the running multi-threaded 
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Let Mon = (M, m0, b, ρ) be the given monitor; 
pgmState (ΣK0 ) maps each relevant variable to its initial value; 
MonStates (ΣK0 ) = ρ({m0},pgmState (ΣK0 )); 
global var CurrentState = ΣK0 ; 

 
// inputs:   Q is the sequence of messages received from the program execution 
runNäıveObserver (Q) 

for  each msg  ∈ Q 
(t, VR, x, v) = msg ; 
NextState = pgmState (CurrentState )[x .→ v]; 
MonStates (NextState ) = ρ(MonStates (CurrentState ), pgmState (NextState )); 
if b ∈ MonStates (NextState ); 

print “property violated”; 
CurrentState = NextState ; 

 

 
Figure 6.3: Monitoring a Linear Trace 

 
 
 

program and appends them to the message sequence Q. At the end of the execution, it traverses 

the computation lattice level by level and checks whether the bad state of the monitor can be hit 

by any of the runs up to the current level.  I next provide the algorithm that the observer uses to 

construct the lattice level by level from the sequence of messages Q it receives from the execution 

path τ of an instrumented program. 

The observer maintains a list of global states (CurrLevel ), that are present in the current level of 

the lattice.  For each message msg in Q, it tries to construct a new global state from the set of states 

in the current level and the message msg. If the global state is created successfully, then it is added 

to the list of global states (NextLevel ) for the next level of the lattice.  The process continues until 

certain condition, levelComplete?() holds.  At that time the observer says that the level is complete 

and starts constructing the next level by setting CurrLevel  to NextLevel, NextLevel  to empty set, 

and reallocating the space previously occupied by CurrLevel. Here the predicate levelComplete?() is 

crucial for generating only those states in the level that are most likely to occur in other executions, 

namely those in the window, or the causality cone, that is described in the next subsection.  The 

levelComplete?   predicate is also discussed and defined in the next subsection.  The pseudo-code 

for the level-by-level monitoring of the lattice is given in Figure 6.4. 

Every global state Σ contains the value of all relevant shared variables in the program, a RVC 
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Let Mon = (M, m0, b, ρ) be the given monitor; 
pgmState (ΣK0 ) maps each relevant variable to its initial value; 
MonStates (ΣK0 ) = ρ({m0},pgmState (ΣK0 )); 
∀t ∈ T , VR{ΣK0 }(t) = 0; 
global var CurrLevel  = {ΣK0 }; 
global var NextLevel  = ∅; 
 
// inputs:   Q is the sequence of messages received from the program execution 
runObserver (Q) 

while Q is not empty 
Q = constructLevel (Q); 

 
constructLevel (Q) 

for  each msg  ∈ Q and Σ ∈ CurrLevel 
if nextState? (Σ, msg ) 

NextLevel  = NextLevel  l± createState (Σ, msg ); 
if levelComplete? (NextLevel, msg , Q) 

Q = removeUselessMessages (CurrLevel , Q); 
CurrLevel  = NextLevel ; 
NextLevel  = ∅; 
return Q; 

 
nextState? (Σ, msg ) 

(t, VR, x, v) = msg ; 
if (∀tt /= t : VR{Σ}(tt) ≥ VR(tt) and VR{Σ}(t) + 1 == VR(t)) 

return true; 
return false; 

 
createState (Σ, msg ) 

(t, VR, x, v) = msg ; 
Σt = new copy of Σ; 
VR{Σt}(t) = VR{Σ}(t) + 1; 
pgmState (Σt)[x .→ v]; 
MonStates (Σt) = ρ(MonStates (Σ),pgmState (Σt)); 
if b ∈ MonStates (Σt); 

print “property violated”; 
return Σt; 

 

 
Figure 6.4: Level-by-level Monitoring of a Computation Lattice 
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VR{Σ} to represent the latest events from each thread that resulted in that global state.  Here 

the predicate nextState? (Σ, msg ), checks if the event corresponding to the message msg is enabled 

in the state Σ.  The correctness of the predicate is given by Lemma 22. It says that event e can 

generate a consecutive state for a state Σ, if and only if Σ ‘knows’ everything e knows  about the 

current evolution of the multi-threaded system except for the event e itself.  Note that e may know 

less  than  Σ knows with  respect  to  the  evolution  of other  threads  in the  system,  because Σ has 

global information. 

The procedure createState (Σ, msg ), which implements the function δ described in Corollary 19, 

creates a new global state Σt, where Σt  is a possible consistent global state that can result from 

Σ after the relevant event e that generated the message msg.  Together with each state Σ in the 

lattice,  a set  of states  of the  monitor,  MonStates(Σ),  also  needs to  be maintained,  which keeps 

all the  states  of the  monitor  in which any of the  partial  runs  ending  in Σ can lead  to.   In the 

procedure createState, I set the MonStates  of Σt  with the set of monitor states to which any of 

the current states in MonStates(Σ) can transit when the state Σt is observed.  pgmState (Σt) returns 

the value of all relevant program shared variables in state Σt, and pgmState (Σt)[x .→ v] means that 

in pgmState (Σt) the relevant variable x is updated with the value v. Lemma 21 justifies that RVC 

of the state Σt  is updated properly. 

The merging operation nextLevel l± Σ adds the global state Σ to the set nextLevel.  If Σ is already 

present in nextLevel, it updates the existing state’s MonStates with the union of the existing state’s 

MonStates and the Monstates of Σ. Two global states are same if their RVCs are equal. 
 

The procedure removeUselessMessages(CurrLevel,Q) removes from Q all the message that can- 

not contribute to the construction of any state at the next level.  It creates a RVC VRmin  whose 

each component  is  the  minimum of the  corresponding  component  of the  RVCs  of all the  global 

states in the set CurrLevel.  It then removes all the messages in Q whose RVCs are less than or 

equal to Vmin .  This procedure makes sure that I do not store any unnecessary message.  The 

correctness of the procedure is given by the following lemma. 

 

Lemma  26.  For a given  relevant  event  e, if VR{e} ≤ VRmin , then  ∀Σ  ∈ CurrLevel , e is  not 

enabled in Σ. 

 

Proof. If e is enabled in Σ, then by Lemma 22, VR{e}(t) = VC (Σ) + 1, where t is the thread that 
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generated e. This implies that if e is enabled in Σ, then VR{e} /≤ VR{Σ}.  Since VR{e} ≤ VRmin 
 

I have ∀Σ ∈ CurrLevel , VR{e} ≤ VR{Σ}.  Therefore, e is not enabled in Σ. 
 
 

The  observer  runs  in a loop till Q is  empty.   In each iteration  of the  loop, the  procedure 
 

constructLevel  is called.  The pseudo-code for the observer is given in Figure 6.4. 
 

 
 

6.3.3    Causality Cone Heuristic 
 

 
The number of states on a level in the computation lattice can be exponential in the length of the 

trace. Generating all the states in a level may not be feasible due to limited memory. HoIver, note that 

some states in a level can be considered more likely to occur in a consistent run than others. For 

example, two independent events that can possibly permute may have a huge time difference. 

Permuting these two events would give a consistent run, but that run may not be likely to take 

place in a real execution of the multi-threaded program. So I can ignore such a permutation.  I 

formalize this concept as causality cone, or window, and exploit it in restricting our attention to a 

small set of states in a given level. 

As  mentioned  earlier,  I assume that  the  messages  are  received  in an order  in which they are 

generated in the execution.  Note that this ordering corresponds to the real execution of the 

program, and it respects the partial order associated with the computation.  This execution will be 

taken as a reference to compute the most probable consistent runs of the system. 

If I consider  all the  messages  generated  by executing  the  program as a finite  sequence  of 

messages, then a lattice formed by any prefix of this sequence is a sub-lattice of the computation 

lattice  L.  This  sub-lattice,  say Lt,  has the  following property:  if Σ ∈ Lt,  then  for any Σt  ∈ L 
if Σt  "V'∗  Σ, then Σt  ∈ Lt.  I can see this sub-lattice as a portion of the computation lattice L 

 

enclosed by a cone. The height of this cone is determined by the length of the prefix of messages. I 

call this causality cone.  All  the states in L that are outside this cone cannot be determined from 

the prefix of messages. Therefore, they are outside the causal scope of the sequence of events 

corresponding to the messages in the prefix.  As I consider longer prefixes, this cone moves down. 
 

If I compute  a RVC Vmax , whose  each component  is  the  maximum of the  corresponding 

component of the RVCs of all the messages in the message sequence, then Vmax represents the RVC 

of the global state appearing at the tip of the cone. The tip of the cone, by Corollary 24, traverses 
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Figure 6.5: Causality Cones 
 

levelComplete? (NextLevel, msg , Q) 
if size (NextLevel )≥ w 

return true; 
else if msg is the last message in Q 

return true; 
else 

return false; 
 

 
Figure 6.6: levelComplete?  Predicate 

 
 

 
the actual execution run of the program. 

