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ABSTRACT
In order to achieve efficient progress in activities such as e-
commerce and e-transactions in an open environment like
the Internet, an agent must 　 choose appropriate partner
agents for collaboration. However, agents have no global in-
formation about the whole multi-agent system (MAS) and
the state of the Internet; therefore, they must select the ap-
propriate partners based on local knowledge and local ob-
servations. In this paper, using a multi-agent simulation,
we discuss how total MAS performances are affected by lo-
cal decisions when agents select partners to collaborate with.
We also investigate how MAS performances change and how
network structures between agents shift according to the
progress of agents’ local learning and observations. We then
discuss the relationship between task load and agent net-
work structure. This relates to estabilishing the optimum
time when agents should learn about appropriate partners
in an actual environment.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelli-
genceMultiagent systems

General Terms
Theory
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1. INTRODUCTION
Each agent in a multi-agent systems (MAS) must select

the appropriate collaborative partner agent when assign-
ing a task. The choice of an appropriate agent depends
on the types of task and the agent’s abilities and special-
ties. However, if there are still multiple candidate agents,
the most efficient agent is preferable. Furthermore if dead-
lines have been set, the issue of performance/efficiency be-
comes dominant. For e-commerce on the Internet, for exam-
ple, the selection of efficient agents (in this case, Web and
database servers) provides smooth transactions for all cus-
tomers. This also means that the computational resources
provided by the e-commerce company are well-utilized.

The agents selected for collaborations are often memo-
rized by a local agent for a certain period. This stored agent
structure constitutes a kind of agent organization. Such
an organization can avoid repeated searches for collaborat-
ing agents, retains the quality of the results, and enables
agents to accurately estimate the finish time of given tasks
for real-time requirements[3]. This suggests that the process
by which agent teams are organized and the way appropriate
partner agents are selected are important issues in designing
MAS applications.

However, in an open environment like the Internet, com-
plete information is not available; it is not possible to grasp
the global states of the Internet and the complete states of
the entire MAS working there. The efficiency of task exe-
cution by other agents depends upon their processing speed
and load, and the communication bandwidth, traffic, and
latency between agents. Hence, agents have to select appro-
priate (that is, efficient) partners based only on locally avail-
able information, which often contains uncertainties. This
kind of local decision-making has already been used in In-
ternet operations[2, 8, 9]. For example, Tenbin DNS[9] is
an alternative DNS which, if it knows a number of servers
that can provide the same content or functions, returns the
IP address of the appropriate server for load-balancing and
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for selecting the most efficient servers. Tenbin DNS selects
servers based on local observations such as RTT (round trip
time) using ‘ping’ or the average throughput between lo-
cal hosts and target servers. A similar methodology is also
used for Web server selection[2] and for route selection in
multi-homed network environments[5, 6].

Here, another issue involved with scalability arises: when
all agents select partner agents and form organizations based
on local data, is the overall performance of the total MAS
maximal or reasonable? (’Total’ means not the performance
of individual agents but the average performance of all agents.).
This issue is important because the result is influenced by
factors including task load, the agent’s (CPU and process-
ing) performance, communication costs, the agent’s distri-
bution across the Internet and the strategies of the agent’s
partner selections. For example, a high-performance agent a
is identified as the best partner by many agents, and thus, is
likely to be overloaded. This concentration worsens its ob-
served performance data, so many agents will switch to other
lower performance agents. Later, a will again be observed as
a high-performance agent so they will switch to it again. Of
course, these situations may depend on communication costs
and the agent’s partner selection strategies (PSS). A num-
ber of studies have investigated how much the performance
of each agent can be improved[2, 9]. From other global view
points, for example, Gaston and DesJardins [4] propose an
agent organizational network, and investigate what features
are required to effectively form teams. To our knowledge
however, there has been little research about how agents’
local strategies and task loads influence the total perfor-
mance of MAS and the structure of networks according to
learning by individual agents.

