
Electronic copy available at: http://ssrn.com/abstract=1465397

 

The Living Value Chain 
Coordinating Business Processes 

 with Artificial Life Agents1

 

 

Torsten Eymann, Detlef Schoder, Boris Padovan 

 
Albert-Ludwigs-Universität Freiburg 

Institut für Informatik und Gesellschaft, Abteilung Telematik 
Friedrichstrasse 50 

79098 Freiburg im Breisgau, Germany 
{eymann|schoder|padovan}@iig.uni-freiburg.de 

 

Abstract 
The development of IT systems for coordinating business processes mostly starts with the 
definition of coordination mechanisms and organizational structures. This is usually based on 
assumptions about the cooperational behavior of the participating individuals. This top-down 
approach fails if the human participants behave in a competitive way, which can severely 
affect coordination as a whole.  

Artificial life concepts maintain global coordination by modeling local interaction rules and 
building on competition between individuals. This basic idea is exploited here in an 
economic context to show the possibility of coordinating business processes, like value 
chains, by autonomous self-interested software agents. We set up an artificial world where 
agents, representing human participants, cooperate and communicate using economically 
interpretable protocols. Starting from a given initial state of an economic agent population, 
the development of this population by applying local agent interaction rules and the 
observable coordination patterns will be investigated. We are currently in progress of 
implementing the simulation named Avalanche.  

1 Human Behavior and the Coordination of Business Processes 
Internal and external communication and cooperation processes are supported by more and 
more efficient IT applications. The main research field addressing business process 
coordination is CSCW (Computer-Supported Cooperative Work). Applications derived from 
this research include e.g. Groupware like Lotus Notes, Group Decision Support Systems and 
Bulletin Boards. The functionality of these systems still grows with every update. In parallel 
the usage of these applications has substantially changed from yesterday’s automation of 
workflow processes (well-defined and repeating) to today’s support of cooperative and 
coordinative processes, which may occur on a solitary and ad-hoc basis, thus posing a 
problem when benevolent cooperation between participants can not be presupposed.  
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If conflict and competition exist, the introduction of any CSCW application faces a hard task 
and in most cases leads to non-acceptance. In previous research work [Hummel 1996] we 
have shown that this is not only caused by technical shortcomings, but also by application 
misunderstandings. A clear example of such a failure is given by the demise of shared 
calendars: information-strategic behavior leads to people not putting all of their 
appointments in the calendar which results in the uselessness of the application as a whole. 
This observation holds regardless of the formal governance structure of the process, be it 
completely inside a large company or in a virtual enterprise just created from linking 
previously separated processes together. Developing agent-based solutions to a coordination 
problem will share these experiences, when human participants are to be represented by 
benevolent software agents, thus ruling out a large part of real human behavior. 

In order to support these difficult requirements we need to think about IT applications which 
are fault tolerant against human behavior in that conflict and competition are neither ignored 
nor artificially suppressed, but where the energy of the participants is converted to a driving 
force for the success of the application as a whole. In other words, a clever application 
architecture should use the local optimization effort of every participant to enhance the 
overall profit. 

The development of agent-based IT systems can in principle follow two paradigms: 
"(cooperative) distributed problem solving" (DPS) or "multi-agent systems" (MAS) 
[Durfee/Rosenschein 1994]. In short, DPS is a top-down approach while MAS is bottom-up 
with regard to the strategies the agents are to pursue. DPS begins with the coordination 
problem to be solved and imposes an interaction (cooperation) protocol and a strategy to use 
for each agent. In MAS, each agent may be designed independently, using the same protocol 
but pursuing different strategies. The coordination problem is not explicitly addressed, and 
the solution is expected to emerge from the local interactions of the agents. 

A common CSCW-like top-down DPS approach would start with the coordination 
mechanism, and then describe the necessary and allowed individual interaction rules and the 
ways to transmit information from one system unit to the other. This is feasible for an 
environment where the behavior of the participants (or the agents representing the 
participants) can be enforced by organizational measures, but not for an open network 
without binding rules (like the Internet) where self-interested agents and humans prevail. An 
agent-based solution for coordinating value chains will therefore have to use the MAS 
approach than DPS. 

