Tosif Ahamed

Tosif Ahamed
Mount Sinai Hospital, Toronto · Lunenfeld-Tanenbaum Research Institute (LTRI)

Doctor of Philosophy

About

15
Publications
5,509
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
108
Citations
Additional affiliations
August 2014 - present
Okinawa Institute of Science and Technology
Position
  • PhD Student

Publications

Publications (15)
Preprint
Mutually exclusive behaviors in animals are often driven by independent motor subcircuits that directly or indirectly inhibit each other. For example, in the nematode C. elegans, motor circuits for forward and backward locomotion are gated by premotor interneurons AVB and AVA respectively, which are thought to be connected via reciprocal inhibition...
Preprint
During development, animals can maintain behavioral output even as the underlying circuits structurally remodel. After hatching, C. elegans undergoes substantial motor neuron expansion and synapse re-wiring while the animal continuously moves with an undulatory pattern. To understand how the circuit transitions from its juvenile to mature configura...
Preprint
Full-text available
Bilaterians generate motor patterns with symmetries that correspond to their body plans. This is thought to arise from wiring symmetries in their motor circuitries. We show that juvenile C. elegans larva has an asymmetrically wired motor circuit, but they still generate bending pattern with dorsal-ventral symmetry. In this juvenile circuit, wiring...
Preprint
Full-text available
We leverage the interplay between microscopic variability and macroscopic order to connect physical descriptions across scales directly from data, without underlying equations. We reconstruct a state space by concatenating measurements in time, building a maximum entropy partition of the resulting sequences, and choosing the sequence length to maxi...
Article
Full-text available
An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans, including self-occluded, coiled shapes. We lever...
Article
Full-text available
Animal behaviour is often quantified through subjective, incomplete variables that mask essential dynamics. Here, we develop a maximally predictive behavioural-state space from multivariate measurements, in which the full instantaneous state is smoothly unfolded as a combination of short-time posture sequences. In the off-food behaviour of the roun...
Preprint
Full-text available
An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans , including self-occluded, coiled shapes. We leve...
Preprint
Full-text available
Animal behavior is often quantified through subjective, incomplete variables that may mask essential dynamics. Here, we develop a behavioral state space in which the full instantaneous state is smoothly unfolded as a combination of short-time posture dynamics. Our technique is tailored to multivariate observations and extends previous reconstructio...
Article
Full-text available
The dynamics of complex systems generally include high-dimensional, nonstationary, and nonlinear behavior, all of which pose fundamental challenges to quantitative understanding. To address these difficulties, we detail an approach based on local linear models within windows determined adaptively from data. While the dynamics within each window are...
Preprint
Full-text available
The dynamics of complex systems generally include high-dimensional, non-stationary and non-linear behavior, all of which pose fundamental challenges to quantitative understanding. To address these difficulties we detail a new approach based on local linear models within windows determined adaptively from the data. While the dynamics within each win...
Presentation
Full-text available
Presentation on "25th Annual Computational Neuroscience Meeting: CNS-2016 " BMC Neuroscience 17, 112-113 (2016).
Conference Paper
Full-text available
ICGenealogy: towards a common topology of neuronal ion channel function and genealogy in model and experiment Ion channels are fundamental constituents determining the function of single neurons and neuronal circuits. To understand their complex interactions, the field of computational modeling has proven essential: since its emergence, thousands...
Article
Full-text available
Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of...

Network

Cited By