 

 
To avoid the generation of a possibly exponential number of states in a given level, I consider a 

fixed number, say w, of most probable states in a given level.  In a level construction, I say that the 

level is complete once I have generated w states in that level.  HoIver, a level may contain less than 

w states.  Then the level construction algorithm gets stuck.  To avoid this scenario, I say that a level 

is complete if I have used all the messages in the message sequence for the construction of the states in 

the current level . The pseudo-code for levelComplete?  is given in Figure 6.6. 
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L ( S 00 )   {} 

( w   20 , v 40 ) 

 

e1 :< w=24, T2 ,(0,1)>  
L ( S 01 )   {} 

 

 
e3 :< w=27, T2 ,(0,2)> 

( w 
 
 
L ( S 11 )   {} 

24 , v 40 ) 
 
 

L ( S 02 ) 

 

 
 
 
{ p} 

e5 :< w=31, T2 ,(0,3)> 
( w   24 , v 50 ) ( w   27 , v 40 ) 

 
 

L ( S 21 ) {r} L ( S 12 ) { p} 

 
e2 :<v=50,  T1 ,(1,1)> 

( w   24 , v 60 ) 
 
 

L ( S 22 ) 

( w 
 
 
{ p , r} 

27 , v 50 ) 
 
 

L ( S 13 ) 

 

 
 
 
{ p , q} 

e4 :<v=60,  T1 ,(2,1)> ( w   27 , v 60 ) ( w   31, v 50 ) 

 
 

L ( S 23 ) { p , q, r} 

e6 :<v=70,  T1 ,(3,3)> ( w   31, v 60 ) 

 
L ( S 33 ) { p, q , r} 

( w   31, v 70 ) 

 

 

Figure 6.7: Causality Cone Heuristics applied to Example 2 
 
 
Example 27. Figure 6.7 shows the portion of the computation lattice constructed from the multi- 

threaded  execution  in Example 15, when the  causality  cone heuristics  is  applied  with  parameters 

w = 2 and l = 3. The possible consistent run Σ00Σ01Σ02Σ03Σ13Σ23Σ33, shown on the left side of 

the Figure 6.7, is pruned out by the heuristics.  In this particular run the two independent events 

e2 and e5 that are permuted have long time difference in the actual execution.  Therefore, I can 

safely ignore this run among all other possible consistent runs. 
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Chapter 7 
 
 

Implementation and Case Studies 
 

 
 
 
 
 
 
 
I first describe the details of two tools, which implement of the various testing methods described so 

far. I then report several case studies using the tools; these case studies show the applicability of the 

methods.  In our case studies, I do not consider any formal specification.  As such the case studies do 

not provide any empirical evaluation of the predictive monitoring technique. 

 

 
 

7.1    Implementation 
 

I have developed two automated concolic testing tools: CUTE for testing C programs and jCUTE for 

testing Java programs.  CUTE only implements concolic testing and works for sequential C pro- 

grams.  jCUTE implements all three methods—concolic testing, race-detection and flipping, and 

predictive monitoring.  The tools, CUTE and jCUTE, consist of two main modules:  an instrumen- 

tation module and a library to perform symbolic execution, to solve constraints, to control thread 

schedules, and to perform predictive monitoring.  The instrumentation module inserts code in the 

program under test so that the instrumented program calls the library at runtime for performing 

symbolic execution.  The library creates a symbolic heap to symbolically track the shared memory 

locations.  The library also maintains a symbolic stack for each thread to track the local variables 

symbolically.  To solve arithmetic inequalities, the constraint solver of both CUTE and jCUTE uses 

lp  solve  [61], a library for integer programming. jCUTE comes with a graphical user interface (a 

snapshot can be found in Figure 7.1). 
 

 
 

7.1.1    Program Instrumentation 
 

 
To instrument C code under test, CUTE uses CIL [68], a framework for parsing and transforming 

 

C programs.  CUTE saves all the generated inputs in the file-system.  Users of CUTE can replay 
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Figure 7.1: Snapshot of jCUTE 
 
 
 
 
the program on these recorded inputs to reproduce the bugs.  The replay can also be performed 

with the aid of a debugger.  To instrument Java code under test, jCUTE uses the SOOT compiler 

framework [109]. jCUTE performs instrumentation at the bytecode level.  For sequential programs, 

jCUTE can generate JUnit test cases, which can be used by the user for regression testing as Ill as 

for debugging.   For concurrent  programs,  jCUTE  records  both  the  inputs  and the  schedules for 

various execution paths.  This enables the user to replay the executions and reproduce bugs. 

jCUTE also allows the users to visualize graphically a multithreaded execution. 

The instrumentation modules of both the tools first translate a program into the three-address 

code that closely follows the syntax given in Figure 3.1. The difference is that an expression e can 

also be a function call of the form fun name (v1, . . . , vn).  After the simplification, the instrumen- 

tation module inserts instrumentation code throughout the simplified code for concolic execution 

at runtime.  Figure 7.1 shows examples of the code that the instrumentation module adds during 

instrumentation for function calls and function definitions.  The procedure push (&v)  pushes the 

symbolic expression for the address &v to a symbolic stack used for passing symbolic arguments 

during function calls. The reverse procedure pop(&v) pops a symbolic expression from the symbolic 
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Before Instrumentation After Instrumentation
// function call
v = f (v1, . . . , vn); 

push(&v1); . . . ; push(&vn); 
v = f (v1, . . . , vn); 
pop(&v); 

// function def
T f (T1 x1, . . . , Tn xn) { 

B; // body 
return   v;  } 

Tf(T1 x1, . . . , Tn xn) { 
pop(&x1);  . . . ; pop(&xn); 
B; push (&v); 
return   v;  } 

 
 

Table 7.1: Code that the Instrumentation Module Adds for Functions. 
 
 

stack and assigns it to the address &v. 
 

A difference betIen  CUTE or jCUTE  and traditional  symbolic execution  is  that  CUTE or 

jCUTE does not require instrumentation of the whole program. Calls to uninstrumented functions 

proceed  only with  the  concrete  execution,  without  symoblic  execution.   This  allows  CUTE  or 

jCUTE to handle programs that use binary and native libraries whose source code or bytecode are 

not available. 

 
 
7.1.2    Utility Functions 

 

The CUTE toolkit provides two commands, cutec and cute, for code instrumentation and running 

of the instrumented code. The toolkit also provides four macros that give the user additional control 

over the instrumentation. 

The command cutec  expects a set of C files and a toplevel  function; cutec  instruments the C 

files and compiles the instrumented files with a C compiler.  cutec assumes that the program starts 

by calling the toplevel function and that the input to the program consists of the memory graph 

reachable from the arguments passed to the toplevel function.  cutec  generates a main  function 

that first initializes the input for the toplevel function and the symbolic state, and then calls the 

instrumented toplevel function with the generated input. At the end of the execution of the toplevel 

function, main  calls the constraint solver to generate input for the next execution and stores the 

input in a file. 
 

The command cute  takes the executable generated by cutec  and executes it iteratively until 

an error is found or full branch coverage  is attained or a depth-first search completes.  If an error 



97 

is found, cute  invokes a debugger for the user to replay the erroneous execution. 
 

The CUTE library provides the following macros that the user can insert into the C code under 

test: 

1) CUTE input(x) allows the user to specify that the variable x (of any type, including a pointer) is 

an input, besides the arguments of the toplevel function.  This comes handy to replace any external 

user input, e.g., scanf(‘‘%d’’,&v)  by CUTE input(v)  (which also assigns value to &v). 
 

2) CUTE input  array(p,size).  This macro is similar to CUTE input  except that it assumes that 
 

p is a pointer and specifies that p points to an array of size size. 
 

3)  CUTE assume(pred),  where  pred  is  some  C predicate.   This  macro allows  the  execution  to 

proceed if the pred  holds.  This way I can restrict the input, e.g., the predicate can be a repOk() call 

for some data structure. 

4) CUTE assert(pred).  This macro specifies an assertion whose violation is considered an error. 
 

Similar commands and functions are also provided by jCUTE. 
 
 
 

7.2    Experimental Evaluation 
 

I illustrate six case studies, which show how CUTE and jCUTE can detect errors.  In the first two 

case studies, I use CUTE for testing.  In the rest of the case studies, I use jCUTE. The tool and 

the code for each  case study can be found at http://osl.cs.uiuc.edu/~ksen/cute/. I ran the 

first two case studies on a Linux machine with a dual 1.7 GHz Intel Xeon processor. The rest of 

the case studies Ire run on a 2.0 GHz Pentium M processor laptop with 1 GB RAM running Windows 

XP. 
 
