
A Powerful and SQL-Compatible Data Model and
Query Language For OLAP

Dennis Pedersen Karsten Riis Torben Bach Pedersen

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, 9220 Aalborg Ø, Denmark

Email: {dennisp,riis,tbp}@cs.auc.dk

Abstract

In this paper we present the SQL � OLAP data model,
formal algebra, and query language that, unlike current
OLAP data models and languages, are both powerful,
meaning that they support irregular dimension hierarchies,
automatic aggregation of data, and correct aggregation of
data, and SQL-compatible, allowing seamless integration
with relational technology. We also consider the require-
ments to the data model posed by integration of OLAP
data with external XML data. The concepts are illus-
trated with a real-world case study from the Business-to-
Business electronic commerce (B2B) domain.
Keywords: OLAP, Multidimensional Databases, Data
Models, Query Languages, Data Integration

1 Introduction

OLAP systems [Codd, 1993, Shoshani, 1997] enables
powerful decision support based on multidimensional
analysis of large amounts of summary data commonly
drawn from a number of different transactional databases.
OLAP data are often organized in multidimensional
cubes containing measured values that are character-
ized by a number of hierarchical dimensions. Typi-
cal operations on data cubes are roll-up, which aggre-
gates data by moving up along one or more dimen-
sions, drill-down, which disaggregates data by moving
down dimensions, and slice-and-dice, which performs
selection and projection on a cube. The multidimen-
sional approach offers a number of advantages over tra-
ditional types of DBMSs, including automatic applica-
tion of the pre-specified aggregation functions (automatic
aggregation) [Rafanelli et al., 1990, Thomsen, 1997], vi-
sual querying [Thomsen, 1997, Thomsen, 1999], and
good query performance due to the use of pre-
aggregation [Gupta et al., 1995, Pedersen et al., 1999b].
Additionally, the dimensional approach is most often a
natural fit for data analysis problems.

To be able to capture the complex data found in many
real-world applications, the data model for the OLAP
system must be able to handle irregular dimension hi-
erarchies [Pedersen et al., 1999a, Pedersen et al., 1999b]
that do not fit the balanced-tree hierarchies supported
by current OLAP systems. More specifically, the data
model must support non-strict hierarchies where lower-
level items may have several parents in a higher dimension
level, and non-covering hierarchies, where paths in the hi-
erarchy may “jump” more than one level at a time. In
this paper, we exemplify irregular hierarchies in the B2B
domain, but they also occur in many other domains, e.g.,
organization hierarchies [Zurek et al., 1999], web concept

Copyright c
�

2001, Australian Computer Society, Inc. This paper ap-
peared at the Thirteenth Australasian Database Conference (ADC2002),
Melbourne, Australia. Conferences in Research and Practice in Informa-
tion Technology, Vol. 5. Xiaofang Zhou, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

hierarchies [Yahoo, 2001], and medical diagnosis hierar-
chies [NHS, 1999]. Having irregular dimension hierar-
chies violates the summarizability [Lenz et al., 1997] of
the OLAP data, meaning that the user may get wrong re-
sult if intermediate aggregate results are re-used to com-
pute higher-level results. Thus, it is also very important
that the OLAP data model has a “safety net” that ensures
that the user will always perform correct aggregations.

An ideal OLAP query language should allow OLAP
queries to be posed in a compact and concise yet easily
understandable way and support user-friendly functions
such as automatic aggregation. However, to allow integra-
tion with legacy relational systems, the OLAP language
(and data model) should also be SQL-compatible, mean-
ing that the OLAP data can also be queried using standard
SQL, yielding the same results as would be expected from
querying a relational table.

Current OLAP data models and query languages
fall in one of three categories. First, the simple
SQL-like models [Agrawal et al., 1997, Gray et al., 1997,
Gyssens et al., 1997, Jagadish et al., 1999, Kimball, 1996,
Li et al., 1996] are close to the relational/SQL data
model and query language, but do not support ad-
vanced features such as automatic aggregation, irregu-
lar hierarchies, and correct aggregation. Second, the
simple cube models [Cabibbo et al., 1997, Lehner, 1998,
Rafanelli et al., 1990, Thomsen, 1999, Vassiliadis, 1998]
are “pure” multidimensional models, meaning that
their data model is not relational-like and they can-
not be queried using SQL. Also, they do not han-
dle the full spectrum of irregular hierarchies, auto-
matic aggregation, and support for correct aggregation.
Third, the complex cube models [Pedersen et al., 1999a,
Pedersen et al., 2001b] handle irregular hierarchies and
support for correct aggregation, but the data model and
query language is not compatible with relational systems.
Thus, no current data model support complex, irregular
data while still providing SQL-compatibility.

In this paper, we present an OLAP data model, a for-
mal algebra over the data model, and a high-level, user-
oriented query language, that are both powerful, mean-
ing that they handle irregular hierarchies, automatic ag-
gregation, and support for correct aggregation, and SQL-
compatible, allowing seamless integration with legacy
data sources. The data model, algebra, and query language
are called the “Multidimensional SQL” (SQL �) data
model, algebra, and query language, respectively. Irreg-
ular dimension hierarchies are handled using powerful di-
mension hierarchies based on partial orders, while support
for correct aggregation is based on aggregation types that
keep track of what data can/cannot be aggregated further
without giving wrong results. Special care is taken to de-
sign the model and language such that compatibility with
relational systems is ensured. As XML [W3C, 2000a] is
increasingly being used as a data exchange format for data
available on the WWW, we consider the requirements to
the data model posed by the problem of allowing integra-
tion with external XML data. The concepts are illustrated
with a real-world case study from the B2B domain.

We believe this paper to be the first to present an OLAP
data model, algebra, and query language that are both
powerful and SQL-compatible. We also believe to be the
first to consider the specific challenges that integration of
OLAP and XML data poses to the data model.

The rest of the paper is organized as follows. Section 2
presents the case study used throughout the paper. Sec-
tion 3.1 defines the data model and it’s associated algebra.
Section 4.1 defines the SQL � query language. Section 5
presents the challenges that integration with external XML
data pose to the data model. Section 6 concludes the pa-
per and points to future work. Appendix A contains the
formal syntax of the SQL � language.

2 Case study

We now present a case study that justifies the need for
capturing complex dimension hierarchies. The case study
concerns B2B e-commerce in the electronics industry. It
is inspired by the Electronic Component Information Ex-
change (ECIX)[ECIX, 2000], which is a widely adopted
initiative to use XML as a means of communicating infor-
mation about electronic components. The setting consists
of companies producing electronic components (ECs),
and of companies buying these components and integrat-
ing them to larger appliances. In the following we refer to
them as suppliers and customers, respectively. Note that
both suppliers and customers are companies.

Purchase

cost
number of units

Manufacturer

manufacturer

EC

ECcode

Class

classname

Day

day

Month

month

Supplier

code

State

name

Country

name

Year

year

1..* 1..1

1..1 1..1

1..1 1..1

1..1 1..1
1..1

1..1

1..*

1..*

1..* 1..*

1..*

0..* 0..*

0..*

1..*

EC
dimension

Time
dimension

Supplier
dimension

1..*

Figure 1: UML schema for the Purchases OLAP database.

