Using Codes for Error Correction and Detection
TORLEIV KLOVE

Abstract—A linear code \(C \) over \(\mathbb{F}_q \) is good for \(t \)-error-correction and error detection if \(P(C,t;\epsilon) \leq P(C,t;(q-1)/q) \) for all \(\epsilon, 0 \leq \epsilon \leq (q-1)/q \), where \(P(C,t;\epsilon) \) is the probability of an undetected error after a codeword in \(C \) is transmitted over a \(q \)-ary symmetric channel with error probability \(\epsilon \) and correction is performed for all error patterns with \(t \) or fewer errors. A sufficient condition for a code to be good is derived. This sufficient condition is easy to check, and examples to illustrate the method are given.

I. INTRODUCTION

To control transmission errors in a data communication system, one can use a code in three ways: purely for error detection, purely for error correction, or for a combination of error correction and detection. Error-correcting codes have been widely studied, e.g., see [1]. Less is known about error-detecting codes and codes for both error correction and detection; some papers are [2]-[12]. Here we study the probability of undetected error when a code is used both for error correction and error detection. This continues work started in [2].

II. THE PROBABILITY OF UNDETECTED ERROR

We transmit symbols from the field \(\mathbb{F}_q \) over a channel; the probability that a sent symbol is received correctly is \(1 - \epsilon \), and the probability that it is transformed into a particular one of the other \(q - 1 \) symbols is \(\epsilon/q - 1 \). Let \(C \) be a linear code of length \(n \) and dimension \(k \) over \(\mathbb{F}_q \). Let \(d = d(C) \) denote the minimum (Hamming) distance of \(C \), and let \(t \) be an integer, \(0 \leq t < d/2 \). The code is used to correct all error patterns with \(t \) or fewer errors. Let \(P(C,t;\epsilon) \) denote the probability that after decoding there remains an undetected error. In particular, \(P(C,0;\epsilon) \) is the probability of having an undetected error when \(C \) is used purely as an error-detecting code.

It is well-known that

\[
P(C,t;\epsilon) = (1 - \epsilon)^n \sum_{j = d - t}^{n} \frac{n!}{j!(n-j)!} \frac{\epsilon^{j}}{(1 - \epsilon)^{(q - 1)j}},
\]

(2.1)

where \(A_{j} \) is the number of vectors of weight \(j \) that are within distance \(t \) of some codeword [3]. For \(\epsilon = (q - 1)/q \) (the "worst case channel") we get

\[
P(C,t;(q - 1)/q) = V_r(q^k - 1)/q^k,
\]

where \(V_r \) is the volume of a sphere of radius \(t \), i.e.,

\[
V_r = \sum_{i = 0}^{t} \binom{n}{i} (q - 1)^i.
\]

(2.2)

We say that a code \(C \) is \(t \)-good if

\[
P(C,t;\epsilon) \leq P(C,t;(q - 1)/q),
\]

for all \(\epsilon, 0 \leq \epsilon \leq (q - 1)/q \). (2.3)

A code is "good" if it is \(t \)-good for all \(t \), \(0 \leq t < d/2 \).

Note that the definition of \(0 \)-good differs slightly from the definitions of "good for error detection" given in [4] and [5].

In general, it is difficult to decide even if a given code is \(0 \)-good or not. It is an open question for which values of \(n \) and \(k \) there exist \(0 \)-good \((n,k)\)-codes. It has been shown that some classes of codes are \(0 \)-good. These include the binary perfect codes, their dual codes, distance-5 primitive Bose-Chaudhuri-Hocquenghen (BCH) codes, distance-4 extended Hamming codes, and distance-6 extended primitive BCH codes [4] [8]. Kasami and Lin [5] recently showed that maximum-distance-separable (MDS) codes are good. These results were proved by showing that the codes in question satisfy some condition that is sufficient for a code to be \(t \)-good. One such sufficient condition is that \(P(C,t;\epsilon) \) is a monotonically increasing function of \(\epsilon \) in the interval \([0,(q - 1)/q] \). The result on MDS codes, for instance, was shown in this way. In [4] we gave another sufficient condition in terms of the weight distribution of a binary even-weight code for it to be \(0 \)-good. In Section III we give still another such sufficient condition that applies to all codes for all \(q \) and \(t \).

It has been shown [3], [9] that given \(q, n, k \), and \(\epsilon \), there exists an \((n,k)\) code \(C \) over \(\mathbb{F}_q \) such that

\[
P(C,0;\epsilon) \leq q^{k-n}(1 - (1 - \epsilon)^n).
\]

(2.4)

We note that the right-hand expression is an increasing function of \(\epsilon \), and that for \(\epsilon = (q - 1)/q \) it equals \(P(C,0;(q - 1)/q) \). In particular,

\[
P(C,0;\epsilon) \leq P(C,0;(q - 1)/q).
\]

(2.5)