 
7.2.1    Data Structures of CUTE 

 

I applied CUTE to test its own data structures.  CUTE uses a number of non-standard data 

structures at runtime, such as cu linear  to represent linear expressions, cu pointer  to represent 

pointer expressions, cu depend to represent dependency graphs for path constraints etc.  Our goal 

in this case study was to detect memory leaks in addition to standard errors such as segmentation 

faults, assertion violation etc.  To that end, I used CUTE in conjunction with valgrind [108]. I 

discovered a few memory leaks and a couple of segmentation faults that did not show up in other 
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uses of CUTE. This case study is interesting in that I applied CUTE to partly unit test itself and 
 

discovered bugs. I briefly describe our experience with testing the cu linear  data structure. 
 

I tested the cu linear  module of CUTE in the depth-first search mode of CUTE along with 

valgrind. In 537 iterations, CUTE found a memory leak.  The following is a snippet of the function 

cu linear  add relevant for the memory leak: 
 
 
 
 
 
 
cu_linear   * 

cu_linear_add(cu_linear   *c1,   cu_linear   *c2,   int   add)   { 
 

int   i, j; 
 

cu_linear*   ret=(cu_linear*)malloc(sizeof(cu_linear)); 
 

. . . // skipped   18 lines   of   code 

if(ret->count==0)   return   NULL; 

If the  sum  of the  two  linear  expressions  passed  as  arguments  becomes  constant,  the  func- 

tion returns NULL without freeing the memory allocated for the local variable ret.   CUTE 

constructed  this  scenario  automatically  at  the  time  of  testing.      Specifically,   CUTE  con- 

structed  the  sequence  of  function  calls  l1=cu  linear  create(0);   l1=cu  linear  create(0); 

l1=cu linear negate(l1); l1=cu linear add(l1,l2,1); that exposes the memory leak that 

valgrind detects. 
 
 
7.2.2    SGLIB Library 

 

I also applied CUTE to unit test SGLIB  [102] version 1.0.1, a popular, open-source C library for 

generic data structures.  The library has been extensively used to implement the commercial tool 

Xrefactory.  SGLIB consists of a single C header file, sglib.h, with about 2000 lines of code 

consisting only of C macros.  This file provides generic implementation of most common algorithms 

for arrays, lists, sorted lists, doubly linked lists, hash tables, and red-black trees.  Using the SGLIB 

macros, a user can declare and define various operations on data structures of parametric types. 
 

The library and its sample examples provide verifier functions (can be used as repOk) for each 

data structure except for hash tables.  I used these verifier functions to test the library  using 
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the technique of repOk  mentioned in Section 4.2. For hash tables,  I invoked a sequence of its 

function.   I  used CUTE with  bounded depth-first  search  strategy  with  bound 50.  Figure  7.2 

shows the results of our experiments. 
 

I chose SGLIB as a case study primarily  to measure the efficiency of CUTE. As SGLIB is 

widely used, I did not expect to find bugs.  Much to our surprise, I found two bugs in SGLIB using 

CUTE. 

The first bug is a segmentation fault that occurs in the doubly-linked-list library when a non- 

zero length  list  is  concatenated  with  another  zero-length  list.   CUTE discovered  the  bug in 140 

iterations (about 1 seconds) in the bounded depth-first search mode.  This bug is easy to fix by 

putting a check on the length of the second list in the concatenation function. 

The second bug, which is a more serious one, was found by CUTE in the hash table library 

in 193 iterations  (in 1 second).   Specifically,  CUTE  constructed  the  following valid sequence of 

function calls which gets the library into an infinite loop: 

 

 

typedef   struct   ilist   { int   i; struct   ilist   *next;   } ilist; 
 

ilist   *htab[10]; 

main()   { 
 

struct   ilist   *e,*e1,*e2,*m; 
 

sglib_hashed_ilist_init(htab); 
 

e=(ilist   *)malloc(sizeof(ilist));   e->next   =   0;   e->i=0; 

sglib_hashed_ilist_add_if_not_member(htab,e,&m); 

sglib_hashed_ilist_add(htab,e); 

e2=(ilist   *)malloc(sizeof(ilist));   e2->next   =   0;   e2->i=0; 

sglib_hashed_ilist_is_member(htab,e2);   } 
 

 
where ilist  is a struct  representing an element of the hash table.  I reported these bugs to the 

 

SGLIB developers, who confirmed that these are indeed bugs. 
 

Figure 7.2 shows the results for testing SGLIB 1.0.1 with the bounded depth-first strategy.  For 

each data  structure  and array sorting  algorithm  that  SGLIB  implements,  I tabulate  the  time that 

CUTE took to test the data structure, the number of runs that CUTE made, the number of 
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Name Run time 
in seconds 

# of 
Iterations 

# of Branches
Explored 

% Branch
Coverage 

# of Functions
Tested 

OPT  1 
in % 

OPT 2
& 3 in % 

# of
Bugs 

Array  Quick Sort 
Array  Heap Sort 
Linked List 
Sorted List 
Doubly Linked List 
Hash Table 
Red Black Tree 

2 
4 
2 
2 
3 
1 

2629 

732
1764 
570 

1020 
1317 
193 

1,000,000 

43
36 

100 
110 
224 
46 

242 

97.73
100.00 
96.15 
96.49 
99.12 
85.19 
71.18 

2
2 

12 
11 
17 

8 
17 

67.80 
71.10 
86.93 
88.86 
86.95 
97.01 
89.65 

49.13
46.38 
88.09 
80.85 
79.38 
52.94 
64.93 

0
0 
0 
0 
1 
1 
0 

 
Table 7.2: Results for Testing SGLIB 1.0.1 with Bounded Depth-First Strategy with Depth 50 

 
 

branches it executed, branch coverage obtained, the number of functions executed, the benefit of 

optimizations, and the number of bugs found. 

The branch coverage in most cases is less than 100%. After investigating the reason for this, I 

found that the code contains a number of assert statements that Ire never violated and a number of 

predicates that are redundant and can be removed from the conditionals. 

The last two columns in Figure 7.2 show the benefit of the three optimizations from Section 4.1.5. 

The column OPT 1 gives the average percentage of executions in which the fast unsatisfiability 

check was successful.  It is important to note that the saving in the number of satisfiability checks 

translates into an even higher relative saving in the satisfiability-checking time because lp  solve 
 

takes much more time (exponential in number of constraints) to determine that a set of constraints 

is unsatisfiable than to generate a solution when one exists.  For example, for red-black trees and 

depth-first search, OPT 1 was successful in almost 90% of executions, which means that OPT 1 

reduces  the  number  of calls  to  lp  solve  an order  of magnitude.   HoIver, OPT 1 reduces  the 

solving time of lp  solve  more than two orders of magnitude in this case; in other words, it would 

be infeasible to run CUTE without OPT 1. The column OPT 2 & 3 gives the average percentage of 

constraints that CUTE eliminated in each execution due to common sub-expression elimination and 

incremental solving optimizations.  Yet again, this reduction in the size of constraint set translates 

into a much higher relative reduction in the solving time. 

 
 
7.2.3    Java 1.4 Collection Library 

 

I used jCUTE to test the thread-safe Collection framework implemented as part of the java.util 

package of the standard Java library provided by Sun Microsystems.  A number of data structures 

provided by the package java.util  are claimed as thread-safe in the Java API documentation. 
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This implies that the library  should provide the ability to safely manipulate multiple objects of 

these data structures simultaneously in multiple threads.  No explicit locking of the objects should 

be required to safely manipulate the objects.  More specifically, multiple invocation of methods on 

the objects of these data structures by multiple threads must be equivalent to a sequence of serial 

invocation of the same methods on the same objects by a single thread. 

I chose this library as a case study primarily to evaluate the effectiveness of our jCUTE tool. As 

Sun Microsystems’ Java is widely used, I did not expect to find potential bugs. Much to our surprise, 

I found several previously undocumented data races, deadlocks, uncaught exceptions, and an 

infinite loop in the library.  Note that, although the number of potential bugs is high, these bugs are 

all caused by a couple of problematic design patterns used in the implementation. 