The purpose of this paper is to show, using multi-agent
simulation, how the total performance of a MAS improves or
degrades when all agents statically, adaptively, or collabora-
tively select partner agents based on their local information.
We also illustrate how the network of inter-agent structures
(this network is simply called the agent network or hereafter,
AN) changes and converges, and how the total performance
changes according to the observed data, where an AN node
corresponds to an certain agent and the edge between nodes
a1 and a2 means that a1 recognizes that a2 is the appro-
priate agent to collaborate with. In this paper, we will first
show that agents’ PSSs affect the total performance and the
structure of the agent network and that simple adaptation
and collaboration with neighboring agents can effectively
improve the total performance. Furthermore, the AN struc-
tures are heavily dependent on the frequency of the tasks
occurring as well as the PSS. This result suggests that for
the best performance the appropriate PSSs depend on the
overall task loads.

This paper is organized as follows: In the next section,
the objective and settings of our multi-agent simulation are
explained. Then, as a reference for subsequent experiments
we will show the results of the first simple experiment. Next,
we try to improve the number of dropped tasks and response
time by changing some performance parameters. We also
examine the effects of fluctuation in selecting the best server.
Finally, we will discuss some implications for the control and
design of MAS derived from these experiments.

2. AGENT SIMULATION

2.1 Objective
The objective of our simulation is to understand the struc-

tural changes of the agent network and to investigate the im-
provements and limitations of the total performance of the
whole MAS when all agents make rational decisions about
partner selection. Our simulation model consists of a set of
agents A = {ai}, and server agents S = {sj}(⊂ A), which
are able to execute a specific task T . When agent ai has T ,
it assigns it to one of the servers that it knows, Si(⊂ S). A
PSS corresponds to the method whereby ai selects sj from
Si. To clearly understand the relationship between total
performance and PSSs, we make the other parameters sim-
ple. For this purpose, we assume that all tasks are only of
a single type. It is important to note that a server in this
paper means an agent that can execute a specific task. Be-
cause we only consider a single type of task, the set of servers
is static. In general, among the agents in a MAS, multiple
tasks request each other, and different agents become servers
for other tasks. We do not consider a simple client-server
model but rather more flexible multi-agent models in which
each agent selects appropriate partner agents depending on
the task types from a local viewpoint.

On the actual Internet, one of the observable parameters
concerning agents’ performance is the response time (rt),
which is the length of time between the agent requesting a
task and the return of the result. We assume that smaller
rt is better. Another parameter for evaluating agents is the
number of dropped tasks, which indicates that the requested
task is dropped (silently discarded) or refused (with notice),
which also is better if it is smaller. Other parameters such
as type of CPU and the number of queuing tasks in servers
can also been used to evaluate agents, but these parameter
values are not usually locally available, so they are not used
for the evaluation of servers by agents in our experiments.

Hence, using the observed data, each agent learns which
server’s rt is expected to be the smallest. In our experi-
ments, agent ai calculates the average values of the observed
response time of the known server sj (let this value be hj

i )

and (usually) selects the best server, arg minsj∈Si h
j
i .

To evaluate the total performance of a MAS, we adopt
the average value of the observed response time in all agents.
This value is denoted by RT . Thus, our experiments demon-
strate how RT changes when all agents try to make rt
smaller. Another parameter for understanding the total
MAS is the drop number, D, which is the total number of
dropped tasks. Note that a smaller drop number is better
but a drop is observed only when the MAS is overloaded.
Therefore, the use of this value is restrictive.

To investigate the structure of relationships between an
agent and its selecting server, we introduce the agent net-
work (AN) whose nodes are agents or servers and whose
links indicate that an agent has determines that a server is
the best according to its PSS and local data. For a positive
integer γ (= 1 for the default value), called the selection
number, agent ai selects γ servers as appropriate servers
from Si, then assigns the given task to one of the selected
servers. We look into the degree of the server’s node in the
AN because the degree denotes the level of concentration of
the task assignment, that is, how many agents identify that
server as appropriate for assigning tasks. The distribution
of the servers’ degrees expresses the balance or deviation of
the overall (and potential) task load. We also investigate
how the distribution changes as the agents’ observation and
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Left: A Screen Snapshot of our Simulation.
A small outlined circle corresponds to an agent and a filled circle 
to a server agent. The sizes of the filled circle express their queue
length, so the larger circles are busier. A line between agent and
server expresses that when the agent is given a task, the agent 
assigns it to the connected server with some probability. This
snapshot of the simulation is scaled down: gridsize is 100x100 
with torus topology, the number of agents is 2000, and the number
of servers is 24.