Coordination in this context can be described as "the act of managing interdependencies 
between activities" [Malone/Crowston 1990], given either a resource to be shared or a timing 
interdependency. The coordination mechanism can either be mediated (centralized, e.g. 
auctions) or unmediated with the use of subsequent bilateral or multilateral cooperation 
between all agents [Wellman 1996]. Examples for an unmediated bilateral mechanism in a 
value chain context are concepts for the coordination of manufacturing processes (e.g. 
KANBAN), where produced goods are sequentially and independently forwarded between 
autonomous workgroups as input factors for the next value chain step. 

Accordingly, Cooperation is viewed as the bilateral dissolution between discrete agents of 
what we observe as a coordination mechanism and that determines the behavior of those 
units that are part of an organizational structure. A classical hierarchical organization will 
have a distribution of power that increases to the top, which may at the extreme turn into a 
cooperational behavior of command and obedience like in a military context. A 



 

cooperational manner of negotiation between two agents would not fit in this context, but 
works perfectly in a market-like coordination setting. Cooperation in a wider sense not only 
covers benevolent interaction, but also tricking, cheating and open conflict.  

In this chapter we described the requirements that the IT support of business processes has to 
face and illustrated different approaches (top-down or bottom-up) of designing agent-based 
IT support for business processes. Next we discuss the use of Artificial Life (ALife) for 
simulating economic processes. The focus of our current research, the bottom-up 
development of a multi agent system which decentrally coordinates a multiple step value 
chain by applying simple local interaction rules for the cooperation and communication of 
the agents, comes next. The paper concludes with an outlook to apply the concept of our 
Artificial World as a first step towards modeling real value chains and why Multi-Agent 
Systems (MAS) especially are a prime technology to apply. 

2 Artificial Life Agents and the Simulation of Economic Processes 
We regard our project in the research context of agent-based computational economics 
(ACE), which is roughly characterized as the computational study of economies modeled as 
evolving decentralized systems of autonomous interacting agents [Tesfatsion 1997]. A 
central concern of ACE research is then to understand the apparently spontaneous 
appearance of global regularities in economic processes, such as the unplanned coordination 
of trade in decentralized market economies that economists associate with Adam Smith's 
"invisible hand". The challenge is to explain these global regularities from the bottom up, in 
the sense that the regularities arise from the local interactions of autonomous agents 
channeled through actual or potential economic institutions rather than through fictitious top-
down coordination mechanisms such as a single representative consumer. ACE is thus a 
specialization to economics of the basic Artificial Life paradigm [Tesfatsion 1997]. 

The essence of Artificial Life (ALife), as described by Chris Langton, is "the realization of 
lifelike behavior on the part of man-made systems consisting of populations of semi-
autonomous entities whose local interactions with one another are governed by a set of 
simple rules. Such systems contain no rules for the behavior of the population at the global 
level, and the often complex, high-level dynamics and structures are emergent properties, 
which develop over time from out of all of the local interactions among low-level primitives 
by a process highly reminiscent of embryological development, in which local hierarchies of 
higher-order structures develop and compete with one another for support among the low-
level entities. These emergent structures play a vital role in organizing the behavior of the 
lowest-level entities by establishing the context within which those entities invoke their local 
rules and, as a consequence, these structures may evolve in time." [Langton 1989]  

Our value chain (see below) can be described as a man-made system with a population of 
entities (organizational units) with local interaction protocols (simple rules for buying and 
selling goods). Higher-order structures, which appear to the eye of the beholder as markets 
and hierarchies, then are considered to evolve. Seizing a suggestion of Jennings et al. 
[Jennings et al. 1996], we thus "view the business process as a collection of autonomous, 
problem-solving agents which interact when they have interdependencies". 



 

Avalanche2

 

 can also be regarded as an implementation of an Artificial World (AW) [Lane 
1993]. AWs are computer-implementable stochastic models which consist of a set of agents 
that interact with each other and an environment in prescribed ways. They are designed to 
give insight into processes of emergent organization and coordination: "What makes a set of 
economic agents organize into an economy?" [Lane 1993].Examples for existing Artificial 
Worlds are Tierra [Ray 1992] and Sugarscape [Epstein/Axtell 1996].  