We note, however, that the code \(C \) for which (2.4) is true depends on the particular \(\epsilon \), whereas a \(0 \)-good code satisfies the bound for all \(\epsilon \). Moreover, the result is an existence result; it tells us nothing about how to find the code. There are a couple of similar results that sometimes sharpen the result (2.4); given \(q, n, k \), and \(\epsilon \), there exists an \((n,k)\) code \(C \) over \(\mathbb{F}_q \) such that

\[
P(C,0;\epsilon) \leq \frac{q^k - 1}{q^n - 1}(1 - (1 - \epsilon)^n),
\]

(2.6)

and even such that

\[
P(C,0;\epsilon) < \frac{q^k - 1}{q^n - 1}(1 + (q - 1)(1 - \epsilon^q/(q - 1)))
\]

(2.7)

For \(q = 2 \), (2.6) is due to Levenshtein [10] and (2.7) is due to Kasami et al. [4]. The proof for general \(q \) appears in [11]. The methods we develop herein give sufficient conditions for a code to satisfy these bounds and similar bounds for \(t > 0 \), for all \(\epsilon, 0 \leq \epsilon \leq (q - 1)/q \).

III. SUFFICIENT CONDITIONS FOR \(t \)-GOOD CODES

We use the following notations:

\[
E = \sqrt{(q - 1)},
\]

(3.1)

\[
D = 1 - \epsilon q/(q - 1),
\]

(3.2)

\(C \) is an \((n,k)\) code over \(\mathbb{F}_q \), \(A_0, A_1, A_2, \cdots \) is the Hamming weight distribution of \(C \), and \(B_0, B_1, B_2, \cdots \) is the Hamming weight distribution of the dual of \(C \). We consider the following condition, which may or may not be satisfied for particular \(C \) and \(t \):

\[
\Pi(\tau,t;\epsilon):\
\]

(3.3)

where

\[
\Pi(n,k,t,\tau;\epsilon) = \frac{q^k - 1}{q^n - 1} \left(1 + (\tau - 1)D^n - \tau (1 - \epsilon)^n \right).
\]

(3.4)

For \(t = 0 \) and a fixed \(\epsilon \), this reduces to (2.6) and (2.7) when \(\tau = 1 \) and \(\tau = q \), respectively. In the following lemma, we summarize some of the properties of \(\Pi(n,k,t,\tau;\epsilon) \) whose straightforward proofs are omitted.
Lemma 1:

a) \(P(C, t; \epsilon) = \Pi(n, k, t; \epsilon) \) for \(\epsilon = 0 \) and \(\epsilon = (q - 1)/q \).

b) For any fixed \(\tau \), \(0 \leq \tau \leq q \), \(\Pi(n, k, t; \epsilon) \) is an increasing function of \(\epsilon \) on \([0, (q - 1)/q]\).

c) For any fixed \(\epsilon \), \(0 \leq \epsilon \leq (q - 1)/q \), \(\Pi(n, k, t; \epsilon) \) is a decreasing function of \(\tau \) on \((-\infty, \infty)\).

d) For \(0 \leq \tau < q \), \(\Pi(n, k, t; \epsilon) = o(r) \) when \(\epsilon \to 0 \).

e) \(\Pi(n, k, t; \epsilon) = o(\epsilon^2) \) when \(\epsilon \to 0 \).

Combining a) and b) of Lemma 1, we get the following theorem, which is our reason for considering the \(\Pi(\tau, t) \)-condition.

Theorem 1: If \(C \) satisfies the \(\Pi(\tau, t) \)-condition for some \(\tau \), \(0 \leq \tau \leq q \), then \(C \) is t-good.

It is a stronger condition for a code \(C \) to satisfy the \(\Pi(\tau, t) \)-condition for some \(\tau \geq 0 \) than to be t-good. However, unless \(\epsilon \) is small, \(\Pi(n, k, t; \epsilon) \) is close to \(P(C, t; (q - 1)/q) \). When \(\epsilon = 1/n \), for instance, we get \(\Pi(n, k, t; \epsilon) = O(n^2 \epsilon^2) \) when \(\epsilon \to 0 \).

Define \(\gamma(C, s, j) \) by

\[
\gamma(C, s, j) = \sum_{i=0}^{s} A(i, n, s, j) (q - 1)^i (1 - \epsilon)^{s-i}.
\]

MacWilliams [12] gave expressions that imply that for \(s < d/2 \)

\[
\sum_{j=0}^{n} \alpha(C, s, j) = z^j
\]

Substituting (3.9) in (2.1) and equating the right-hand sides of (2.1) and (3.3), we get, after some simple transformations,

\[
\Gamma(C, t, j) = \sum_{s=0}^{t} \gamma(C, s, j).
\]