Above: Simulation Environment.
This figure shows the settings of our simulation environment.

Figure 1: Simulation Environment and Screen Snapshot of our Simulation.

learning progress.
Our simulation can acquire other parameters for under-

standing the whole MAS performance, such as average val-
ues of (1) communication cost C (the average RTT between
agents and servers), (2) the queuing time Q (the average
duration that the incoming task is queued for before execu-
tion), and (3) CPU time E (the average time for executing a
task). Although these parameter values are not directly ob-
servable on the Internet, they can help to estimate internal
AN changes. We assume that RT = C + Q+E holds.

2.2 Simulation Environment
Our simulation (Fig. 1) generates 10000 agents that are

randomly placed on points of a 150 x 150 grid plane with a
torus topology. Of these, 120 agents are randomly selected
to be servers (so the remaining 9880 agents will assign tasks
to these servers). We also introduce the Manhattan distance
to this grid.

For every tick, tl tasks are generated and given to tl ran-
domly selected agents, where tl is a positive integer. tl is
called the task load. We can naturally extend these settings
for a positive non-integer tl, which means that the average
number of statistically generated tasks in every tick is tl.
This is denoted by tl task/tick or simply tl T/t, where we
assume that 1 tick is 10 msec. Each agent ai given the task
immediately selects a server sj ∈ Si using its PSS and sends
the task to sj . Server sj processes the committed task and
returns the result to ai. Agent ai can observe the response
time for every task and calculate the average response time
hj

i that will be used in the next PSS.
All servers are assumed to have their own CPU capabili-

ties: each server can process a task in 100 to 500 msec. All
of the servers have different capabilities that are randomly
assigned a priori. Once assigned, these capabilities are in-

variant. When a task arrives at server sj , it is immediately
executed if sj has no other tasks. The result is then re-
turned. If sj has other tasks, the received task is stored in
its local queue and the queued tasks are processed in turn.
An agent can store 20 tasks in its queue. If ai already has
20 tasks in its queue, the new task is dropped or refused.

The communication cost (time required to send a task)
is assumed to be proportional to the distance between the
agent and server and ranges from 10 to 120 msec. Of course,
this maximal cost is also a parameter of the simulation envi-
ronment, although it is not altered in any experiment in this
paper, so that we might easily understand the effect of PPS
based on local observation. Each agent has its own scope
depending on distance (less than 14 in our experiments), so
it initially knows and can communicate with all agents and
servers within the scope. For all agents to compare servers’
response times and to select the best (or better) one, they
have to know at least two servers. If an agent knows none or
only one server, it asks all known agents for known servers;
by doing this, agents can initially know two to fifteen servers.

The experimental results of all our simulations are the av-
erage value of three independent experiments derived from
a random number using three different seeds. The figures of
degree distribution shown in this paper are only for one of
the three experiments, but their diagrams are almost iden-
tical to the those of the other cases. In these three exper-
iments, the total sum of the capabilities all agents express
is that they can theoretically process 4.7 to 5.0 tasks every
tick; of course, the actual total capabilities are influenced
by the communication cost, the deviation of task allocation,
and server distribution in the grid plane.

3. PRELIMINARY EXPERIMENT (EXP. 1)
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In the first experiment (Exp. 1), agent ai selects γ (= 1)
servers from Si using the following PSS.

(P1) ai selects the server arg minsj∈Si h
j
i with a probability

of 0.91. If there are multiple servers that have the best
hj

i , one of them is randomly selected.