Lumberjack Carpenter
Cabinet
Maker

 

Figure 1: An example of a typical value chain from tree to desk 

To reflect a real world setting, our Artificial World consists of several electronic 
marketplaces, between which mobile agents, representing the participants lumberjacks, 
carpenters and cabinet makers, roam in search for respective offers or demand. Typically, a 
value chain consists of several interconnected organizational units [Porter/Millar 1985], 
which use raw materials as input and by adding labor and knowledge enhance the value of 
their manufactured product. This output is then taken as input by the next organizational unit 
in line until the product reaches the buyer. This value chain can be extended from the 

                                                 
2 Avalanche is a subsidiary project of the TELOS (Telematics, Coordination Mechanisms and Organisational 
Structures) project, which is conducted at the Institute for Computer Science and Social Studies in Freiburg. 
Research topics of TELOS are the interdependencies between the use of Telematics systems in organisations, 
the development of the organisational structure and the applied coordination mechanisms. The impact of the use 
of computers, especially networks and CSCW (computer supported cooperative work) systems is important 
research of the past which we build upon [Schoder 1995, Hummel 1996, Schoder et al. 1997]. 



 

simplest raw materials (wood, oil, gas) to more complicated products (cars, houses), even if 
the description resembles more of a network than a linear chain. But for any particular 
material-product relation it is possible to describe a linear chain, as modeled in the picture 
for trees and desks.  

Considering this, we view the different professions (agents) in the value chain as typical 
"low-level primitives" in an ALife sense, semi-autonomous agents that are driven by local 
interaction rules. We can distinguish between agents which chop trees to produce boards 
(lumberjacks), those that use boards to produce plates by fixing the boards together 
(carpenters) and finally those that buy plates and build a fine table out of five plates (cabinet 
makers). The different types of agents are denoted by different icons in this figure. The 
lumberjack does not know about the desk finally made of the wood he cuts, neither does the 
cabinet maker know about the particular tree. Nevertheless, all agents produce at best, from a 
consumer’s point of view, a probably high quality desk made of high quality wood - all by 
local interaction, in sequence of the distinct value chain steps. 

The organizational structure and the coordination mechanisms applied by the different 
professions is not addressed in this picture, as the final product is always the same: a desk, 
whether all workers along the chain are independent firms (market-like coordination) or part 
of one large company (hierarchical coordination). On a continuum between market and 
hierarchy we find a world of discrete coordination mechanisms where agents interact and 
which may emerge, if attracted, to appear as parts of distinct organizational structures 
[Kauffman 1995].  

 

market-like=
high cooperation volatility

hierarchy-like =
low cooperation volatility

transition frequency =
coordination volatility

 

Figure 2: Visualization and Implementation of the Artificial World 

Trade relations between the agents are visualized by connecting lines. A thin line between 
for example a "carpenter agent" and a "cabinet maker agent" means a cooperational 
relationship where the cabinet maker has as his last action successfully purchased some 
boards from the carpenter. If his next purchasing action will again involve the same carpenter 
agent, the line is drawn thicker to show the repetition. This allows us to give a measure for 
the decisive aspect of change regarding the interaction of the cooperation partners: 
cooperation volatility measures the frequency of repeating an observed cooperational 
relationship and can be easily measured, aggregated and displayed. The variation speed of 
the medium cooperation volatility (the coordination volatility) can, as transition frequency 



 

between two relatively stable states, also easily be measured. Our interpretation matches 
frequent reconfiguration to a (relatively chaotic) market, while the more stable structure of 
low cooperation volatility resembles a fixed organization like with dominating hierarchical 
relations. 

3 Avalanche - An Implementation of an Economic Artificial World 
Our implementation Avalanche of an economic multi-agent system will be realized in Java 
with the basic components of locations (trading places) and agents (suppliers and buyers). 
We use standardized concepts of Java, mobile agent class libraries (e.g. Mole [Baumann 
1996], Voyager [Objectspace 1997], Odyssey [White 1997]), and add very few methods and 
variables considered to be necessary in an economic sense.  

Locations are Java Virtual Machines (VM), server processes which run statically on a given 
computer. Starting the model world means the same as initializing the locations. Locations 
are addressed and distinguished by a unique port number on a TCP/IP-network connected 
computer (e.g. 127.0.0.1:7777), which makes it possible to run several locations on one 
computer for modeling purposes. Locations are a sandbox environment for the agents and 
offer a registration list to see which other agents are on the same location, but never actively 
influence or coordinate the agents’ activities. 