Customers use an OLAP database to analyze the pur-
chases they have made over time as shown in the UML
diagram in Figure 1. The purchases are characterized by
three dimensions, namely the EC dimension, the Supplier
dimension, and the Time dimension. For each purchase
we have two measures, the total cost and the number of
units purchased. Each dimension has a number of levels
that categorizes the lower-level items. ECs are categorized
by their manufacturers and their classes, e.g. flip-flops or
latches. Note that one EC may be manufactured by several
manufacturers, i.e., the hierarchy is non-strict. For suppli-
ers we have the levels Supplier, State and Country. How-
ever, the State level only applies to US supplier, so non-US
suppliers are mapped directly to their respective countries,
i.e., the dimension hierarchy is non-covering. The pur-
chase dates are categorized according to the regular cal-
endar, with levels Day, Month, and Year. The database
allows customers to view purchases at different levels of
granularity e.g. to calculate the total amount spent on ECs
by class and month.

However, not all relevant information about the pur-
chases can be included in an organization’s OLAP

<?xml version="1.0" encoding="utf-8"?>
<Components>
<Supplier SCode="SU13"><SName>John’s ECs</SName>

<Class ClassCode="C24">
<ClassName>Flip-flop</ClassName>
<Component CompCode="EC1234">

<Manufacturer MCode="M31">
<MName>Smith Components Inc.</MName>

</Manufacturer>
<UnitPrice Currency="euro"

NoOfUnits="1000">3.00
</UnitPrice>
<UnitPrice Currency="euro"

NoOfUnits="10000">2.60
</UnitPrice>
<Description>16-bit flip-flop</Description>

</Component>
<Component CompCode="EC1235">

<Manufacturer MCode="M32">
<MName>John’s ECs</MName>

</Manufacturer>
<UnitPrice Currency="euro"

NoOfUnits="1000">4.25
</UnitPrice>
<Description>16-bit flip-flop</Description>

</Component>
</Class>

</Supplier>
<Supplier SCode="SU15"><SName>Jane’s ECs</SName>

<Class ClassCode="C27"><ClassName>Latch</ClassName>
<Component CompCode="EC2346">

<Manufacturer MCode="M31">
<MName>Smith Components</MName>

</Manufacturer>
<UnitPrice Currency="euro"

NoOfUnits="1000">3.31
</UnitPrice>
<Description>16-bit latch</Description>

</Component>
</Class>
<Class ClassCode="C24">

<ClassName>Flip-Flop</ClassName>
<Component CompCode="EC1234">

<Manufacturer MCode="M33">
<MName>Johnson Components</MName>

</Manufacturer>
<UnitPrice Currency="euro"

NoOfUnits="1000">2.95
</UnitPrice>
<Description>D-type flip-flop</Description>

</Component>
</Class>

</Supplier>
</Components>

Figure 2: The Components document containing informa-
tion about EC suppliers and their products.

database, e.g., because the information changes too fre-
quently or because it is maintained by an entity of outside
the organization. Thus, some relevant information is only
available externally to the OLAP DB, most likely in XML
format. An example of this is given below. The integrated
use of OLAP and XML data, described in Section 5, is
another case where the data model is required to be more
powerful than traditional OLAP models.

Suppliers present their products on the Web at a B2B
marketplace. This allows customers and others to access
detailed specifications of their ECs. This information is
encoded in an industry-wide markup language defined in
XML, which makes it easy to limit a search to the rele-
vant parts of specifications. An example of a document
containing information from different suppliers is shown
in Figure 2. The fundamental part of an XML document
is the element. Elements are identified by a start tag and
an end tag, and can contain other elements, text data, and
attributes. In the example document the Component el-
ement has an attribute CompCode and contains the ele-
ments Manufacturer, UnitPrice and Descrip-
tion. For a more comprehensive explanation of XML
see [W3C, 2000a].

All ECs sold by a particular supplier belong to a com-
ponent class. ECs are referred to by their code. In addi-

tion to this, a document captures the manufacturer, which
need not be the same as the supplier, the price per unit,
and a textual description. Several aspects of ECs like tex-
tual descriptions and current prices are not included in
the Purchases database. Despite this, it may sometimes
be desirable e.g. to group ECs by their marketplace de-
scriptions, or view only purchases of ECs within a spe-
cific price range. By logically integrating the Purchases
database and the Components document in a federation
this can be handled in an easy and flexible way.

Although we consider a case from the e-commerce do-
main, the use of XML data in connection with OLAP is
needed in other areas, e.g., customer databases.

3 Data Model and Algebra

This section describes the SQL � data model and algebra.

3.1 The SQL � Data Model

The model is defined in terms of a multidimensional cube
consisting of a cube name, dimensions, and a fact table
with numerical measures. Each dimension comprises two
partially ordered sets (posets) representing hierarchies of
levels and the ordering of dimension values. Each level is
associated with a set of dimension values. The measures
represent the numerical fact properties that should be ag-
gregated in the OLAP queries, e.g., sales price.

Definition 3.1 (Dimension) A dimension ��� is a two-
tuple ���	��
������
�� , where �	��
 is a poset of levels and ����

is a poset of dimension values.����
 is the poset ����� � ��� � �� � �� � � , where ��� ���� ��� �!�#"�"#"����	�%$
'& is a set of levels, ��� is a partial order on
these levels, and �(� and �)� are the top and bottom ele-
ments of the ordering. We shall use � �+*�, � � as a short-
hand meaning that the level �-�+* belongs to the poset of
levels in dimension � � .

A level �	�+* is a name identifying a set of dimension
values. Let � be the set of all possible dimension values
and ��.0/1.02�3 be the set of all levels. Then a function Values 4��.0/5.!2�3(6798:�;�<� , returns the subset of � associated with
a level in ��.0/1.!2;3 . Thus, Values �;� �=* � � � . �=*� ��"�"#"��'. �=*�>
@?A& .
We shall use � �+* as a shorthand for Values ��� �+* � .� �
 is a poset BDC * ���=*E��� �
GF , consisting of the set of
all dimension values in the dimension and a partial order-
ing defined on these. We shall use �H� as a shorthand forC * � �+* .

For each level � we assume a function Roll-up IJ4
Values �;�	�EK-�L�L�M67N8:���O�P� , which given a dimension value
in � and a level in �L�G� returns the value’s ancestors in the
level. That is, Roll-up IG�;.5����QR� � � .!Q , ��Q;S .T����
L.!QU& . V

The intuition behind the partial order � � of levels is
that given two levels �	� �!�'���%W , �O� we say that ��� �X���� �%W if elements in � �%W can be said to contain the elements
in ��� � . For example, �HY5Z[�]\^.0Y5_ because years contain
days. Similarly, we say that .E�`�N.!W if .a� is logically
contained in . W and � �=* � � � �%$ for . �X, � �+* and . Wb,���R$ and .a�dc� .!W . For example, the day 01/21/2000 is
contained in the year 2000. Note that a lower-level value
may roll up to several higher-level values, or none at all.