(P2) Otherwise, ai selects the server with the probabilistic
distribution Pr(sj),

Pr(sj) = (hj
i )

−l/
�

sk∈Si

(hk
i )−l (E1)1,

where, l = 3 in this experiment1. In the beginning, the
agents have no observed data of known servers. Hence, agent
ai initially sets hk

i = 0 for the known server sk so that it first
selects sk with no observed data. Note that (P2) introduces
fluctuation to some extent into the PSS, since an agent may
select a server whose hj

i is not the smallest.
In the cases of tl=1T/t and tl=4T/t, we measure the per-

formance data, RT , C, Q and E, every 20,000 ticks (20K
ticks). Fig. 2 shows how these values change over time. The
data in Table 1 are the average values of these parameters
during a 600K to 800K tick. Fig. 3 (ii) and (iii) illustrate
the cumulative degree distribution (CDD) of AN at an 800K
tick, and Fig. 3 (i) is the CDD of the initial state. Thus, the
CDD gradually changes from (i) to (ii) (the case of 1T/T)
or from (i) to (iii) (the case of 4T/t) in Fig. 3. The last col-
umn of Table 1 shows the performance data when only (P1)
is adopted (so there is no fluctuation in server selection).

Response time (RT)
Comm. cost (C)
CPU time (E)
Queuing Time (Q)

Task rate: 1T/t

Elapsed time (tick)

Elapsed time (tick)

Response time (RT)
Comm. cost (C)
CPU time (E)
Queuing Time (Q)

Task rate: 4T/t
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)
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Figure 2: Total performance values (Exp. 1).

1We define probability 0.9 and l = 3 so that the server se-
lection adequately fluctuates. Although there are a number
of other ways to introduce fluctuation, we used (E1) for the
first experiment. These values and expression are defined
based on some experiments. We will show experimental re-
sults elsewhere when these values are changed.

Table 1: Observed performance values in Exp. 1.

Param. 0K 0K 800K 800K 4T/t (no
(1T/t) (4T/t) (1T/t) (4T/t) fluct.)

RT 38.29 272.89 25.52 117.11 125.70
C 1.233 1.269 1.295 1.309 1.312
E 30.05 27.41 20.38 24.27 24.01
Q 7.01 244.20 3.85 91.52 100.38
D 0 11180.0 0 622.8 1780.1

The unit of value is a tick except D (number of tasks). 0K
means the ’initial state’ whose values are observed from 0
to 20K. The value of the columns at 800K are the average
values of the parameters observed at every 20K ticks from
600K ticks to 800K ticks.

As indicated in Fig. 2, in this experiment the servers’
performance became stable at around 120K ticks because
the agents only know 2 to 15 servers, so all of them finished
learning their performance. Agents select only local servers
(since C hardly changed over time), so the global perfor-
mance plateaus at an earlier stage. Though the theoretical
capability of all servers is higher than 4T/t, approximately
600 tasks are dropped after learning. This implies that the
servers’ capabilities are underutilized.

The performance data are different depending on whether
or not there is fluctuation as shown in Table 1. The fluc-
tuation introduced in these experiments given by (P2) can
improve average response time (RT ) by 8% when tl = 4T/t.
However when tl = 1T/t, this kind of improvement cannot
be observed. The details are described later. Note that this
experiment is similar to the one of the fixed-load case in [7],
although there are many different settings; for example, the
number of agents is quite large and communication costs are
introduced in ours. The conflict vector in [7] corresponds to
the degree of AN in ours; our experiment has more agents
so it can show the structure of AN after learning.

In this experiment, the final total performance could have
been further improved if all agents had known more servers.
However, learning efficiency would have drastically dropped.
For example, if all agents knew all 120 servers, they would
require at least 1186600 (= 120 ∗ 9880) tasks to get per-
formance data for all the servers. So in the case of 1T/t,
it would take about 1200K ticks. In actuality, however, it
would take more than 2400K ticks, because tasks are ran-
domly assigned to agents. In practice, it is not feasible to
know and attempt to use all servers on the Internet if the
agents are in a massive MAS. This means that a more ef-
fective strategy for better knowing servers from a non-local
viewpoint is required.

4. PERFORMANCE IMPROVEMENT AND
STRUCTURAL CHANGES

We can consider a number of performance measures, but
we first focus on the total drop number D in a MAS and
try to reduce it. Using local information, we examine the
following strategies to reduce D.