Agents are also distinguishable by a unique ID. The agents communicate unmediated and 
bilateral by calling methods or passing a message. The negotiation protocol used will be 
largely taken from FIPA's Agent Communication Language [FIPA 1997], implementing 
contract nets [Smith 1980], and modified with elements suggested by [Eriksson et al. 1997] 
and [Sandholm 1996] which reflect the self-interest of the agents. The agents run 
concurrently and parallel, an influence on the results through the application of a sequential 
scheduling algorithm is therefore avoided. Not based on rounds, but synchronized by 
heartbeat ticks, every agent will pro-actively execute actions with varying execution time.  

The strategy of the agent for the use of the protocol is stochastically determined by 
parameters like acquisitiveness (the likelihood to change an offer price as supplier or a 
demand price as buyer), price-prospect (the likelihood to expect a changing price from the 
supplier or buyer), satisfaction (the likelihood not to request an additional offer from a 
supplier) or impatience (the likelihood to change the location if not confident with the market 
situation). Any action of the agent is then specified by "rolling the dice" against these and 
only a few other parameters and can not be computed in advance. Other, non-stochastical 
parameters are for example the agent's ID, the production function and the capital, which is 
not only a means of computing and storing "money" units when buying or selling, but also an 
indicator of the relative success of the single agent. An agent which is faster and/or fitter in 
trading as another will have a relatively higher capital account.  

The mobility of the agents allows them to roam the net in search for the most suitable offer 
or demand situation. Success in this task leads to a reward by allowing to reproduce the 
agent’s "genes" (variables and methods) using genetic algorithms, which dynamically leads 
in time to an agent population which is best adapted to the current supply and demand 
situation. Changes in this situation will be accompanied by changes in the agent population 
without having to exogenously interfere. 

An example for the effect of the stochastic operations works as follows: the supplier agent 
announces the availability of finished goods on its behalf on the registration list of the 
current location. The current price for his products is revealed only on a buyer's request. 



 

Since it is unlikely that the products can be sold off at once, the offer may last several 
heartbeat ticks. To model economic offer behavior with respect to the self-interest of the 
agents, we use the heuristic concept of Kasbah [Chavez/Maes 1996] and change it to follow 
a probabilistic decay function, checking with every heartbeat against the supplier's 
"acquisitiveness" parameter. If the check fails, the supplier will lower its offer price in the 
next phase, thus making a successful selling act more and more probable (regardless of the 
buyer's actions). If the goods can not be sold at all (e.g. if no agent of the next value chain 
step is alive or in reach), the offered price can even fall down to zero. 

Those agents which appear as buyers (because they have neither products nor materials) will 
first have a look on the registration list of the location they currently reside on. After that, the 
buyer then communicates subsequently with the identified supplier agents, realizing a local 
market survey (checking against the satisfaction parameter). The most simple preference 
function now ranks the suppliers by unit price; this list is then used by the buyer to purchase 
materials until his demand is matched. Since the agents run concurrently, it is intentionally 
possible that not all materials are available anymore at the moment when the agent finally 
decides to buy, in which case the buyer agent would have to switch to an inferior supplier or 
start the whole procedure again.  

The use of Genetic Algorithms (GAs) in this economic simulation is motivated by the need 
to identify those parameter values which lead to an agent's success or demise [Holland/Miller 
1991]. The success of a single agent is relatively easy indicated by a high capital account 
compared to other agents. The success of the population as a whole can be measured in 
economic (Pareto efficiency, social welfare) or technical terms (computational or 
communicational efficiency) [Sandholm 1996]. In our value chain environment, we consider 
an agent population to be superior to another when the productivity per time unit is higher.  

Starting with an initial population of more or less randomly initiated agents the population 
develops by ruling out inferior and promoting superior agents by applying evolutionary 
mechanisms. Literature on genetic algorithms [Goldberg 1989] distinguishes four steps 
(evaluation, reproduction selection, recombination and mutation), which are implemented in 
our economic artificial world as follows. 