Example 3.1 In the case study we have a Time di-
mension, an EC dimension and a Supplier dimension.
Letting e�fDg denote �ih0jDjlk=m�n�o the Supplier dimension
consists of the levels �L��p#qsr � � �tp0qri�EuwvAhyxiz;os{i��iz}|Az}nE���ih0jDjlk=m�n�o1& , which are ordered as follows:�ih0jEj~k=m�n�o��N�iz}|Az}n���uwvAhyxiz;os{���� p0qrO� �ih0jEj~k=m�n�o��uGvahyx�z�os{ , where the last part capture the fact that
suppliers may map directly to countries, by-passing
states. If we let � p0qr denote the reflexive, transi-
tive closure of this ordering, the poset of levels is

�������R� � �P�L�Gp0qrl����p0qri��tp0qrl���lh0jEjlk@m�n�oE� . A graph-
ical illustration of the levels is seen to the left in
Figure 3. The poset of dimension values is � � ���R� �� � �)�G�;� �A���M�	���~�b�DuM�t����T���~�M���i�����l�M&D�����G���R��� ,
where �������R� is the reflexive, transitive closure of
the ordering

� �A������ � �;� �#�s���A������ � ���R�#�������~���EuM���s����i�L�'���(�s�0�}�l�L���~���s����u��t�����L�s���;���<���M�L��" Note
that the supplier “S3” maps directly to the country
“UK.” Hence, the Supplier dimension is given by:� p0qr � ��� � ���R�a�'� � �;� �#� . A graphical illustration of the
dimension values is seen to the right in Figure 3. V
Definition 3.2 (Cube and fact table) An � -dimensional
cube is a three-tuple � � �����'���� T� consisting of a cube
name � which describes the type of facts contained in the
cube, a non-empty set of dimensions � � � � � ��"�"#"��'�¢¡l&
and a fact table ����:�!�#"�"#"���� ¡ �'£`�!��"#"�"��£�¤(� which is a
relation containing one attribute for each dimension � �
and one attribute for each measure £�* . Thus, �� ��.A¥�¦#�#"�"�"#��.A¥�§l��/D�A�#"�"�"���/a¤t��St�;.A¥�¦0�#"�"�"#��.A¥�§y� , �t��K¨#¨�¨ K©�)¡ � �U/ � ��"�"#"���/ ¤ �«ª�¬ � K ¨�¨#¨ Kd¬ ¤ & , where�®°¯ , ± ²¯ , and ¬i* is the domain value for the³
’th measure. We will also refer to the

³
’th measure as£ *´� � ��. ¥ ¦!��"�"#"��'. ¥ §l��/ * �& . The measure domains ¬ *

all contain the special NULL value, which denotes that no
value exists for a particular combination of dimension val-
ues. A tuple in , where at least one measure value exists,
is called a fact.

Each measure £ * is associated with a default aggre-
gate function µ * 4A8:��¬ * �w67¶¬ * , where the input is a multi-
set. Aggregate functions ignore NULL values as in SQL.V
Intuitively, a tuple in captures the measured values as-
sociated with one combination of dimension values from
the bottom levels. The number of tuples in is equal to· � � · ¨0¨�¨�¨0¨ · �)¡ ·

. That is, there is one tuple in for each
possible combination of the bottom dimension values.

Example 3.2 From the Purchases database in the case
study we can construct a three-dimensional cube with the
cube name ¸-hyo�¹º�|A»�ns» , the dimensions, levels, and order-
ing of dimension values as depicted in Figure 3, and the
fact table represented in Table 1. “FF” and “L” are names
of classes denoting “Flip-flops” and “Latches”, respec-
tively. Note that the EC “EC2345” is manufactured by
two manufacturers. Only tuples with non- NULL measure

Cost No. Of Units Day Supplier EC
2940 1000 01/21/2000 S1 EC1234
6900 2000 01/21/2000 S3 EC1234
9480 3000 02/22/2000 S3 EC2345

14400 4000 02/22/2000 S2 EC1235
17650 5000 03/23/2001 S2 EC1235

Table 1: Fact Table For the Purchases Database.

values are shown in the fact table although all combina-
tions are logically present in the relation (to save space,
we use this way of presenting fact tables throughout the
paper). V

Next, we define the notion of summarizability and dis-
cuss how it is used to ensure safe aggregation. Summa-
rizability is an important cube property as it states when
lower-level aggregates, which are often pre-computed, can
be used to calculate higher-level aggregates, and when
these must be computed from base data.

Definition 3.3 (Summarizable) Given a type ¬ , a sete � � e � ��"#"�"#�'e $ & where e *¼, 8:�U¬)� , and a func-
tion ½¾4�8:�U¬��b67¿¬ we say that ½ is summarizable if½�� � ½~��eM�s�s�#"�"#"���½��;eM$A�&!� � ½��;eM�GÀ ¨#¨�¨ ÀÁe�$a� where the ar-
gument of the left-hand side is a multi-set. V

EC

Class Manufacturer

EC

T

Supplier

State

Country

T

Supplier

Day

Month

Year

T

Time

T

EC

EC1234 EC1235 EC2345

FF L M31 M32 M33

T

Supplier

US UK

S1 S2 S3

CA NV

T

Time

2000 2001

Jan00 Mar01Feb00

01/21/00 02/22/00 03/23/01

Figure 3: Schema (left) and Instances (right) of the Purchases OLAP Database.

Intuitively, an aggregate function is summarizable if ag-
gregated results from a lower-level aggregate (left-hand
side of the formula) can be combined to give the same re-
sult as when the aggregate is derived directly from base
data (right-hand side of the formula). If this property is
not satisfied we are generally not allowed to use the lower-
level results for further aggregation. This is important be-
cause having to calculate aggregates directly from base
data often leads to a considerable increase in computa-
tional cost. Also, the users may, unknowingly, get wrong
results for their queries.

It has been shown that summarizability for a data
model like ours is equivalent to requiring the aggregate
function to be distributive, and the ordering of dimen-
sion values to be strict and covering [Lenz et al., 1997,
Pedersen et al., 1999a]. Informally, a dimension hierarchy
is strict if no dimension value has more than one parent
value from the same level and covering if no path skips
a level. Intuitively, this means that dimension hierarchies
must be balanced trees. If this is not the case some lower-
level values will be either double-counted or not counted
at all. These concepts are formally defined below.

Definition 3.4 (Covering) Given three levels, � � , � W ,��Â , �O� such that �-�ÄÃ�����WÅÃ��Æ��Â , we say that
the mapping from � � to � W is covering with respect to� Â iff Ç~. �©, � � �RÇ�. Â�, � Â �;. � ����
È. Â©É Ê . WË,��W¢��.a�`� �
:.!W � .!W`� �
Ì.!Â#����� . Otherwise, it is non-
covering with respect to � � . If all mappings in a dimen-
sion are covering w.r.t. any category, we say that the di-
mension hierarchy is covering. Note that we may test the
non-covering property in the following way (used later)
when �-� is the bottom level of a dimension � : Given a
measure £ from � , if Ê �;. ¥ ¦!�#"�"�"���. ¥ §~��/1� , £¾� Ê . ,� .A¥�¦0�#"�"#"���.A¥M§�&1� · Roll-up I ¦ ��.5���	W�� · �¼¯ � /«c� NULL ���
then the mapping from � � to � W is non-covering with re-
spect to ��Â . V
Definition 3.5 (Strict) Given two levels �Í�!�'��W , �O�
such that . � ��. Â:, � � � . WH, � W � . W ���L
Í. � � . W ����
.0Â É .A� � .!Â�� , we say that the mapping between �Í�
and � W is strict. Otherwise, it is non-strict. The hier-
archy in dimension �O� is strict if all mappings in it are
strict; otherwise, it is non-strict. Note that we may test
the non-strict property in the following way (used later)
when �-� is the bottom level of a dimension � : Given a
measure £ from � , if Ê �;. ¥ ¦!�#"�"�"���. ¥ §~��/1� , £¾� Ê . ,� .A¥�¦0�#"�"#"���.A¥M§�&1� · Roll-up I ¦ ��.5���	W�� ·ÈÎ ¯ � /«c� NULL ���
then the mapping from � � to � W is non-strict. V
Example 3.3 The hierarchy in the Supplier dimension
seen in Figure 3 is non-covering as “S3” maps directly to
the country “UK”, while the hierarchy in the EC dimen-
sion is non-strict as the EC “EC2345” is manufactured by
the two manufacturers “M32” and “M33”. V

Different aggregate functions may be valid when ag-
gregating different measures or when aggregating the
same measure over different dimensions. For example, it

is not meaningful to sum the number of employees over
time to get the total number of employees, as most em-
ployees will be counted more than once. However, the
average number of employees over time is meaningful.
Calculating the sum of purchases over time is not a prob-
lem, since the same purchase will not be repeated. The
two cases are examples of the stock and flow types of
data [Lenz et al., 1997, Lehner, 1998], respectively.