(S1) Best two selection: Set γ = 2. All agents select the
best two servers every 500 ticks. When a task is given,
the agent selects one of two servers using probability
(E1) and sends it the task.
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Figure 3: Cumulative degree distribution of servers.
Each point (x, y) indicates that there are y servers whose degrees are more than or equal x.

Table 2: Observed performance values in Exp. 2.
(S1) (S2) (S3) (S4)

RT 134.08 118.22 153.21 117.00
C 1.305 1.309 1.306 1.307
E 24.81 24.28 24.89 24.36
Q 107.96 92.63 127. 02 91.33
D 729.1 594.5 180.3 420.1

The unit of value is a tick exceptD. All data are the average
values of the corresponding parameters observed every 20K
ticks from 600K ticks to 800K ticks. tl = 4 T/t.

(S2) Retransmission: If their queues are full, the servers
do not drop but rather refuse the requested task. The
requesting agent resends the task to the server again.
Agents will repeat this process five times, but if all
five requests are refused, the agent gives up (drops)
the task.

(S3) Alternate selection: Agents adopt both (S1) and
(S2). The main difference is that agents have the top
two servers, so after a task is refused, it may be sent
to another server.

(S4) Penalty: This strategy is the same as (S2) except for
introducing the penalty of refusal which is calculated
as follows: Add double the RTT to the observed re-
sponse time. This worsens the rt of the refusing server,
so the agent may select another server the next time.

Table 2 shows the results of the second experiment, Exp.
2, whose tl is 4T/t. Comparing Tables 1 and 2, all per-
formance values show only a small change in (S1) and (S2),
and especially RT and D get worse in (S1). Even if an agent
knows the second best server in (S1), it is probable that the
server is the best for a number of other agents, so the drop
rate does not decrease. Additionally, the agent requests the
second best server, so the value of E (and of Q) also gets
worse. Strategy (S2) is not a useful tactic for reducing D;
although, after a task is refused, an agent requests it of the
same server, there is a high probability that it will be re-
fused again because with 4T/t the server’s queue is likely to
be still full. Note that if the agent can wait for a longer time
D may become smaller, but there is a trade-off between the
probability of refusal and the waiting time.

However, strategy (S3) can effectively reduce D. Alter-
nately requesting a task of two servers simply halves the
probability of refusal. Instead, RT gets larger; this implies

that more tasks are stored in agents’ queues, so Q also in-
creases. Finally, strategy (S4) can only improve RT and
D a little bit. We expect that this kind of penalty works
well when servers are placed non-uniformly and the agents
in the area where servers are sparsely settled observe more
refusals so they then try to access more distant servers. The
figures of cumulative degree distribution for (S1) – (S4) are
not shown in this paper, but their characteristics are the
same as those in Fig. 3 (iii).

4.1 Collaboration with neighbor agents
The experiments in the previous section aimed at reducing

D, but the total response time RT and queuing time Q
increased. These strategies kept all agents waiting for a
longer time. In this section, we aim to reduce RT and Q.

The performance of the simple server selection strategies
used in Exps. 1 and 2 depends on the size of the known
servers. Agents that know more servers can choose more
capable ones. However, the more servers the agent know,
the more inefficient their learning performances are. So, a
more effective and efficient strategy for agents to acquire
good servers is required.

A practical strategy in the network environment is the rec-
ommendation of good servers by neighboring agents. Each
agent learns the expected servers’ capabilities from their lo-
cal viewpoint so they can recommend to other agents the
best or better server based on their observations. The basic
idea is that it is possible for the better servers of neighboring
agents to also be good servers for other agents. This strategy
works as collaborative filtering using server evaluations.

To achieve this collaboration, we add the following PSS,
(P3) between strategies (P1) and (P2).

(P3) With a probability of 0.01, an agent ai randomly se-
lects a known agent, and asks it to recommend a ’good
server’ sn. If ai already knows sn, this recommenda-
tion is ignored. If not, ai adds sn to its set of known
agents (so hn

i = 0).

An agent that is asked to recommend a server selects a ’good
server’ using probability distribution (E1). The experimen-
tal results using (P1)–(P3) for 1T/t and 4T/t are shown in
Table 3 and Fig. 5 (this experiment is referred to as Exp.
3). The cumulative degree distributions of Exp. 3 are illus-
trated in Fig. 4.