Starting from (3.11), we get, in the same way,

\[
\gamma(C, s, j) = q^{-n+k+1} \sum_{i=0}^{s-j} B(i, n, s, j) (q - 1)^i (1 - \epsilon)^{s-i}.
\]

and from (2.1) we get

\[
\Gamma(C, t, j) = \sum_{m=d-t}^{j} (n-m) A_{n, m}.
\]
Theorem 2: Let $t < d/2$ and let $0 \leq \tau \leq q$. The code C satisfies the $\Pi(\tau,t)$-condition if $\Gamma(C,t,j) \leq \Delta(n,k,t,\tau,j)$ for $d - t < j < n$, where
\[
\Delta(n,k,t,\tau,j) = V_t^{\tau} q_j - 1, \quad (q^j - \tau), \quad \text{for } 0 < j < n,
\]
\[
\Gamma(C,t,j) = \sum_{m=d-t}^{j} \binom{n-m}{j-m} A_t,m - \sum_{u=0}^{d-t} \sum_{s=0}^{d-t} \binom{s}{d-t} A_t,s
\]
\[
= q^{n-k} \sum_{i=0}^{t} \binom{n-i}{j} \Psi(i,n,s) - \sum_{j=s}^{t} \binom{n-s}{j} (q-1)^j.
\]
and
\[
\Psi(i,n,s) = \sum_{j=s}^{t} \binom{n-i}{j} (q-1)^j \sum_{j=s}^{t} \binom{n-i}{j} (q-1)^j.
\]

Theorems 1 and 2 in combination give the promised criterion for t-goodness.

IV. CHECKING A CODE FOR THE $\Pi(\tau, t)$-CONDITION

We now take a closer look at Γ and Δ, introduce some new notations that make it easier to describe computations, and give some examples.

Lemma 3: Let $0 < j < n$. Then
a) $\Delta(n,k,t,\tau,j)$ is a decreasing function of τ on $(-\infty, q^n)$,
b) $\lim_{\tau \to -\infty} \Delta(n,k,t,\tau,j) = V_t(\tau^t - 1) \binom{n}{j}$,
c) $\Gamma(C,t,j) < V_t(\tau^t - 1) \binom{n}{j}$,
d) There exists a unique $\tau < q^n$ such that $\Gamma(C,t,j) = \Delta(n,k,t,\tau,j)$, let $C(t,j)$ denote this τ.
e) $\Gamma(C,t,j) \leq \Delta(n,k,t,\tau,j)$, for $\tau \leq T(C,t,j)$.

Proof: a) and b) follow directly from (3.6). From (3.17) we get
\[
\Gamma(C,t,j) = \sum_{m=d-t}^{j} \binom{n-m}{j-m} A_t,m < \sum_{m=d-t}^{j} \binom{n-j}{j} A_t,m
\]
\[
= \binom{n}{j} V_t(\tau^t - 1),
\]
which proves c). Finally, d) follows directly from a)–c), and e) follows from a) and d).

Let $T(C,t) = \min \{ T(C,t,j) \mid 0 < j < n \}$.

Lemma 4: For any $t < d(C)/2$, C satisfies the $\Pi(T(C,t),t)$-condition. In particular, if $T(C,t) > 0$, then C is t-good.

Next we give a little lemma which, besides having some theoretical interest, also gives a useful check on the computations.

Lemma 5:

a) $T(C,t,j) = q^j$, for $1 \leq j < d - t$,
b) $T(C,0,j) = q^{n-k}$, for $n - d' < j < n$,
where $d' = d(C^\perp)$ is the minimum distance of the dual code.

Proof: a) For $j < d - t$, $\Gamma(C,t,j) = 0$, and so, by (3.6),
\[
\Gamma(C,0,j) = q^{n-k} B(n,j) \Psi(0,n,0) - \binom{n}{j}
\]
\[
= q^{n-k} \binom{n}{j} - \binom{n}{j}
\]
\[
= V_0 q^{n-k} - q^{n-k} - q^{n-k}
\]
\[
= \Delta(n,k,0,q^{n-k},j).
\]
Hence $T(C,0,j) = q^{n-k}$.

For MDS codes $d = n - k + 1$ and $d' = k + 1$, i.e., $n - d' = n - k - 1$. Hence, we get the following theorem as an immediate consequence of Lemma 5.

Theorem 3: MDS codes satisfy the $\Pi(q,0)$-condition (provided $0 < k < n$).

Theorem 3 implies that MDS codes are 0-good. As mentioned above, Kasami and Lin [5] have shown the stronger result that MDS codes are good. Their result does not imply Theorem 3, however.

We have written a program that, from a code C, computes $T(C,t,j)$ and $T(C',t,j)$ for all t and j. We have run the program for a number of codes. Examples of the results follow.

Example 1: For the $(27, 11)$ Golay code we found that $T(C, t)$ is 2 for $t = 0, 1, 2, 3$. Therefore, from Lemma 4, we conclude that the Golay code is good. As mentioned before, it has been known that it is 0-good [6].

Example 2: For a $(27, 18)$ cyclic code we found that $T(C,0) = -132838.44$, $T(C',0) = -4304523.63$, and $T(C',1) = -3667107.05$. In particular, neither C nor C' satisfy the $\Pi(q,0)$-condition for any $t < d/2$ (resp. $t < d'/2$).

In all the examples we have computed, we have noted that for increasing j, either $T(C,t,j)$ is increasing for all j, or it is first increasing until $j = d' - t - 1$, then decreasing until some value of j, and then increasing again.

REFERENCES

codes," in Globecom '82, IEEE Global Telecommun. Conf., Miami, FL,

[9] V. I. Korzhik, "Bounds on undetected error probability and optimum
group codes in a channel with feedback," Radioelektronika, 20, vol. 1,
no. 1, pp. 87-92, Jan. 1965.)