To ensure correct aggregation of data we keep track
of which aggregate functions can meaningfully be applied
to measures for each dimension. We do this by associat-
ing an aggregation type to each combination of a mea-
sure and a dimension, thereby allowing us to prohibit
or warn the user against illegal aggregations. Follow-
ing previous work [Lehner, 1998, Pedersen et al., 1999a,
Rafanelli et al., 1983], we distinguish between three types
of data: Ï , data that may not be aggregated because sum-
marizability is not preserved, Ð , data that may be aver-
aged but not added, and Ñ , data that may also be added.
Thus, we have the following ordering of these types: Ï<ÒÐÓÒ¼Ñ . Considering only the standard SQL functions,
we have that Ñ � �

SUM, AVG, MAX, MIN, COUNT & ,Ð � �
AVG, MAX, MIN, COUNT & , and Ï �®Ô . A func-

tion AggType 4 � £`�0��"#"�"��£�¤T&OKÕ�¶67 � Ñ��Ð���Ï!& returns
the aggregation type of a measure £ * when aggregated in
a dimension ��� , � . Thus, any changes to an aggrega-
tion type apply to all levels in a dimension. Aggregation
types are used both to prohibit semantically incorrect ag-
gregation, and to prevent aggregation when irregular hi-
erarchies may lead to incorrect results. Summing up, the
use of aggregation types ensures that data will be correctly
aggregated as any “misuse” of data will be prohibited.

3.2 The SQL � Algebra

In this section we present an algebra over the SQL �
data model presented above. Two operators are defined:
a selection operator and a generalized projection opera-
tor, allowing the expression of standard OLAP queries.
The algebra can easily be extended with union, difference,
Cartesian product (or join), and rename operators to give
it the same power as relational algebra with aggregation
functions [Klug, 1982].

The selection operator Öl×MØAÙPÚ is used to slice the cube
so that it contains only facts that satisfy a given predicate.
The predicates we consider here are constructed from the
usual SQL operators, and allows the use of roll-up func-
tions on the form �	Q��;�	� which returns the dimension val-
ues in ��Q that contain each dimension value in � . As de-
scribed above we allow non-strict and non-covering hier-
archies. This affects the semantics of the selection opera-
tor.

Example 3.4 Slice the purchase cube from Ex-
ample 3.2 so that only data for ECs not sup-
plied by ‘S2’ and manufactured by manufactur-
ers starting with ‘M32’ are retained in the cube:Ö ×MØAÙPÚ'Û Supplier ÜMÝ ‘S2’ AND Manufacturer(EC) LIKE ‘M32%’ Þ�P¸-hyo�¹º�|!»�n�»0� � ¸-hyo�¹º�|!»�n�» Q . V

A predicate may have more than one interpretation if
a dimension value can have more than one parent in the
same level, i.e. if the hierarchy is non-strict. This would
be the case when selecting ECs manufactured by manufac-
turers that start with “M32”. The predicate could be true
if all manufacturers that manufacture an EC begins with
“M32” or it could be true if any of them do so. We will re-
fer to these semantics as all semantics and any semantics,
respectively. Here we adopt the any semantics, since we
consider this the more natural choice for users and since it
is also the one used in the XPath standard [W3C, 1999].

The second problem concerns the covering properties
of a hierarchy. In a hierarchy that is non-covering some
dimension values may not have a parent value in its parent
level. For example, some ECs may not be manufactured
by any manufacturers and thus, the manufacturer level is
skipped. Using the all semantics would then result in the
above predicate being (trivially) satisfied, since all man-
ufacturers in the (empty) set begins with “M32”. This
is most likely not what a user would expect and a spe-
cial handling of the empty case will be necessary. How-
ever, adopting the any interpretation leads to a more nat-
ural meaning, since the predicate is not satisfied for any
dimension value in the empty set.

A selection only affects the tuples in the fact table.
Hence selection returns a cube with the same fact type and
the same set of dimensions. All tuples for which the pred-
icate holds are left unaffected, while those for which the
predicate does not hold the measures are set to NULL.

Example 3.5 The fact table resulting from the query in
Example 3.4 is:

Cost No. Of Units Day Supplier EC
9480 3000 02/22/2000 S3 EC2345

14400 4000 02/22/2000 S2 EC1235
17650 5000 03/23/2001 S2 EC1235 ß

Formally, we define the selection operator as follows:

Definition 3.6 (Selection operator) Let g be a predi-
cate over the set of levels

� �Í�0��"#"�"��'�	$D& and measures£ � �#"�"�"#�'£ ¤ . Selection on a cube � � �;�������' T�
is Ö ×MØAÙPÚ'Û à Þ ���t� � ����Q;���HQ;�� tQR� , where �XQ � � ,�HQ � � and tQ � �#á Q � ��"�"#"�� á Q> & . If

á � ���.A¥�¦A��"�"#"���.A¥M§~��/D�!�#"�"#"���/a¤(� , thená Q� �¾â á � if g�� á ��� � á}á��.A¥�¦0�#"�"#"���.A¥M§i� NULL �#"�"#"�� NULL � otherwise. V
The generalized projection operator ã)×�Ø!ÙPÚ aggregates

measures to a given level and removes dimensions and
measures from a cube, similarly to the behavior of a
SELECT statement with a GROUP BY clause in SQL.

Example 3.6 Calculate the costs per class and supplier
using the default aggregate function: ¸ähyo�¹'º�|!»�n�»!Q �ã ×MØAÙPÚ'Û å5Ø�à'à�>@�RÚ}æ�ç ×�>%è�é�é ÞRÜ DEFAULT ê ×Lë�é}ìUí Ý �P¸-hyo�¹º�|!»�n�»0� V

Generalized projection is evaluated in three steps:
First, we remove all dimensions that are not present in the
arguments, and then each dimension value is rolled up to
the specified level. Finally, we perform a regular group-
ing in the fact table removing all measures not specified
in the arguments. Rolling up to a higher level may result
in duplicated facts if the hierarchy is non-strict, while a
non-covering hierarchy may result in losing facts.