 

Experimental  Setup    The java.util  provides a set of classes implementing thread-safe Col- 

lection data structures.  A few of them are ArrayList, LinkedList, Vector, HashSet, LinkedHash- 

Set, TreeSet, HashMap, TreeMap, etc.  The Vector class is synchronized by implementation.  For 

the other classes, one needs to call the static functions such as Collections.synchronizedList, 

Collections.synchronizedSet, etc., to get a synchronized or thread-safe object backed by a non- 

synchronized object of the class.  To setup the testing process I wrote a multithreaded test driver for 

each such thread-safe class.  The test driver starts by creating two empty objects of the class. The  

test  driver  also  creates  and starts  a set  of threads,  where  each thread  executes  a different method 

of either of the two objects concurrently.  The invocation of the methods strictly follows the 

contract provided in the Java API documentation.  I created two objects because some of the 

methods, such  as containsAll, takes as an argument an object of the same type.  For such 

methods, I call the method on one object and pass the other object as an argument.  Note that 

more sophisticated test drivers can be written.  A simplified skeleton of the test-driver that I used is 

given below: 
 
 

public   class   MTListTest   extends   Thread   { 
 

List   s1,s2; 

public   MTListTest(List   s1,   List   s2)   { 

this.s1   =   s1; this.s2   =   s2;   } 
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public   void   run()   { 
 

int   c =   Cute.input.Integer(); 
 

Object   o1  =   (Object)Cute.input.Object("java.lang.Object"); 

switch(c){ 
 

case 0:   s1.add(o1);   break; 

case 1:   s1.addAll(s2);   break; 

case 2:   s1.clear();   break; 

. 

.}  } 

public   static   void   main(String[]   args)   { 
 

List   s1 =   Collections.synchronizedList(new   LinkedList()); 

List   s2 =   Collections.synchronizedList(new   LinkedList()); 

(new   MTListTest(s1,s2)).start(); 

(new   MTListTest(s2,s1)).start(); 

(new   MTListTest(s1,s2)).start(); 

(new   MTListTest(s2,s1)).start();} 

} 
 
 
 
 
 

 
The  arguments  to  the  different  methods  are provided  as input  to the  program.  If a class is 

thread-safe, then there should be no error if the test-driver is executed with any possible interleav- 

ing of the threads and any input.  HoIver, jCUTE discovered data races,  deadlocks,  uncaught 

exceptions, and an infinite loop in these classes.  Note that in each case jCUTE found no such error 

if methods are invoked in a single thread.  As such the bugs detected in the Java Collection library 

are concurrency related. 

The summary of the results is given in the Table 7.3. Here I briefly describe an infinite loop 
 

and a data race leading to an exception that jCUTE discovered in the synchronized LinkedList 
 

class and the synchronized ArrayList  class, respectively. 
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I present a simple scenario under which the infinite loop happens. The test driver first creates two 

synchronized linked lists by calling 

 

List   l1   =   Collections.synchronizedList(new   LinkedList()); 

List l2 = Collections.synchronizedList(new LinkedList()); 

l1.add(null); 

l2.add(null); 
 

The test driver then concurrently allows a new thread to invoke l1.clear()  and another new 

thread to invoke l2.containsAll(l1).  jCUTE discovered an interleaving of the two threads that 

resulted  in an infinite  loop.  HoIver, the  program never goes into  infinite  loop if the  methods are 

invoked in any order by a single thread.  jCUTE also provided a trace of the buggy execution. This 

helped us to detect the cause of the bug. The cause of the bug is as follows.  The method 

containsAll  holds the lock on l2  throughout its execution.  HoIver, it acquires the lock on l1 

whenever it calls a method of l1.  The method clear  always holds the lock on l1.  In the trace, I 

found that the first thread executes the statements 
 

 
modCount++; 

 

header.next   =   header.previous   =   header; 
 

 
of the method l1.clear() and then there is a context switch before the execution of the statement 

size=0; by the first thread.  The other thread starts executing the method containsAll by 

initializing an iterator on l1  without holding a lock on l1.  Since the field size  of l1  is not set 

to 0, the iterator assumes that l1  still has one element.  The iterator consumes the element and 

increments the field nextIndex to 1. Then a context switch occurs and the first thread sets size of 

l1 to 0 and completes its execution.  Then the other thread starts looping over the iterator.  In each 

iteration nextIndex  is incremented.  The iteration continues if the method hasNext  of the iterator 

returns true.  Unfortunately, the method hasNext  performs the check nextIndex   !=   size;  rather 

than  checking  nextIndex   <   size;.   Since  size  is  0 and nextIndex  is  greater  than  0, hasNext 

always returns true and hence the loop never terminates.  The bug can be avoided if containsAll 

holds lock on both l1  and l2  throughout its execution.  It can also be avoided if containsAll  uses 

the synchronized method toArray  as in the Vector  class, rather than using iterators.  Moreover, 
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Name Run time 
in seconds 

# of 
Paths 

# of
Threads 

% Branch
Coverage 

# of Functions
Tested 

# of Bugs Found 
data races/deadlocks/ 

infinite loops/exceptions 
Vector 
ArrayList 
LinkedList 
LinkedHashSet 
TreeSet 
HashSet 

5519 
6811 
4401 
7303 
7333 
7449 

20000 
20000 
11523 
20000 
20000 
20000 

5
5 
5 
5 
5 
5 

76.38
75 

82.05 
67.39 
54.93 
69.56 

16
16 
15 
20 
26 
20 

1/9/0/2
3/9/0/3 
3/3/1/1 
3/9/0/2 
4/9/0/2 

19/9/0/2 
 

Table 7.3: Results for Testing Synchronized Collection Classes of JDK 1.4 
 
 
 
the  statement  nextIndex   !=   size;   should  be changed  to  nextIndex   <   size;   in the  method 

hasNext.  Note that this infinite loop should not be confused with the infinite loop in the following 

wrongly coded sequential program commonly found in the literature. 
 

 
List   l =   new   LinkedList();     l.add(l);   System.out.println(l); 

 
 

I next present a simple scenario under which jCUTE found a data race leading to an uncaught 

exception in the class ArrayList. The test driver first creates two synchronized array lists by calling 

 

List   l1   =   Collections.synchronizedList(new   ArrayList()); 

List l2 = Collections.synchronizedList(new ArrayList()); 

l1.add(new   Object()); 

l2.add(new   Object()); 

 

The  test  driver  then  concurrently  allows  a new  thread  to  invoke  l1.add(new   Object()) 

and  another  new  thread  to  invoke  l2.containsAll(l1).     During  testing,   jCUTE  discov- 

ered  data  races  over  the  fields  size   and modCount   of  the  class  ArrayList.     In  a  subse- 

quent  execution,  jCUTE  permuted  the  events  involved  in a data  race  and discovered  an un- 

caught ConcurrentModificationException  exception.  HoIver, the program never throws the 

ConcurrentModificationException  exception if the methods are invoked in any order by a single 

thread.  Note that the Java API documentation claims that there should be no such data race or 

uncaught ConcurrentModificationException  exception when I use synchronized form of array list.  

jCUTE also provided a trace of the buggy execution.  This helped us to detect the cause of the 

bug. It is worth mentioning that jCUTE not only detects actual races, but also flips to see if the 

data race can be fatal, i.e., that it can lead to uncaught exceptions. 
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7.2.4    NASA’s Java Pathfinder’s Case Studies 
 

 
In [75], several case studies have been carried out using Java PathFinder and Bandera.  These case 

studies involve several small to medium-sized multithreaded Java programs;  thus they provide a 

good suite to evaluate jCUTE. The programs include RemoteAgent, a Java version of a component 

of an embedded spacecraft-control application, Pipeline, a framework for implementing multi- 

threaded staged calculations, RWVSN, Doug Lea’s framework for reader writer synchronization, 

DEOS, a Java version  of the  scheduler  from a real-time  executive  for avionics  systems,  Bound- 

edBuffer,  a Java implementation of multithreaded bounded buffer,  NestedMonitor,  a semaphore 

based implementation  of bounded buffer,  and ReplicatedWorkers,  a parameterizable  job  sched- 

uler.  Details about these programs can be found in [75]. I also considered a distributed sorting 

implementation used in [53]. This implementation involves both concurrency and complex data 

inputs. 

I used jCUTE to test these programs.  Since most of these programs are designed to run in an 

infinite loop, I bounded our search to a finite depth.  jCUTE discovered known concurrency related 

errors in RemoteAgent, DEOS, BoundedBuffer, NestedMonitor, and the distributed sorting 

implementation and seeded bugs in Pipeline, RWVSN, and ReplicatedWorkers.  The summary of 

the results is given in the Table 7.4. In each case, I stopped at the first error.  Note the although the 

running time of our experiments is many times smaller than that in [75, 53], I are also using a much 

faster machine. 

It is worth mentioning that I tested the un-abstracted version of these programs rather than 

requiring a programmer to manually provide abstract interpretations as in [75]. This is possible 

with  jCUTE  because jCUTE  tries to explore distinct  paths  of a program rather than  exploring 

distinct states.  Obviously, this means that I cannot prove a program correct if the program has 

infinite length paths.  Java PathFinder and Bandera can verify a program in such cases if the state 

space of the abstracted program is finite. 