Table 3 shows that both RT and D are improved. This
implies that server recommendation is an effective strategy
for total MAS performance. Compared with Table 1, Exp.
3’s C becomes larger – this indicates that agents assign their
tasks to more distant but more efficient servers (E becomes
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Figure 5: Total performance values (Exp. 3).

slightly smaller). The biggest difference between Exp. 1
and 3 is that the cumulative degree distribution for 1T/t
follows the power distribution in Exp. 3, though it follows
an exponential distribution in Exp. 1. It seems that the
recommendation of good servers works like the preferential
attachment in the Barabasi-Albert model[1]. However, there
are some differences. For example, in our experiments, (1)

Table 3: Observed performance values in Exp. 3.
1T/t 4T/t 4T/t with (S3)

RT 22.99 101.33 98.91
C 2.449 2.420 2.420
E 14.43 24.00 24.05
Q 6.11 74.91 72.45
D 0 309.6 0.17

The unit of value is a tick except D (number of tasks). All
data are the average values of the corresponding parameters
observed every 20K ticks from 600K ticks to 800K ticks.

all agents re-evaluate the recommended servers from their
viewpoints, (2) the server becomes more inefficient if more
agents assign their tasks to it, and (3) the communication
costs prevent agents from accessing distant servers. So we
argue that the server recommendation by agent collabora-
tion (that is, by collaborative filtering) with local evaluation
may be another mechanism for expressing the power low in
the servers’ degree distribution when the workload is low.
Note that the cut-off in Fig. 4 (a) appears because of the
limited numbers of agents in our simulation setting.

At 800K ticks, the number of the agents’ known servers
ranges from 3 to 20 and increases by about 5.5 on average.
This number is much smaller than 120, which is the total
number of servers in this simulation. Therefore, we can say
that the collaborative filtering described here is an effective
learning method in our simulation setting.

Additional observations of Fig. 5 and Table 3 are:

• When tl is 1T/t, collaborative filtering produces a task
concentration at higher capability servers and thus the
number of servers whose degrees are small also in-
creases. This concentration results in highly efficient
total performance because the task load is low, which
means that Q is still small.

• When tl is 4T/t, there is little difference between the
degree distributions of Exp.1 and Exp. 3. However,
Tables 1 and 3 express a difference in RT values. Com-
paring E values, agents did not find high capability
servers, but we can understand from the C values that
agents allocate their tasks to distant servers. A de-
crease of Q and D indicates that agents achieve load-
balancing across wider regions.

Fig. 5 (b) demonstrates that RT becomes stable at an ear-
lier time, but E, Q, and C still change around 800K ticks
when tl = 1. This implies that the AN structure constantly
changes; the degree distribution gradually changes to ex-
press power laws through this structural change.

Finally we want to point out that the collaborative fil-
tering and strategy (S2) in Exp. 2 improves performance
for different reasons if we compare Tables 2 and 3. There-
fore, we additionally experimented with total performance
and strategy by combining them. These results are shown
in the final column in Table 3, which expresses the best per-
formance in our experiments.

4.2 Fluctuations and Performance
The probabilistic distribution (E1) in Exp. 1 introduces a

small fluctuation into the server selection decision because
there is the small possibility of selecting a known server that
is not the best. The last column in Table 1 shows the per-
formance data if this fluctuation is excluded (that is, only
(P1) is used) when tl is 4T/t. This data show that the fluc-
tuation can reduce RT by 7.3%, Q by 9.7%, and D by 186%.
We think that these differences are considerable.

However, this improvement by fluctuation appears only
when tl is near four. The data (a) in the two graphs of
Fig. 6 illustrate the distributions of RT ′ − RT and D′ −
Din Exp. 1 over various tl ranging 0.5 to 5.2 T/t, where
RT ′ and D′ are the average of the whole response time and
the number of total dropped tasks when no fluctuation was
introduced (that is, (P2) was not used). The left graph in
Fig. 6 shows that when tl ≤ 2.5 the difference of RT and
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Figure 6: Performance differences (Exp. 4).