Example 3.7 The î(fi_AÏ�ïiYy30.!3!Q cube resulting from the
query in Example 3.6 is seen in Figure 4: V

Cost Supplier Class
2940 S1 FF
6900 S3 FF
9480 S3 L
32050 S2 FF

Class

EC

T

Supplier

State

Country

T

Supplier

T

EC

FF

T

Supplier

US UK

S1 S2 S3

CA NVL

Figure 4: Facts and Dimensions For the î(fl_!Ï#ï�Yy30.A3!Q Cube

Intuitively, the levels specified as an argument to the
operator becomes the new bottom levels of their dimen-
sions and all other dimensions are aggregated to the top
level and removed. Each new measure value is calcu-
lated by applying the default aggregate function on the
corresponding value for all tuples in the fact table contain-
ing old bottom values that roll up to the new bottom val-
ues. To ensure safe aggregation in case of non-covering
or non-strict hierarchies, we explicitly check for this in
each dimension. If a roll-up along some dimension results
in missing facts (non-covering) or duplicated facts (non-
strict), we disallow further aggregation along that dimen-
sion by setting the aggregation type to Ï .

Formally, we define:

Definition 3.7 (Generalized projection) Let� � �;�������' T� be a cube as defined above.
Then generalized projection is defined as:ã ×MØAÙPÚ'Û ð
 ¦ ç+ñ+ñ+ñ ç ð
óò ÞRÜ~ô ? ¦!ê � ? ¦ íPç+ñ+ñ+ñ ç ô ?Uõ ê � ? õ í Ý �;�t� � ����Q;���HQ;� tQR� , where

�0ö � ¦!�#"�"#"�� ö � ò & is a set of levels spec-
ifying the aggregation level such that at most one
level from each dimension occurs. The measures� £ * ¦0�#"�"#"��'£ * õ &�ª � £ � ��"#"�"��£ ¤ & are kept in the cube
and µ0*�¦0�#"�"�"#�'µ#* õ are the default aggregate functions for
the specified measures.

The resulting cube is given by: �ÕQ � � and �HQ �� �HQ� ¦ �#"�"�"����HQ� ò & , where �HQ�R÷ � ���	Q�
 ÷ �'�TQ�
 ÷ � for ï �¯D��"�"#"��'ø . The new poset of levels in the remaining dimen-
sions is �	Q��
 ÷ � ����� Q�R÷ �#��Q�%÷ ��)�R÷�� ö �R÷5� , where ��� Q�R÷ �� � �R÷àO, �L� �R÷ S ö �%÷ � �%÷ � �R÷sà & , and ��Q� ÷ � � �R÷Eù ú �}û
 ÷ . More-

over, �<Q��
 ÷ � ��C à � � ÷ à ��� �
 ÷ ù ü�ýlþ
 ÷ ý � .
The new fact table is given by: TQ �� ��.!Q¥�
 ¦ ��"�"#"���.!Q¥M
óò ��/1Q*�¦ �#"�"�"���/1Q* õ �#S�.!Q¥�
%ÿ , ö � ÿ � /0*}÷ �µ *�÷ � � /�SM�;. ¥ ¦!�#"�"�"���. ¥ §l��/y� , £ *}÷ � ��.!Q¥�
 ¦ ��"#"�"��'.!Q¥�
óò � ,

Roll-up ¥
 ¦ ��.A¥M
 ¦ � ö � ¦��äK ¨�¨#¨ K Roll-up ¥
óò ��.A¥M
óòl� ö � ò �&!�s& .
Furthermore, if Ê ��. ¥ ¦0�#"�"#"���. ¥ §i��/ * � , £ * ÷i� Ê . ,� . ¥ ¦#��"#"�"��'. ¥ §i&5� · Roll-up ¥
%ÿ �;.D� ö � ÿ � · c� ¯ � / * c� NULL ���

then �Í½5½5¬�Z!gl.5��£Õ*�÷1���HQ� ÿ � � Ï . V
To summarize this section, we have defined two alge-

braic operators:

� The selection operator.
� The generalized projections operator.

4 The SQL � Query Language

We now describe the SQL � query language and its rela-
tionship with standard SQL.

4.1 Query Language

The SQL � language is based on a subset of SQL, ex-
tended with several carefully chosen extension to support
powerful OLAP querying. SQL is chosen as the base lan-
guage for its simplicity and wide-spread use. We illustrate
the considered syntax with an example. The full syntax is
given in Appendix A.

Example 4.1 Calculate costs by class and supplier but
only for suppliers located in UK and only when the total
cost exceeds 10000:

SELECT DEFAULT(Cost), Supplier, Class(EC)
FROM Purchases
WHERE Country(Supplier) = ‘UK’
GROUP BY Supplier, Class(EC)
HAVING DEFAULT(Cost)

Î
10000 V

A query is constructed from SQL’s SELECT-FROM-
WHERE-GROUP BY-HAVING statement, with a few mod-
ifications to the standard language to capture the special
OLAP concepts. Aggregation from a bottom level � to a
higher level �	Q in the same dimension is performed using
a roll-up function �	Q����-� in the SELECT and GROUP BY
clauses. Like [Agrawal et al., 1997], we assume these
functions to be partial and multi-valued although this
is not possible in standard SQL [Eisenberg et al., 1999].
This is necessary because we allow hierarchies to be non-
covering and non-strict, e.g. ECs may have more than
one manufacturer. Roll-up functions can also be used in
the WHERE and HAVING clauses. Since the dimension to
which the levels belong is not given in the syntax, we as-
sume level names to be unique. This can be handled by
pre-fixing level names with dimension names. As a short-
hand, we allow the argument of the roll-up function to be
omitted if ��Q � � , that is when no roll-up should be per-
formed in that particular dimension.

For compatibility with SQL, we allow (but do not re-
quire) the level names being rolled up to as column aliases
in the SELECT clause, i.e., “SELECT Class(EC) Class,...”.
Similarly, we allow (but do not require) a measure name as
column alias for a column that specify an aggregate com-
putation on that measure. Note that renaming to other
names is not allowed and that the renaming has no ef-
fect. The roll-up functions allow a much more compact
syntax than with the standard (star schema based) form
of OLAP queries [Kimball, 1996], where the dimension
tables have to be included in the FROM clause and ex-
plicitly joined to the fact table, resulting in queries that
are both 2–3 times longer as well as harder to pose and
understand for users. Thus, the SQL � query language is
significantly more powerful for expressing OLAP queries
than standard SQL.

Since we do not allow standard relational projection on
cubes, the GROUP BY clause is mandatory. Each dimen-
sion must either be explicitly rolled up to some level or not
mentioned at all. The latter indicates that the dimension
should be rolled up to the top level and projected away
as is the case in standard SQL. However, if only measures
are to be removed from the cube, that is if all bottom levels
are present in the SELECT clause, and no HAVING clause
is present, the GROUP BY clause can be omitted.

The existing aggregate functions are complemented
with a new function called DEFAULT to support automatic
aggregation. When applied to a measure £�* “DEFAULT”
is substituted with the default aggregate function µ * , e.g.,
if µ Cost � SUM then DEFAULT(Cost) becomes SUM(Cost).
In this way a user need not be concerned with the aggre-
gate functions once they are specified in the system.

Without loss of generality we do not allow several
cubes in the FROM clause and we do not consider calcu-
lated measures, as these cases may be handled by creating
a standard SQL view over one or more cubes. We do allow
uncorrelated nested queries in the FROM clause.

The semantics of an SQL � query can now be ex-
pressed in terms of the cube algebra defined above: First,
the selection operator is applied with the predicate from
the WHERE clause, then generalized projection with the
levels and measures listed in the SELECT and GROUP BY
clauses, and finally a new selection is performed with the
HAVING predicate.