 
 

7.2.5    Needham-Schroeder Protocol 
 

 
The Needham-Schroeder public-key authentication protocol [77] aims at providing mutual authen- 

tication through message exchanges betIen two parties:  an initiator  and a responder ; details of 
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Name Run time 
in seconds 

# of 
Paths 

# of
Threads 

% Branch
Coverage 

Lines
of Code 

# of Bugs Found 
data races/deadlocks/assertions/exceptions 

BoundedBuffer 
NestedMonitor 
Pipeline 
RemoteAgent 
RWVSN 
ReplicatedWorkers 
DEOS 

11.41 
0.46 
0.70 
0.45 
2.19 
0.34 

35.23 

43 
2 
3 
2 
8 
1 

111 

9
3 
5 
3 
5 
5 
6 

100.0
100.0 
64.29 
87.5 

68.18 
25.93 
64.75 

127
214 
103 

55 
590 
954 

1443 

0/1/0/0
0/1/0/0 
1/0/1/0 
1/1/0/0 
1/0/1/0 
0/0/1/0 
0/0/1/0 

 
Table 7.4: Java PathFinder’s Case Studies (un-abstracted) 

 
 
 
the protocol can be found elsewhere [77]. LoI reported an attack against the original protocol and 

also proposed a fix, called LoI’s fix [36]. 

I tested a concurrent implementation of the protocol using jCUTE. jCUTE found the attack in 

406 iterations or about 95 seconds of search. 

I compare these results with the ones reported previously [40, 41] for the same protocol.  The 

explicit-state C model-checker VeriSoft [40] analyzed a concurrent implementation of the protocol 

with  finite  input  domain.  Verisoft  was unable  to  find the  attack  within  8 hours,  evolutionary 

testing (with manual tuning) found the attack after 50 minutes (on a somewhat sloIr machine). 

DART  [41] found the  attack  on a sequential  implementation  of the  protocol  with  a somewhat 

stronger intruder model1  in 18 minutes.  In comparison, jCUTE found the attack on a concurrent 

implementation of the protocol with a proper intruder model in only 95 seconds, which is an order 

of magnitude  faster  than  the  fastest  previous  approach.  This  performance difference  is  due to 

jCUTE’s efficient algorithm that only explores distinct causal structures. 

7.2.6    TMN Protocol 
 

 
The Tatebayashi, Matsuzaki, and Newman (TMN)  Protocol [107] is a protocol for distribution of 

a fresh symmetric key.  In this protocol when an initiator wants to communicate with a responder, 

it uses a trusted server to obtain a secret symmetric session key.  The details of the protocol can 

be found in [107]. 

In this protocol, an intruder can establish a parallel session through eavesdropping and obtain 

the secret key [60]. I tested a concurrent implementation of the protocol using jCUTE. jCUTE 

found the attack in 522 iterations or about 127 seconds of search. 
 

1 Note that a stronger intruder model makes it easier for the intruder to find an attack.  This in turn makes the 
search space smaller resulting in faster testing time. 
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Chapter 8 
 
 

Related Work 
 

 
 
 
 
 
 
 
I  briefly  describe  the  related  work and compare it to  the  work presented  in this  dissertation. The 

body of related work may be loosely classified into three broad categories:  testing sequential 

programs, testing concurrent programs, and runtime verification. 

 

 
 

8.1    Testing Sequential Programs 
 
 
Automated testing is an active area of research.  In the last five years, over a dozen of techniques 

and tools have been proposed that automatically increase test coverage or generate test inputs. 

The simplest, and yet often very effective, techniques use random generation of (concrete) test 

inputs [15, 70, 35, 24, 72]. Some recent tools use bounded-exhaustive concrete execution [117, 42, 

16]; such testing tries all values from user-provided domains.  These tools can achieve high code 

coverage, especially for testing data structure implementation.  HoIver, they require the user to 

carefully choose the values in the domains to ensure the high coverage. 

Tools based on symbolic execution use a variety of approaches; in our view, the most relevant of 

these are abstraction-based model checking [10, 14], explicit-state model checking [115], symbolic- 

sequence exploration [118, 73], and static analysis [25]—to detect (potential) bugs or generate test 

inputs. These tools inherit the incompleteness of their underlying reasoning engines such as theorem 

provers and constraint solvers. For example, tools using precise symbolic execution [115, 118] cannot 

analyze any code that would build constraints out of pre-specified theories, e.g., any code with non- 

linear arithmetic or array indexing with non-constant expressions.  As another example, tools based 

on predicate abstraction [10, 14] do not handle code that depends on complex data structures.  In 

these tools, the symbolic execution proceeds separately from the concrete execution (or constraint 

solving). 
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Cadar and Engler  propose  Execution  Generated  Testing  (EGT)  [18], an approach similar  to 

CUTE: EGT explores different execution paths using a combined symbolic and concrete execution. 

HoIver, EGT does not consider inputs that are memory graphs or code that has preconditions. 

Also, EGT and CUTE differ in how they approximate symbolic expressions with concrete values. 

EGT follows a more traditional approach to symbolic execution and proposes an interesting method 

that lazily solves the path constraints:  EGT starts with only symbolic inputs and tries to execute 

the code fully symbolically, but if it cannot do so, EGT solves the current constraints to generate 

a (partial) concrete input with which the execution proceeds. 

CUTE is also related to some methods which use backtracking to generate a test input that 

executes  one given  path  (e.g., a path  that  may be known to  contain  a bug) [56, 46].  HoIver, in 

contrast  to  these  methods,  CUTE  attempts  to  cover all feasible  paths,  in a style  similar  to 

systematic testing.  Moreover, the prior work did not address inputs that are memory graphs. 

Visvanathan and Gupta [116] proposed a technique that generates memory graphs. They also use a 

specialized  symbolic  execution  (not  the  exact  execution  with  symbolic  arrays)  and develop  a 

solver for their constraints.  HoIver, they consider one given path, do not consider unknown code 

segments (e.g., library functions), and do not use a combined concrete execution to generate new 

test inputs.  Moreover, in our case the constraint solving is incremental. 

 

 
8.2    Testing Concurrent Programs 

 
 
Improving the reliability of concurrent programs is a challenging area of research. A major cause for 

defects in multithreaded programs is race conditions.  A large body of research focuses on dynamic 

or static race detection [78, 69, 33, 82, 21, 26]. Race detection suffers from the problem of false 

warnings.  Moreover, the dynamic techniques can report all possible race conditions only if there 

are good test inputs that can achieve high code coverage.  Our algorithm not only detects races but 

also permutes them systematically to search if the races can lead to some bug. Moreover, jCUTE 

generates test inputs so that the number of races caught is maximized. 

Bruening [17] first proposed a technique for dynamic partial order reduction, called ExitBlock- 

RW algorithm, to systematically test multithreaded programs.  These technique uses two sets, delayed 

set and enabled set, similar to the sets postponed and Tenabled in our algorithm, to enumerate 
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t1: 

1:   x =   1; 

t2: 

2:   y =   4; 

t3: 

3:   x =   2; 

 

Figure 8.1: A Three-Threaded Program 
 
 
meaningful schedules by re-ordering dependent atomic blocks.  HoIver, this assume that the program 

under  test  follows  a consistent  mutual-exclusion  discipline  using  locks.   The  dynamic partial  

order  reduction  technique  proposed  by Carver  and Lei  [19] guarantees  that  exactly  one 

interleaving for each partial order is explored.  HoIver, their approach involves storing schedules that 

have not been yet explored; this can become a memory bottleneck. 

More recently, dynamic partial order reduction proposed by Flanagan and Godefroid [34] re- 

moves the memory bottleneck in [19] at the cost of possibly exploring more than one interleav- 

ing for each partial order.  This technique uses dynamically constructed persistent sets  and sleep 

sets  [38] to  prune  the  search  space.   The  key difference  betIen  the  DPOR algorithm  in [34] 

and our race-detection and flipping algorithm is that,for every choice point, the DPOR algorithm 

in [34] uses a persistent  set  and I use a postponed  set.   These  two  sets  can be different  at  a 

choice point.  For example, for the 3-threaded program in Figure 8.1, if the first execution path is 

(t1, 1, w)(t2, 2, w)(t3, 3, w), then at the first choice point denoting the initial state of the program, 

the persistent set is {t1, t3}; whereas, at the same choice point, the postponed set is {t1}.  (Apart 
 

from scheduling the thread t1, the race-detection and flipping algorithm also schedules the thread t2 

at the first choice point.)  Note that the DPOR algorithm in [34] picks the elements of a persistent 

set by using a complex forward lookup algorithm.  In contrast, I simply put the current scheduled 

thread to the postponed set at a choice point. 