These graphs show the difference in the average response
times and the number of dropped tasks when fluctuation is
introduced and when it is not. Both RT and D are better if
they are smaller, so if RT ′ − RT (D′ −D) is positive, the
fluctuation positively affects the average of the total response
time (the number of dropped tasks).

RT ′ is almost zero (or more precisely, slightly negative).
Then, fluctuation (by P2) can improve the average response
time between 2.5 and 4.4, but worsens it when tl ≥ 4.4.
However, D is always better if fluctuation is introduced.
We must note again that the theoretical total performance
of all servers in our experiments varies from 4.7 to 5.0 and
the average value is 4.86.

These figures show that the agents’ best selection is not
accurate when 2.5 ≤ tl ≤ 4.4 in this experiment although
agents select, in both cases, the best server within a re-
stricted scope, which is the set of initially given servers.
This implies that there is more uncertainty in server selec-
tion, in this range of tl. When the total load is low, the
agent’s PSS without collaborative filtering is relatively ac-
curate, because all servers’ queues have enough vacancies so
that their observed capabilities are mainly affected by the
servers’ capabilities. A similar situation also appears when
tl ≥ 4.4, because when all servers’ queues are almost full
the observed data simply reflects their capabilities. When
2.5 ≤ tl ≤ 4.4 however, the observed data are mixed with
the capabilities and the queue lengths, which float over time.
Therefore, the server observed to be the best may not be the
best with higher probability in the next timing of the task
assignment. Note that regardless of whether or not fluctua-
tion is introduced, an agent selects servers only from the set
of the initially known servers.

This uncertainty is eliminated to some extent when agents
employ PSS with collaborative filtering. The graphs (b)
in Fig. 6 show RT ′ − RT and D′ − D in Exp. 3. As
opposed to the previous case, the fluctuation worsens the
total performance and the number of dropped tasks when
tl ≥ 4; this intuitively feels natural. This result implies that
the collaborative filtering offers agents a more accurate and
scalable decision-making process for selecting appropriate
partner agents.

Table 4: Change task rate at 800K tick (Exp. 5).
1→ 4T/t 4→ 1T/t 1→ 4T/t 4→ 1T/t
w/o CF w/o. CF w/ CF w/ CF

Th 180.71 33.99 213.14 32.60
C 1.287 1.312 2.460 2.514
E 22.33 24.30 17.42 24.27
Q 158.09 8.38 193.25 5.81
D 6989 0 23790.7 0

(CF stands for collaborative filtering)

5. DISCUSSION
In real applications, selecting the appropriate agents for

task allocation is quite important. We discuss this issue by
taking into account our experimental results.

Effect of prior learning
Load-balancing should be achieved when the total load of
the MAS is heavy. However, although agents’ prior learning
to identify the best way to assign specific tasks when the
global MAS state is normal (that is, when the load is not
heavy), it has little or no effect on performance improve-
ment. One of our findings in both Exp. 1 and 3 was that
the AN structures are quite different depending on the task
load tl. Especially, Fig. 4 (Exp. 3) shows that the features
and their degree distributions are different in the cases of
4T/t and 1T/t; one is exponential and another is a power-
law. This implies that the agents’ local decision about which
server is the best is also affected by the total task load.

In Exp. 5, we switched the task load 1T/t to 4T/t at
the 800K-th tick and vice versa; these results are shown in
Table 4. Comparing this table and Table 1, the performance
values are almost back to the values found in early stages in
all cases. So, we can conclude that agents should learn the
best partner agent when the MAS is totally overloaded.

Compatibility with conventional programs
Our experiments show that observation and learning by each
agent, especially collaborative filtering, play an important
role in achieving efficient and effective partner selection. Ac-
tually, some systems described in Section 1 such as Ten-
binDNS and IPv6 route selection decide their preferences
based on these kinds of observations without collaborative
filtering. This learning-based load-balancing is more effec-
tive than static, random, and round-robin-based methods.