Example 4.2 The query in Example 4.1 is evaluated as
follows:�(Q = Ö ×MØAÙPÚ'Û DEFAULT ê Cost í Ý ����ñ ����� Þ �ã ×�ØAÙ�ÚÛ Supplier ç ClassÞRÜ DEFAULT ê Cost í Ý�;Ö ×MØAÙPÚ'Û Country ê Supplier í�� ’UK’ Þ � Purchases ����� V

Formally, we define the semantics of an SQL � query
as follows:

Definition 4.1 (Semantics of an SQL � query) Let �
be a cube,

� �ä�0�#"�"�"#���-$D& , and
� �	Q� �#"�"#"����	Q$ & be a set of

levels from a subset of dimensions in � where �-�-������Q� ,� £ � ��"#"�"��£ > & be a set of measures from � , gi_!.��
	�� Ú}æÚ
be a predicate over the levels and measures in � , andgi_!.��
� è�s� ¡�� be a predicate over levels �	Q� ��"#"�"��'��Q$, and
measures £´�A��"�"#"��£�> .

The SQL � query

SELECT DEFAULT �;£`������"�"#"�� DEFAULT �;£�>��s���Q� ���-���s�#"�"�"#���	Q$ ���	$E�
FROM �
WHERE g�_A.�� 	�� Ú�æ'Ú
GROUP BY ��Q� ��� � �s�#"�"�"#���	Q$ ��� $ �
HAVING g�_A.�� � è�s� ¡��

is evaluated as:�(Q � Ö ×�Ø!ÙPÚ'Û à�æÚ��s÷����
ó§ ÿ Þ�;ã ×MØAÙPÚ'Û I û ¦ ç+ñ+ñ+ñ ç I û ò ÞRÜ~ô ¦ ê � ¦ í}ç+ñ+ñ+ñ ç ô õ ê � õ í Ý��Ö ×MØAÙPÚ'Û à�æÚ����1÷������ Þ ���t�����s�
where µA� is the default aggregate function for measure £´� .V
4.2 SQL Compatibility

We now proceed to define how the SQL � query language
is compatible with SQL. Compatibility is important as it
allows users to leverage their knowledge of, in this case,
SQL to understand and use the new language in a better
way. Intuitively, a language � � is compatible with another
language �	W (in this case SQL � and SQL, respectively)
if a query � gives the same result when evaluated as an�ä� and ��W query. Of course, this property only applies to
a common subset of the languages. We now proceed to
formalize this property.

Theorem 4.1 Let � � �;�������� T� be a cube. Let the
relational representation _ of � , _ ��� �;�t� be defined
as: � �;�t� � _ , where schema ��_a� � schema �; T� and_ � � ��.A¥�¦!��"�"#"���.A¥M§~��/D�!�#"�"#"���/a¤(� , HS Ê / , /D�A�#"�"#"���/a¤ 4/Õc� NULL & , i.e., � is mapped to a relation with the same
schema as the fact table, containing the non-empty cells
of the fact table as rows. Let � be a query of the form

SELECT µE�a�;£´����£`�!��"#"�"#�'µ!>���£�>���£�>}��	Q� ��� � ����Q� ��"�"#"��'��Q$ ��� $ �L��Q$
FROM �
WHERE g�_A.�� 	�� Ú}æ'Ú
GROUP BY �	Q� ���ä������"�"#"��'��Q$ ���-$a�
HAVING g�_A.�� � è�s� ¡��

where the µ * ’s are the default aggregation functions for the
measures £ * (not including DEFAULT) and the �	Q� roll-up
functions are total and single-valued. Then the following
holds:

� Û å � I Þ � � �;�t��� �!� �"� Û SQL #-Þ �;�t���s�
where the $ e%�T�'& and $SQL � & subscripts indicate the se-
mantics used for evaluation. V
Proof sketch: By inspecting the semantics of each side of
the equation, we see that the theorem holds, because the
roll-up functions are total and single-valued. This means
that the result of evaluating the aggregation in SQL (note
that such functions can appear in the GROUP BY clause
in SQL-99) on the relational representation of � is the
same as when evaluating the aggregation in SQL � and
converting to relations afterwards. Note that as we have
no duplicates in the starting relations and do not introduce
duplicates, the result is the same whether SQL (duplicates-
allowed) or relational (duplicates-disallowed) semantics
are used. The statement is constructed such that the re-
sult columns have the appropriate names from the cube
even when evaluated with SQL semantics. The renaming
ensures that the column names of the resulting relations
are the same. In SQL � , the renaming may be omitted to
make the query more compact, one example of the addi-
tional power of SQL � for OLAP queries.

We have now seen that SQL-99 and SQL � are com-
patible within a common subset, meaning that users can
leverage their knowledge of SQL when posing SQL �
queries and that existing applications can query SQL �
databases using (a subset of) SQL-99, ensuring integra-
tion with legacy system. We have also seen how SQL �
extends SQL-99 by adding powerful new features for
handling irregular dimension hierarchies, aggregation se-
mantics, and automatic aggregation (via the DEFAULT
clause). However, the extension is done gracefully, so
that existing SQL functionality keep its meaning, ensur-
ing compatibility.

5 Advanced Uses: Integrating XML Data

In this section we describe an advanced application of the
SQL � data model and query language, namely the in-
tegrated use of XML data in SQL � queries. This trig-
gers advanced requirements for the underlying data model
and query language, e.g., support for non-strict hierar-
chies and ensuring correct aggregation. This paper fo-
cuses on the challenges posed to the data model by the
integration of external XML data, the details of the ac-
tual XML integration approach can be found in another
paper [Pedersen et al., 2001a].

The integration is based on the use of
XPath [W3C, 1999] expressions in the SQL � queries.
XPath is a language that provides powerful navi-
gation in XML documents using a very compact
syntax. As an example, the XPath expression //Com-
ponent/Manufacturer[@MCode=”M31”] selects the
all components from the XML document in the case
study where the MCode attribute has the value “M31.”
The fundamental mechanism is the link that specifies
a relation between a set of dimension values in a cube
and a set of nodes in an XML document, e.g., the link
“EC_link” links the “EC” level in the OLAP cube with
“Component” elements in the XML document in the
case study. Links are used together with OLAP levels
and XPath expression in the so-called level expressions
in the extended SQL � query language. For example,
the level expression “EC/EC_link/Description” gives
the associated descriptions for the ECs in the EC level
of the cube. Each level can have a default link, so that
the link need not be mentioned in the level expression,

meaning that the above expression can be simplified to
“EC/Description” if “EC_link” was the default link for
the “EC” level. A SQL � cube and a set of links and the
associated XML documents is called a federation.

We now proceed to describe the three extensions of
the SQL � language, namely decoration with XML data,
grouping by XML data, and performing selections based
on XML data.

It is often useful to provide supplementary informa-
tion for one or more levels in the result of an OLAP
query. This is commonly referred to as decorating the re-
sult [Gray et al., 1997]. For example, products could be
decorated with a competitor’s prices for the same prod-
ucts, employees with their addresses, or suppliers with
their contact person. Such information will often be avail-
able to the relevant people as Web pages on the Internet,
an intranet, or an extranet. Also, this kind of information
will most likely not be stored in an OLAP database be-
cause it either changes too frequently, was not expected to
be used, is owned by someone else, or for some other rea-
son. The solution presented next is to allow OLAP queries
to reference external XML data using level expressions in
the SELECT clause.