Moreover, the implementation in [34] considers two read accesses to the same memory location 

by different threads to be dependent.  Thus for the 3-threaded program in Figure 8.2, the imple- 

mentation described in [34] would explore six interleavings.  I remove the redundancy associated with 

this assumption by using a more general notion of race and its detection using dynamic vector clock 

algorithm.  As such, for the above example, I will explore only one interleaving.  Note that none of 

the  previous  descriptions  of the  above dynamic partial  order  reduction  techniques  have handled 

programs which have inputs. 

In a similar independent work [103], Siegel et al. use a combination of symbolic execution and 
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t1: 

1:   lv1   =   x; 

 

t2: 

2:   lv2   =   x; 

t3: 

3:   if (x >   0) 
4: ERROR; 

 

Figure 8.2: Another Three-Threaded Program 
 

 
static partial order reduction to check if a parallel numerical program is equivalent to a simpler 

sequential version of the program. Thus this work can also be seen as a way of combining symbolic 

execution with partial order reduction based model checking techniques for the purpose of testing 

parallel programs.  HoIver, their work deals with symbolic execution of numerical programs with 

floating points, rather than programs with pointers and data-structures.  Therefore, static partial 

order reduction proves effective in their approach. 

Model checking tools [106, 23, 29] based on static analysis have been developed.  These tools 

are useful in detecting bugs in concurrent programs.  These tools also employ (static) partial order 

reduction techniques to reduce search space.  The partial order reduction depends on detection of 

thread-local  memory  locations  and patterns  of lock acquisition  and release.   Because of the  use 

of static analysis, the methods can result in false warnings.  HoIver, despite encouraging recent 

successes in software model checking for larger systems, there is little hope that one can actually 

prove the correctness of large concurrent systems, and one must in those cases still rely on debugging 

and testing. 

 

 
 

8.3    Runtime Verification 
 
 
There has been considerable interest in runtime verification techniques in recent years, as perhaps 

best shown by the series of workshops [1]. Runtime verification can be simplistically vieId as a 

rigorous approach to testing, in which the requirements specifications use some underlying logical, 

typically temporal [62, 63], formalism. The same algorithms used to detect errors during testing can 

be used to trigger recovery actions at runtime,  so runtime verification techniques are frequently 

applied  in monitoring.   Runtime  verification  has  so far been concerned  with  analyzing software 

systems, essentially as a complementary approach to model checking software systems [11, 39, 48, 

114, 52, 23, 74, 106]. I briefly review some of the techniques for runtime verification below.  Note that 

these techniques may also possibly be combined with our method for predictive monitoring. 
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NASA’s runtime verification system Java PathExplorer (JPaX) [49] and its sub-system Eagle [13] 

has already been used to analyze the K9 Mars Rover [7]. Eagle has also been used to find security 

attacks  in DARPA  logs  [67].  Temporal  Rover  and DBRover  [27, 28] are  commercial  runtime 

verification tools.  The MaC tool [59, 54] is a runtime monitoring tool with a specialized formal 

monitoring specification language with the potential for steering the execution of programs at 

runtime.  A technique is proposed in [57] where the execution events are stored in an SQL database 

at runtime and then analyzed by means of queries after the program terminates.  The PET tool, 

described  in [45, 44, 43], uses a future  time  temporal  logic formula to  guide  the  execution  of a 

program for debugging  purposes.   POTA  and Java MultiPathExplorer  [83, 90, 92, 97] are  tools 

which check safety formulae against a partial order extracted online from an execution trace. 

Efficient decentralized monitoring of message passing distributed systems is proposed in [95, 96]. 

Java-MoP [20] proposes the use of monitoring as a programming paradigm. Complexity results for 

testing a finite trace against temporal formulae expressed in different logics are investigated in [64]. 

Algorithms using alternating automata to monitor temporal properties are proposed in [32], and 

a specialized collecting statistics technique along the execution trace is described in [31]. Various 

algorithms to generate testing automata from temporal logic formulae are discussed in [79, 71], and 

[37] presents a Büchi automata inspired algorithm. 
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Chapter 9 
 
 

Conclusion 
 

 
 
 
 
 
 
 
With the increasing use of software in society, I want software to be reliable, safe, secure, and 

robust.  Unfortunately, as experience in industry has shown, developing large reliable software is a 

hard task.  As such more than half of the total software development cost is spent in testing.  Even 

after such a huge investment, serious bugs and security flaws are common in widely-used software. I 

believe this is because the most widely used method for improving software quality—testing—is 

generally done manually and in ad hoc ways. Automated and rigorous methods are rarely used for 

testing because such methods are hardly effective or scalable.  In this dissertation, I developed a 

family of methods  of automated  testing,  which I believe  can improve  testing  and make it more 

systematic and scalable.  Our methods use ideas from formal methods,  constraint solving, theory 

of concurrency,  dynamic program analysis,  and model checking and apply them to build effective 

testing methods which exploit the full computational poIr of modern day computers in the testing 

process.  The net result is that I are able to make testing systematic and automated. I  summarize  

the  contributions  of this  dissertation  in the  next  section,  and discuss  issues  and open problems 

in the final section. 

 
 
 

9.1    Summary 
 
 
I presented concolic testing, a method to explore different paths in programs by coupling concrete and 

symbolic executions in a cooperative way. Concrete execution enables symbolic execution to 

mitigate the effects of the incompleteness of the underlying reasoning engines; for example, concrete 

execution helps resolve the constraints that theorem provers cannot handle, resolve aliases for 

pointers (using concrete values for pointers), handle arrays and pointers (our technique requires no 

static alias analysis) etc.  On the other hand, symbolic execution (along with constraint solving at 



113 

the end of execution) helps generate concrete inputs that lead the program to a different concrete 

execution, thus increasing coverage.  I shoId that constraint solving for concolic testing can be done 

in an incremental way, which makes test input generation highly efficient.  I described how to 

efficiently generate dynamic data structures by incrementally adding or removing a node, or by 

aliasing two pointers. 

 

Concolic testing works only for sequential programs.  Testing becomes notoriously hard for large 

concurrent software due to the inherent non-determinism in the execution of such software.  I 

extended the concolic testing approach to develop a method for testing concurrent programs.  The 

extended method uses the concrete execution of concolic testing to determine an abstract relation, 

called  causality  relation,  betIen  the  events  in a concurrent  execution.   This  causality  relation 

naturally defines an equivalence relation betIen the execution paths of a concurrent program. I provide 

a technique for exploring at least one candidate from each equivalence class of execution paths of 

a concurrent program with complex data inputs; this improves the efficiency of testing con- current 

programs considerably.  In addition to common errors such as assertion violations, memory leaks, 

uncaught exceptions, and segmentation faults, our testing approach can catch concurrency related 

errors such as data races and deadlocks. Because our testing approach is designed to explore execution 

paths of a concurrent program, I term our approach Explicit Path Model Checking. 

 

In other research [84], I have developed a method that extend concolic testing to test message 

passing distributed systems or actor systems [3, 5].  In this method,  I assume that a program 

consists of a number of asynchronously executing concurrent processes or actors, which may take 

data  inputs  and communicate  using  asynchronous  messages.   Because  of the  large  numbers  of 

possible data inputs as Ill as the asynchrony in the execution and communication,  distributed 

programs exhibit very large numbers of potential behaviors.  As in the race-detection and flipping 

algorithm, our method uses simultaneous concrete and symbolic execution, or concolic execution, 

to explore all distinct behaviors that may result from a program’s execution given different data 

inputs and schedules.  The key idea is as follows.  I use the symbolic execution to generate data 

inputs that may lead to alternate behaviors.  At the same time, I use the concrete execution to 

determine, at runtime, the partial order of events in the program’s execution.  This enables us to 

improve the efficiency of our algorithm by avoiding many tests which would result in equivalent 
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behaviors.  I have implemented this method in jCUTE. In order to keep the dissertation concise 

and coherent, I did not include a description this method. 

 

Shared memory systems can be modeled as asynchronous message passing systems by associat- 

ing a thread with every memory location. Reads and writes of a memory location can be modeled as 

asynchronous messages to the thread associated with the memory location. HoIver, this particular 

model would treat both reads and writes similarly. Hence, the algorithm in [84] would explore many 

redundant executions.  For example, for the 2-threaded program t1 : x = 1; x = 2; t2 : y = 3; x = 4;, 

the algorithm in [84] would explore six interleavings.  Our race-detection and flipping algorithm, 

which assumes that two reads are not in race, would explore only three interleavings of the program. 