Furthermore, strategy (S3) in Exp. 2 can realize more
efficient load-balancing with collaborative filtering as shown
in Table 3. Although strategy (S3) in Exp. 2 seems to be a
natural extension of (S1) and (S2), it is not easy to deploy
this function for a number of reasons. First, in real applica-
tions, modifying legacy and existing programs is avoided; for
example, the previously mentioned approach of load balanc-
ing by DNSs and proxies was chosen for this reason. Normal
software such as a Web browser makes a query to the local
DNS to resolve the IP address from the server’s name. The
result is then cached for a while (because this function is
provided by the OS). Therefore, agents do not change their
accessing servers.

The second reason is that agents have to understand the
context of the (distributed) processes running on them in
order to flexibly change their accessing partners. For exam-
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ple, when buying goods using an e-commerce application,
if a Web browser were to reconnects to another Web server
that provides the same functions during the writing of an
address or credit card number, it could cause some incon-
sistencies. More importantly, it could create an opportunity
for user information to be stolen or illegally accessed. Thus,
agents cannot change the server even if the server becomes
overloaded during an interaction. We assume that (S1) and
(S2) can be implemented in actual environments, but that
it can only slightly improve the total MAS performance.
Therefore, such a strategy (S3) should be implemented in
future agent programs.

Rational decision and fluctuation
In general, an agent is required to make rational decisions
according to its local knowledge which may contain uncer-
tainty. However, this decision should be made with the con-
sideration of accurate knowledge. Our experimental results
regarding the effects of fluctuations indicate that the best se-
lection does not always lead to the best performance. When
all agents do not adopt collaborative filtering, it is better
that agents sometimes select the second or third best server.
However, when they adopt collaborative filtering, their ra-
tional decisions usually lead to a better performance.

Our experiments and discussion suggest that collabora-
tive filtering can provide a more accurate view for ratio-
nal decision-making. Collaboration is indispensable because
it can eliminate some of the uncertainties contained in lo-
cal knowledge. Rational decisions are required in multi-
agent design but they must be based on accurate informa-
tion about non-local information, otherwise the rationality
is uncertain.

For more accurate rational decision-making, information
about network and other agents’ states is important. As
shown in Exp. 3, collaborative filtering can achieve effec-
tive PSS. This suggests that MAS design should take into
account the structure and (dynamic) performance of the In-
ternet. Looking again at the example of DNS-based load-
balancing, collaborations with other DNSes in the same au-
tonomous system (AS) or neighboring AS’s must be useful.
However, Exp. 5 implies that this kind of learning through
collaborative filtering in mismatched situations makes the
performance worse. In this case, it is better that agents
know network traffic and other agents’ loads. To form ap-
propriate MAS organizations for problem solving, we be-
lieve that MAS infrastructure that has the view of Inter-
and Intra-AS structures (that is, routing) and (predicted)
traffic, is necessary for future MAS design[10, 11].

6. CONCLUSION
In this paper, we investigated whether agents’ local strate-

gies for selecting partner agents that are committed a spe-
cific task affect the total performance of an entire MAS. In
particular, we focused on the structure of agent networks
that vary according to the task load. Then, we discussed a
number of findings from the experimental results: (1) learn-
ing partners by observation must be derived from the ob-
served data gathered in the same/similar situation, (2) for
more precise learning, each agent has to take into account
the states of network and other agents, and (3) rational de-
cisions by agents do not provide the best performance when
the task load is at or near the critical point for total MAS
capabilities.

Only a few years ago, the communications bandwidth of
the Internet was narrow. Hence, to provide effective and
efficient access to the (Web) servers, it was important to
place them at the sites near customers or at major network
ISPs. However, recent communication technologies can pro-
vide a 1M to 100M line to each home, and the communi-
cation bottleneck tends to move to the server side, because
they must process a large number of requested tasks. In
such an environment, it is necessary for an agent to select
high-performance partners rather than closer partners. In
designing a MAS, we must consider how each agent finds
other agents to assign tasks. Each agent’s decision, based
on local information, can be improved by careful local ob-
servation and learning. This can realize more efficient MAS
operation. However, our experiments show that the simple
local observation and learning may not be scalable when all
agents do the same thing. Collaboration, such as collabo-
rative filtering, plays an important role in achieving more
scalable load-balancing.
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