Example 5.1 Consider the result “AllTimePurchases” of
the query in Example 3.6. Given the federation consisting
of this result, the Components document, and the links
defined above, the following query decorates all suppliers
with their name from the Components document.

SELECT Cost, Supplier, Supplier/SName, Class(EC)
FROM AllTimePurchases V

There are two important problems with the use of level
expressions for decoration which are related to the prob-
lems with non-strict and non-covering hierarchies as dis-
cussed earlier. First, a dimension value may be associated
with more than one node, i.e. when the level expression
has a “to-many” cardinality, introducing a non-strict hier-
archy. Second, some dimension values may not be asso-
ciated with any nodes at all, in which case a non-covering
hierarchy will occur.

In general, three semantics are possible for decoration:

ANY: Use an arbitrary node. This is useful when summa-
rizability should be preserved and no node is more
important than another, as might be the case e.g.
when decorating suppliers with a contact person.

CONCAT: Use the concatenation of string values for all
different nodes. Useful when summarizability should
be preserved and all nodes are needed, e.g. when dec-
orating products with text descriptions.

ALL: Use all different nodes, possibly duplicating facts.
Useful when the decoration is used for selection and,
in some cases, grouping.

The user specifies the semantics of a decoration by
giving a semantic modifier in the level expression as in
EC[ANY]/EC_Link/Description If no semantic modifier
is specified ANY semantics are assumed as the default.
Notice that, if the cardinality of the level expression is “to-
one” then decoration with the three semantics will produce
the same result.

Intuitively, only two things are changed when decorat-
ing a cube: A new dimension is added and the fact table is
updated to reflect this. The new dimension contains only
the decoration level and the top level. The new dimension
values in the decoration level are created from an arbitrar-
ily chosen node found by following the link from the start-
ing level and then applying the XPath expression. If one
or more values in the starting level does not produce any
decoration values the special N/A value is used instead.
The new fact table is created from the Cartesian product
of the dimension values from the old fact table and the

new decoration values. Measure values are replaced with
NULL values such that no facts are duplicated.

Allowing level expressions in the GROUP BY clause
makes it possible to group by data from XML documents,
without having to physically store this data in the OLAP
database. For example, product prices will often be avail-
able from a supplier’s Web page or an e-marketplace.
These up-to-date prices can then be used to group prod-
ucts in an OLAP product database without having to store
the prices.

Example 5.2 The following query groups ECs after their
text descriptions from the Components document.

SELECT DEFAULT(Cost), EC[ALL]/Description
FROM PurchasesFederation
GROUP BY EC[ALL]/Description V
GROUP BY queries with level expressions are evaluated

in two steps. First, the cube is decorated as described in
the previous section. Second, aggregation is performed by
using the already defined generalized projection ã ×MØAÙPÚ on
the new cube.

When decorating the cube, the new decoration dimen-
sion may be non-strict if ALL semantics are used and a
bottom value is decorated by more than one decoration
value. This is another reason for allowing non-strictness
in a cube and for handling it in the generalized projec-
tion operator as defined in Definition 3.7. Consequently,
if non-strictness occurs because of the decoration and if
aggregation results in duplicate facts, this is handled by
setting the aggregation type to Ï , preventing further aggre-
gation. Only a sufficiently advanced OLAP data model
can handle this.

XML data can also be used to perform selection over
cubes. This makes it possible e.g. to view only products
where a certain supplier is cheaper than another supplier
by referring to their Web pages. The idea adopted here is
to allow level expressions in WHERE and HAVING predi-
cates in places where levels can already be used. For ex-
ample, level expressions can be compared to constants,
levels, measures, or other level expressions.

Example 5.3 Show component costs by supplier and EC
but only those available for less than 3.00 euro.

SELECT DEFAULT(Cost), Supplier, EC
FROM PurchasesFederation
WHERE EC/UnitPrice[@Currency=’euro’] < 3.00
GROUP BY Supplier, EC V

As discussed earlier, selection semantics are also af-
fected by the cardinality and covering properties of level
expressions. As for selection over cubes, we handle this
by using any semantics.

Selection over federations is evaluated by first decorat-
ing with all the level expressions mentioned in the predi-
cate. The resulting federation is then sliced using the se-
lection operator, and finally, the new decoration dimen-
sions are removed again. The selection operator simply
applies the cube selection operator to the cube part of the
federation since the link and XML parts should not be af-
fected by selection. ALL semantics are used for the dec-
orations to make sure that all decoration values are avail-
able. This is important since any selection semantics are
used in predicates, and thus, a predicate may be satisfied
by any of the decoration values.

This section provided another set of examples of the
need for an advanced OLAP data model that can handle
non-strict and non-covering hierarchies, as well as sup-
porting correct aggregation of data by keeping track of
the summarizability of the data. Thus, a practical justi-
fication of the need for a powerful OLAP data model was
provided.

6 Conclusion

Motivated by the increasing use of OLAP systems in com-
plex domains, and the resulting need for an OLAP data
model and query language that handles advanced features
such as irregular dimension hierarchies and support for
correct aggregation, while still allowing integration with
legacy relational data, we presented the the “Multidimen-
sional SQL” (SQL �) data model, formal algebra, and
high-level query language.

The data model, algebra, and query language are both
powerful, meaning that they handled irregular hierarchies,
automatic aggregation, and support for correct aggrega-
tion, and SQL-compatible, allowing seamless integration
with legacy data sources. Irregular dimension hierarchies
are handled using powerful dimension hierarchies based
on partial orders, while support for correct aggregation is
based on aggregation types that keep track of what data
can/cannot be aggregated further without giving wrong re-
sults. The model, algebra, and language are designed such
that compatibility with relational systems is ensured. The
paper also considered the requirements to the data model
posed by the problem of allowing integration with exter-
nal XML data. The concepts were illustrated with a real-
world case study from the B2B domain.

We believe this paper to be the first to present an OLAP
data model, algebra, and query language that are both
powerful and SQL-compatible. We also believe to be the
first to consider the data model requirements posed by the
integration of OLAP and XML data.

In future work, two research directions are promising.
On the theoretical side, a full set of operators should be de-
veloped, to give the algebra the same power as relational
algebra. In this context, it is interesting to develop alge-
braic transformation rules that can be used for query op-
timization. Additionally, it would be desirable to obtain
a notion of completeness for multidimensional algebras,
similar to Codd’s relational completeness. On the prac-
tical side, efficient implementation of the model must be
considered, e.g., by investigating how standard OLAP per-
formance techniques such as pre-aggregation can be ap-
plied. Pre-aggregation for irregular hierarchies is a hard
problem and it should be investigated how previous work
in this area [Pedersen et al., 1999b] can be used.

References

[Agrawal et al., 1997] R. Agrawal, A. Gupta, and
S. Sarawagi. Modeling Multidimensional Databases.
In Proceedings of the Thirteenth International Confer-
ence on Data Engineering, pp. 232–243, 1997.

[Cabibbo et al., 1997] L. Cabibbo and R. Torlone. Query-
ing Multidimensional Databases. In Proceedings of the
Sixth International Conference on Database Program-
ming Languages, pp. 319–335, 1997.

[Codd, 1993] E. F. Codd. Providing OLAP (on-line an-
alytical processing) to user-analysts: An IT mandate.
Technical report, E.F. Codd and Associates, 1993.