 

I observed that concolic testing can miss bugs if I test concurrent multi-threaded programs against 

a formal specification.  In particular I shoId that exploring only one candidate execution path from 

each equivalence class is not sufficient  for catching violations of temporal properties; a temporal 

property may be simultaneously satisfied and violated by two different causally equiv- alent 

execution paths.  To solve this problem, I proposed a testing method based on predictive monitoring 

of concurrent programs.  In this technique, from an observed execution path, I stati- cally generate 

all the causally equivalent execution paths and represent such paths compactly in an abstract model 

called computation lattice.  I shoId that monitoring of temporal properties can be done efficiently 

using this model.  Using this technique, I can predict violations of properties in non-observed execution 

paths without re-executing the program; therefore, I call this technique predictive monitoring.  It is 

important to note that, although predictive monitoring can predict and monitor all execution paths 

that are causally equivalent to an observed execution path,  I still need concolic testing along with 

race-detection and flipping to explore all non-equivalent execution paths. 

 

Based on these methods I have developed tools for testing C and Java programs.  The binaries of 

these tool have been made available to researchers. These tools serve as a core engine to effectively 

explore non-equivalent execution paths of a programs.  One application of this basic functionality 

is unit testing, which is provided as a feature in these tools.  HoIver, the possibilities of applying 

these  tools  are  endless.   The  basic  path  exploration  feature  of these  tools  can also  be used to 

generate  regression  test  suites,  to  detect  likely  program invariants,  to  carryout  simulations,  for 
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stress testing, and as a part of other dynamic analysis methods. 
 
 
 

9.2    Discussion 
 
 
I  presented  a set  of methods  to  effectively  test  shared-memory  multi-threaded  programs.   Al- 

though the methods are quite effective in finding bugs in real-world programs, a number of ques- 

tions are often raised about these methods.  Next I try to address these questions.  Our goal is to 

clarify the applicability and the limitations of our methods, as Ill as to describe open problems. 

 

 

9.2.1    Scalability 
 

 
A question that is often asked is how scalable our methods are.  First, let us discuss the scalability 

of CUTE. Our experience shows that scalability in terms of memory usage is not a problem for 

CUTE because I explore one path at a time.  During a concolic execution along a path,  extra 

memory is consumed to maintain the symbolic state and the symbolic path constraint.  It is often 

the case that a small fraction of the concrete state of a program is data dependent on the inputs. 

Therefore, the size of the symbolic state, which is almost proportional to the size of the part of the 

concrete state that is data dependent on the inputs,  usually remains small.  Moreover, along an 

execution path, the number of conditionals that are data dependent on the inputs are often small. 

This results in low memory usage for the maintenance of path constraint.  Note that in the case 

of model checking, the tools tend to keep the entire state space in the memory and memory often 

becomes a bottleneck. 

Obviously, the number of paths of a large program can be huge. Exploration of huge number of 

paths may take a lot of time.  I call this the path explosion problem.  If I put a time limit on the process 

of testing for a program having a huge number of paths, a depth-first search strategy often ends up 

in exploring a small subtree of the whole computation tree.  As a result concolic testing gets 

localized  to a small part of the computation tree.  A way to address this problem would be to develop 

better search strategies.  I describe a couple of candidate search strategies and discuss their pros 

and cons. 

One possible search strategy is random search where a constraint to be solved is picked randomly 

from the  set  of constraints  generated  along a path.   I  believe  that  this  strategy  would tend 
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to sample the paths in the computation tree uniformly—thus,  preventing the search from being 

localized to a small subtree.  Obviously a limitation of the random search strategy is that concolic 

testing may end up exploring same path more than once.  Moreover,  unlike a depth-first search 

strategy, a random search strategy has no way to determine if it has explored the entire computation 

tree.  Therefore, even for a small program, for which I can solve any generated path constraint, 

with random testing I have no way to prove that I have explored all the reachable statements of the 

program. 

 

Another possible search strategy that prevents the search from getting localized is a breadth-first 

search strategy.  Unfortunately, in the case of a breadth-first search strategy, for each depth of a 

tree, I have to store an input for each execution path passing through all the nodes at the depth in 

the tree.  Since the number of nodes at a depth can be, in the worst case, equal to the number of 

the feasible execution paths of a program, the amount of storage required for storing the inputs for 

each path in a large programs may easily exhaust available persistent memory. 

 

Developing interesting and efficient search strategies requires further investigation.  Apart from 

investigating new efficient search strategies, one can also think of combining static analyses with 

concolic testing.  Using static analyses, one can identify the subtrees in the whole computation tree 

that are problematic; one can then use concolic testing to explore only those subtrees.  I believe that 

static analyses can help to prune the path space more aggressively. 

 

Now let us turn to the scalability of jCUTE. In case of shared-memory multi-threaded programs 

that jCUTE deals with, a large number of accesses to the shared memory by various threads may 

result in a large number of non-equivalent execution paths.  As a result jCUTE may not scale for 

such programs  in principle.   HoIver, in practice,  I observed  that  for ‘Ill-written’  programs (see 

[98]) an execution path often consists of large execution blocks that are atomic.  The execution of 

such atomic blocks by a thread does not interfere with the execution of the other threads.  A 

common way to ensure such atomicity is through the use of locks. During the process of testing such 

Ill-written programs, jCUTE ends up exploring the execution paths that are the interleavings of these 

large atomic blocks.  As such jCUTE prunes a large portion of the path space.  Obviously, such 

kind of pruning is not possible for programs in which multiple threads often access the shared memory 

without synchronization.  Therefore, for the purpose of effective testing, one should avoid 
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such bad programming styles. 
 

Apart  from the  above mentioned  issues,  the  need  for solving  constraints  may also  prevent 

CUTE or jCUTE from scaling for large programs.  When an execution path gets large,  the size 

of the path constraint increases; eventually constraint solvers may not be able to handle the path 

constraint.  HoIver, constraint solving is very efficient in CUTE or jCUTE. This is because of the 

approximations that concolic testing performs:  it separates the arithmetic constraints and the 

pointer constraints.  If the last negated constraint is an arithmetic constraint, then only the set of 

arithmetic constraints is solved; otherwise, the set of pointer constraints is solved.  Note that this 

way of decoupling the arithmetic constraints from the pointer constraints has some limitations (see 

the discussion in Section 4.1.6). HoIver, I believe that such decoupling is a good compromise for 

the efficiency it provides. 

 

Moreover, the solution in one execution path is often quite similar to the next execution as I negate 

only a single constraint.  To exploit this fact, I proposed an optimization in Section 4.1.5. This  

optimization  makes constraint  solving  incremental  and highly efficient  in case the  negated 

constraint is an arithmetic constraint.  In case the negated constraint is a pointer constraint, this 

becomes even more efficient as I simply add a node, delete a node, or make two pointers equal. 

Overall, I observed that incremental constraint solving takes a small fraction of the total execution 

time.  Note that, although CUTE and jCUTE use a custom incremental solver, other solvers such 

as CVC Lite [12] or Uclid [58] can also be used for generating new inputs. 

 

For shared-memory multi-threaded programs, our race-detection and flipping algorithm’s effi- 

ciency depends on the number of equivalence classes of a given program—the larger the number of 

equivalence classes the lesser is the efficiency.  A natural question to ask is whether the equivalence 

relation defined in Section 3.2 is optimal for efficiency.  Unfortunately, the relation is not optimal. 

In [93], I shoId that I can define a coarser equivalence relation that results in feIr number of 

equivalence classes.  The equivalence relation uses a Iak happens-before relation  which orders a write 

of a shared variable with all its subsequent reads that occur before the next write to the variable.  

HoIver, I do not know how to adapt this coarser equivalence relation in testing to obtain further 

reduction in the path space.  This remains a topic for future research.  Moreover, it would be useful 

to investigate the optimal equivalence relation for which I can develop a testing 
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method that would explore one candidate from each equivalence class. 
 
 

 
9.2.2    Program Verification 

 
 
A report  of a bug by CUTE  or jCUTE  represents  an actual  bug because the  bug is  found by 

executing a program on a concrete input and schedule.  HoIver, CUTE and jCUTE can verify a 

program only in some limited cases:  namely, if the following three conditions are satisfied.  First, 

the testing process using CUTE (resp.  jCUTE) terminates.  Second, CUTE (resp.  jCUTE) makes 

no approximation  during concolic execution.   Third,  CUTE (resp.   jCUTE)  is able to  solve any 

constraint which is satisfiable.  These conditions guarantee that the tool has executed all feasible 

execution paths of a program and has hit all the reachable statements of the program. For most 

practical programs, CUTE and jCUTE can only find bugs; they cannot verify the programs.  This 

can be seen as a limitation of our testing methods. 