In the evaluation phase each agent is judged by a fitness score, which is represented by the 
capital account of the agent in our simulation. At the beginning of the simulation, each agent 
is equipped with the same amount of money. All purchase and selling actions have direct 
consequences on the capital - on one hand purchased goods are paid from the capital, thus 
diminishing it, on the other hand the income from a sale leads to an increase of capital. In 
any heartbeat the subtraction of money from his capital is inevitable, reflecting costs of 
storage, CPU time and telecommunication use. If the capital reaches zero, the agent is 
considered to have died and will be removed from the model world. 
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Figure 3: Fitness evaluation of agents using their capital account as score 

The reproduction selection phase selects by means of the fitness score those agents for 
reproduction whose current capital reaches a certain factor (e.g. twice) of his initial capital, 
reflecting the relative success. The next step of recombination is usually done by taking 
attributes (genes) from paired agents of the same value chain step and having the "children" 
implement a mixture of the attributes of these parent agents. In Avalanche, the attributes are 
the stochastic parameters referred to above. The fourth and last phase is mutation, where the 
parameter values of the new agents are slightly and randomly modified. 

The final two phases (recombination and mutation) will not be implemented in Avalanche; to 
keep things simple, genetic diversity is brought in by the addition of randomly attributed 
agents anywhere in the model world in equidistant periods. Therefore, a certain amount of 
agents will always exist in the simulation which are diverse from those currently "employed" 
and working and which can grasp the evolutionary chance of changing the system in their 
favor. This also offers the possibility to add new production functions (reflecting 
technological change) to the population and see how they perform. Instead of pairing, 
reproduction can then use a simple biological cleavage algorithm - the parent agent may 
inherit some capital to a perfect clone (by means of attribute values) of itself. 

The use of Genetic Algorithms (GA) in economic MAS simulations is controversial 
[Hillebrand/Stender 1994], since it lacks economic theory. In contrast to living beings, 
economic institutions and organizational units possess a theoretically unlimited lifetime and 
do usually not reproduce or generate offspring in a biological sense. In our simulation we use 
the following economical argumentation for removing from and adding agents to the 
population: the removal of unsuccessful agents by means of zero capital is interpreted as 
bankruptcy. The sudden appearance of clones of successful agents can be rooted in 
microeconomic theory with the argumentation that obvious success of one firm in a market 
leads to entries of new firms who then adapt to the observed successful behavior [Varian 
1993]. 

4 Conclusion and Outlook 
Since the real-time implementation and the spatial distribution of the Artificial World make 
it impossible for supplier and buyer agents to get a full overview of any current market 
situation, this research project has many connections to the work of Sandholm concerning 
automated negotiation among self-interested computationally limited agents [Sandholm 
1996]. We also benefit from the market-oriented programming approach of Wellman 
[Wellman 1996], especially in the design of our goods and mechanism space.  



 

But in contrast to the works of Sandholm, Wellman  and Jennings [Jennings 1996], our 
agents are neither intelligent nor do they act strategically. Their actions are based on 
stochastic operations on the initial and never changing parameters. The results of the actions 
do not have any effects on the agents' parameters nor will any change in the behavior occur. 
Any "strategy" observed is just an ascription to a (within limits) random behavior. Our agents 
are in effect 0-level agents [Vidal/Durfee 1997], which do not reason directly about the other 
agents. Compared to the economic environment the agents live in, they are no more 
intelligent than a single ant compared to the antheap it is a part of. 

The use of Genetic Algorithms makes it possible to start the simulation with a non-optimal 
population of agents, each representing a more or less random distribution of parameter 
values. Ruling out the unsuccessful agents and promoting the successful, the population 
gains economic strength over time, and clusters of successful parameter combinations appear 
which are effective in the dynamic environment the agents live in. Because of the dynamic 
and non-linear progression of a simulation run agents can also emerge and rule whose 
attributes are optimal in the environment given even if the initial population did not exploit 
that evolutionary niche [Kauffman 1995]. 

At the end of the simulation it is our intention to find the global maximum of the previously 
unknown fitness landscape, the maybe singular point where the agent population as a whole 
exhibits maximum productivity, all the while constantly able to adapt fast and flexible to 
endogenous and exogenous changes of the environment. In that way we fully exploit the 
advantages of multi-agent systems [Nwana 1996] in the coordination of a business process 
environment: we provide an emergent solution to a large, inherently distributed problem, in a 
fashion that is modular, such reducing complexity, that works at high speed due to 
parallelism, and that attains fault tolerance because of redundancy. Building on current IT 
standards, we regard the concept illustrated here as not only promising science fiction, but 
feasible in the near future, and we will show this in our research beginning with our Artificial 
World simulation Avalanche. 
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