[ECIX, 2000] ECIX Council. www.si2.org/ecix/,
2000. Current as of July 24, 2001.

[Eisenberg et al., 1999] A. Eisenberg and J. Melton.
SQL: 1999, formerly known as SQL 3. SIGMOD
Record 28(1):131–138, 1999.

[Gray et al., 1997] J. Gray, S. Chaudhuri, A. Bosworth,
A. Layman, D. Reichart, M. Venkatrao, F. Pellow,
and H. Pirahesh. Data Cube: A Relational Aggrega-
tion Operator Generalizing Group-By, Cross-Tab and
Sub-Totals. Data Mining and Knowledge Discovery,
1(1):29–54, 1997.

[Gupta et al., 1995] A. Gupta, V. Harinarayan, and
D. Quass. Aggregate-Query Processing in Data Ware-
housing Environments. In Proceedings of 21th Interna-
tional Conference on Very Large Data Bases, pp. 358–
369, 1995.

[Gyssens et al., 1997] M. Gyssens and L. V. S. Lak-
shmanan. A Foundation for Multi-Dimensional
Databases. In Proceedings of the Twentythird Interna-
tional Conference on Very Large Databases, pp. 106–
115, 1997.

[Jagadish et al., 1999] H. V. Jagadish, L. V. S. Laksh-
manan, and D. Srivastava. What Can Hierarchies Do
for Data Warehouses? In Proceedings of the Twentyfifth
International Conference on Very Large Data Bases,
pp. 530–541, 1999.

[Kimball, 1996] R. Kimball. The Data Warehouse
Toolkit. Wiley, 1996.

[Klug, 1982] A. Klug. Equivalence of Relational Algebra
and Relational Calculus Query Languages Having Ag-
gregate Functions. Journal of the ACM, 29(3):699–717,
1982.

[Lehner, 1998] W. Lehner. Modeling Large Scale OLAP
Scenarios. In Proceedings of the Sixth Interna-
tional Conference on Extending Database Technology,
pp. 153–167, 1998.

[Lenz et al., 1997] H.-J. Lenz and A. Shoshani. Summa-
rizability in OLAP and Statistical Databases. In Pro-
ceedings of the Ninth International Conference on Sci-
entific and Statistical Databases, pp. 39–48, 1997.

[Li et al., 1996] C. Li and X. S. Wang. A Data Model
for Supporting On-Line Analytical Processing. In Pro-
ceedings of the Fifth International Conference on Infor-
mation and Knowledge Management, pp. 81–88, 1996.

[NHS, 1999] National Health Service (NHS). Read
Codes version 3. NHS, September 1999.

[Pedersen et al., 2001a] D. Pedersen, K. Riis, and
T. B. Pedersen. XML-Extended OLAP Querying.
Submitted for publication, 25 pages, 2001.

[Pedersen et al., 1999a] T. B. Pedersen and C. S. Jensen.
Multidimensional Data Modeling for Complex Data. In
Proceedings of the Fifteenth International Conference
on Data Engineering, pp. 336–345, 1999.

[Pedersen et al., 1999b] T. B. Pedersen, C. S. Jensen, and
C. E. Dyreson. Extending Practical Pre-Aggregation in
On-Line Analytical Processing. In Proceedings of 25th
International Conference on Very Large Data Bases,
pp. 663–674, 1999.

[Pedersen et al., 2001b] T. B. Pedersen, C. S. Jensen, and
C. E. Dyreson. A Foundation For Capturing And
Querying Complex Multidimensional Data. Informa-
tion Systems 26(5):383–423, 2001.

[Rafanelli et al., 1983] M. Rafanelli and F. Ricci. Pro-
posal of a Logical Model for Statistical Databases. In
Proceedings of the Second International Workshop on
Statistical and Scientific Database Management, 1983.

[Rafanelli et al., 1990] M. Rafanelli and A. Shoshani.
STORM: A Statistical Object Representation Model. In
Proceedings of the Fifth Conference on Statistical and
Scientific Database Management, pp. 14–29, 1990.

[Shoshani, 1997] A. Shoshani. OLAP and Statistical
Databases: Similarities and Differences. In Proceed-
ings of Sixteenth ACM Symposium on Principles of
Database Systems , pp. 185–196, 1997.

[Thomsen, 1997] E. Thomsen. OLAP Solutions: Build-
ing Multidimensional Information Systems. John Wiley
& Sons, 1997.

[Thomsen, 1999] E. Thomsen, G. Spofford, and
D. Chase. Microsoft OLAP Solutions. Wiley,
1999.

[Vassiliadis, 1998] P. Vassiliadis. Modeling Multidimen-
sional Databases, Cubes, and Cube Operations. In Pro-
ceedings of the Tenth International Conference on Sta-
tistical and Scientific Database Management, pp. 53–
62, 1998.

[W3C, 1999] W3C. Xml path language (xpath) version
1.0. www.w3.org/TR/xpath, November 1999.
Current as of July 24, 2001.

[W3C, 2000a] W3C. Extensible markup language (xml)
1.0 (second edition). www.w3.org/TR/REC-xml,
October 2000. Current as of July 24, 2001.

[Yahoo, 2001] Yahoo! Corporation.� www.yahoo.com
Î

. Current as of July 24, 2001.

[Zurek et al., 1999] T. Zurek and M. Sinnwell. Data
Warehousing Has More Colours Than Just Black and
White. In Proceedings of the Twentyfifth International
Conference on Very Large Data Bases, pp. 726–729,
1999.

A Syntax

The SQL � language is given by the following syntax:

� query
Î

::= SELECT � select list
Î

FROM Cube SD� query
Î

[WHERE � where predicate
Î

]
[GROUP BY � group by list

Î
[HAVING � having predicate

Î
]]� select list

Î
::= � select name

ÎS � select list
Î

, � select name
Î� select name

Î
::= � level name

ÎS � aggregate function
Î

(Measure) [� column alias
Î

]� aggregate function
Î

::= DEFAULT S COUNT S SUM S MIN S MAX S AVG� where predicate
Î

::= NOT(� where predicate
Î

)S � where predicate
Î

AND S OR � where predicate
ÎS (� where predicate

Î
)S � where expression

Î� where expression
Î

::= � where name
Î � predicate operator

Î � where name
ÎS � where name

Î � predicate operator
Î � value

ÎS � where name
Î

IN (� value list
Î

)S � where name
Î

LIKE ‘String’� where name
Î

::= � level name
ÎS Measure� group by list

Î
::= � group by name

ÎS � group by name
Î

, � group by list
Î� group by name

Î
::= � level name

Î� having predicate
Î

::= NOT(� having predicate
Î

)S � having predicate
Î

AND S OR � having predicate
ÎS (� having predicate

Î
)S � having expression

Î� having expression
Î

::= � having name
Î � predicate operator

Î � having name
ÎS � having name

Î � predicate operator
Î � value

ÎS � having name
Î

IN (� value list
Î

)S � having name
Î

LIKE ‘String’� having name
Î

::= � select name
Î� level name

Î
::= LevelS Level(Level) [� column alias

Î
]� column alias

Î
::= String� predicate operator

Î
::= � Î S = S Î S Î

= SE�dSD� =� value
Î

::= ‘String’ S Real S Integer� value list
Î

::= � value
ÎS � value
Î

, � value list
Î