To partially address the above problem I have proposed two approaches: statistical model checking  

[99, 100, 101, 6, 4] and learning  to verify  [112, 111, 113].  Statistical  model  checking aims to 

bound the confidence with which I can say that a system is correct;  in this approach, I check if a 

system whose behavior can be modeled probabilistically meets its formal reliability specification.  

Specifically, I assume that the specification is given in some probabilistic temporal logic such  as the  

probabilistic  computation  tree  logic (PCTL)  [47] or the  continuous  stochastic logic (CSL) [2, 8]. 

Model checking is performed by automatically translating the specification into a series of inter-

dependent statistical hypothesis testing experiments.  The experiments are then conducted through 

discrete event simulation of the system.  The number of simulation runs that need to be performed 

depends on the degree of confidence that I want in our decision. 

Statistical model checking works for any system for which the inputs come from a fixed proba- 

bility distribution.  Unfortunately, for general software systems, one cannot assume there is a fixed 

probability distribution over the inputs.  Therefore, I cannot directly apply statistical model checking 

to a general software system.  I believe that by observing the actual behaviors exhibited by a system 

in the field, one can try to check if the inputs come from a fixed probability distribu- tion; if this is 

the case, I can apply statistical model checking to verify quantitative properties of the system. 
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Another approach to verify infinite state systems is the learning to verify  paradigm. The key 

idea behind this approach is based on the observation that often the state-space of infinite state 

systems is highly structured. For example, for a number of practical systems, such as parameterized 

systems,  or systems  with  unbounded integers  and message queues,  the  reachable  state-space  is 

regular and can be represented by a deterministic finite automaton.  Traditional model checking 

techniques typically verify such a system by iteratively ‘traversing’ the entire state space of the 

system, but such traversal may take a long time to terminate, or it may never terminate.  By using 

language  inference  and learning  techniques,  I have shown that  it is  often  possible  to  find the 

reachable states of a system by either collecting its samples or by ansIring certain membership and 

equivalence queries.  I have implemented this technique in a tool called LEVER and used it to 

analyze various systems with integers, message queues, stacks and parameterized systems.  The 

systems that I analyzed using LEVER are quite small in size.  A future research challenge would be 

make learning to verify work for large software systems where the reachable state space may not 

be regular—for example, by using concolic testing to obtain samples. 
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[20] F. Chen and G. Roşu.  Towards monitoring-oriented programming: A paradigm combining 
specification and implementation.  In Proceedings of the 3rd Workshop on Runtime Verifica- 
tion (RV’03), volume 89 of Electronic Notes in Theoretical Computer Science, pages 106–125. 
Elsevier Science, 2003. 

 

[21] J. D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan.  Efficient and 
precise datarace detection for multithreaded object-oriented programs.  In Proc. of the ACM 
SIGPLAN Conference on Programming language design and implementation, pages 258–269, 
2002. 

 
[22] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Using symbolic execution for verifying 

safety-critical systems.  In Proceedings of the ESEC/FSE-9, pages 142–151, 2001. 
 

[23] J. Corbett,  M. B. Dwyer,  J. Hatcliff,  C. S. Pasareanu,  Robby, S. Laubach, and H. Zheng. 
Bandera  :  Extracting  Finite-state  Models  from Java Source  Code.   In Proc. of ICSE’00: 
International Conference on Software Engineering, Limerich, Ireland, June 2000. ACM Press. 

 

[24] C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for Java. Software: 
Practice and Experience, 34:1025–1050, 2004. 

 

[25] C. Csallner and Y. Smaragdakis.  Check ’n’ Crash:  Combining static checking and testing. 
In 27th International Conference on Software Engineering, 2005. 

 
[26] A. Dinning and E. Schonberg. Detecting access anomalies in programs with critical sections. 

In Proc. of the ACM/ONR Workshop on Parallel and Distributed Debugging, May 1991. 
 
[27] D. Drusinsky.   The  Temporal  Rover  and the  ATG  Rover.   In SPIN  Model Checking  and 

Software  Verification,  volume  1885 of Lecture  Notes  in Computer  Science,  pages 323–330. 
Springer, 2000. 



122 

[28] D. Drusinsky. Monitoring Temporal Rules Combined with Time Series. In Proc. of CAV’03: 
Computer Aided Verification, volume 2725 of Lecture Notes in Computer Science, pages 114– 
118. Springer-Verlag, 2003. 

 

[29] M. B. Dwyer, J. Hatcliff, Robby, and V. P. Ranganath.  Exploiting object escape and lock- 
ing information in partial-order reductions for concurrent object-oriented programs.  Form. 
Methods Syst. Des., 25(2–3):199–240, 2004. 

 

[30] C. J. Fidge. Partial orders for parallel debugging. In Proceedings of the Workshop on Parallel 
and Distributed Debugging (WPDD), pages 183–194. ACM, 1988. 

 

[31] B. Finkbeiner, S. Sankaranarayanan, and H. Sipma.  Collecting Statistics over Runtime Ex- 
ecutions.  In Proc. of RV’02:  The Second International Workshop on Runtime Verification, 
volume 70 of Electronic Notes in Theoretical Computer Science, Paris, France, 2002. Elsevier. 

 

[32] B. Finkbeiner and H. Sipma.  Checking Finite Traces using Alternating Automata.  In Proc. 
of RV’01: The First International Workshop on Runtime Verification, volume 55(2) of Elec- 
tronic Notes in Theoretical Computer Science, Paris, France, 2001. Elsevier Science. 

 

[33] C. Flanagan and S. N. Freund.  Detecting race conditions in large programs.  In Proc. of the 
Program Analysis for Software Tools and Engineering Conference, June 2001. 

 

[34] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software. 
In Proc. of the 32nd Symposium on Principles of Programming Languages (POPL’05), pages 
110–121, 2005. 

 

[35] J. E. Forrester  and B. P. Miller.   An Empirical Study  of the  Robustness  of Windows  NT 
Applications Using Random Testing.  In Proceedings  of the  4th USENIX Windows  System 
Symposium, 2000. 

 

[36] G. LoI.  An Attack on the Needham-Schroeder Public-Key Authentication Protocol.  Inf. 
Processing Letters, 1995. 

 

[37] D. Giannakopoulou and K. Havelund.  Automata-Based Verification of Temporal Properties 
on Running Programs. In Proc. of ASE’01:  International Conference on Automated Software 
Engineering, pages 412–416. Institute of Electrical and Electronics Engineers, 2001. 

 

[38] P. Godefroid.  Partial-Order Methods for the Verification of Concurrent Systems – An Ap- 
proach to the State-Explosion Problem, volume 1032 of LNCS. Springer-Verlag, 1996. 

 

[39] P. Godefroid.  Model Checking for Programming Languages using VeriSoft.  In 24th ACM 
Symposium on Principles of Programming Languages, pages 174–186, 1997. 

 

[40] P. Godefroid and S. Khurshid. Exploring Very Large State Spaces Using Genetic Algorithms. 
In Tools and Algorithms for the Construction and Analysis of Systems, 2002. 

 

[41] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In Proc. 
of the ACM SIGPLAN 2005 Conference on Programming Language Design and Implemen- 
tation (PLDI), 2005. 

 

[42] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.  Generating finite state machines 
from abstract state machines.  In Proc. International  Symposium  on Software  Testing  and 
Analysis, pages 112–122, 2002. 



123 

[43] E. Gunter and D. Peled. Tracing the Executions of Concurrent Programs. In Proc. of RV’02: 
Second International Workshop on Runtime Verification, volume 70 of Electronic Notes in 
Theoretical Computer Science. Elsevier, 2002. 

 

[44] E. L. Gunter, R. P. Kurshan, and D. Peled.  PET: An interactive software testing tool.  In 
Computer Aided Verification (CAV’00),  volume 1885 of Lecture Notes in Computer Science, 
pages 552–556. Springer-Verlag, 2003. 

 

[45] E. L. Gunter and D. Peled.  Using functional languages in formal methods:  The PET sys- 
tem.  In Parallel and Distributed Processing Techniques and Applications, pages 2981–2986. 
CSREA, 2000. 

 

[46] N. Gupta, A. P. Mathur, and M. L. Soffa. Generating test data for branch coverage. In Proc. 
of the International Conference on Automated Software Engineering, pages 219–227, 2000. 

 

[47] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects 
of Computing, 6(5):512–535, 1994. 

 

[48] K. Havelund and T. Pressburger.  Model Checking Java Programs using Java PathFinder. 
International Journal on Software Tools for Technology Transfer, 2(4):366–381, Apr. 2000. 
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