Torben Bach Pedersen

Torben Bach Pedersen
Aalborg University · Department of Computer Science

PhD

About

388
Publications
73,055
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,606
Citations

Publications

Publications (388)
Article
Big time series are increasingly available from an ever wider range of IoT-enabled sensors deployed in various environments. Significant insights can be gained by mining temporal patterns from these time series. Temporal pattern mining (TPM) extends traditional pattern mining by adding event time intervals into extracted patterns, making them more...
Article
The dynamic gas flow model with static electric-driven compressor (EDC) model has been widely studied in coordinated analysis of integrated electricity-gas system (IEGS). However, as a crucial coupling unit, the boost characteristics of the EDC change dynamically with gas state, which may lead to unstable operation mode and then affect safe operati...
Preprint
Full-text available
Emerging digital twin technology has the potential to revolutionize voltage control in power systems. However, the state-of-the-art digital twin method suffers from low computational and sampling efficiency, which hinders its applications. To address this issue, we propose a Gumbel-Consistency Digital Twin (GC-DT) method that enhances voltage contr...
Preprint
Multiple visions of 6G networks elicit Artificial Intelligence (AI) as a central, native element. When 6G systems are deployed at a large scale, end-to-end AI-based solutions will necessarily have to encompass both the radio and the fiber-optical domain. This paper introduces the Decentralized Multi-Party, Multi-Network AI (DMMAI) framework for int...
Article
The secure sharing of data is crucial for peer-to-peer energy trading. However, the vulnerability of Information and Communication Technology (ICT) infrastructures to cyberattacks, e.g., Denial of Service (DoS) attacks, poses a significant challenge. A possible solution is to use Digital Twin (DT) modeling of the physical system, which provides rob...
Chapter
The 27th European Conference on Advances in Databases and Information Systems (ADBIS) aims at providing a forum where researchers and practitioners in the fields of databases and information systems can interact, exchange ideas and disseminate their accomplishments and visions.
Article
Full-text available
With the widespread use of networked and geo-positioned mobile devices, e.g., smartphones, Spatial Crowdsourcing (SC), which refers to the assignment of location-based tasks to moving workers, is drawing increasing attention. One of the critical issues in SC is task assignment that allocates tasks to appropriate workers. We propose and study a nove...
Preprint
Full-text available
Big time series are increasingly available from an ever wider range of IoT-enabled sensors deployed in various environments. Significant insights can be gained by mining temporal patterns from these time series. Temporal pattern mining (TPM) extends traditional pattern mining by adding event time intervals into extracted patterns, making them more...
Chapter
Full-text available
To ensure critical infrastructure is operating as expected, high-quality sensors are increasingly installed. However, due to the enormous amounts of high-frequency time series they produce, it is impossible or infeasible to transfer or even store these time series in the cloud when using state-of-the-practice compression methods. Thus, simple aggre...
Article
Buildings are the largest energy consumers in Europe and are responsible for approximately 40% of EU energy consumption and 36% of the greenhouse gas emissions in Europe. Two-thirds of the building consumption is for residential buildings. To achieve energy efficiency, buildings are being integrated with IoT devices through the use of smart IoT ser...
Preprint
The continued digitization of societal processes translates into a proliferation of time series data that cover applications such as fraud detection, intrusion detection, and energy management, where anomaly detection is often essential to enable reliability and safety. Many recent studies target anomaly detection for time series data. Indeed, area...
Chapter
According to the 2021 energy efficiency report of the European Union (EU), 75% of the existing buildings in the EU have been assessed as energy-inefficient. Internet of Things (IoT) services are developed to increase energy efficiency in buildings. The W3C recommends the use of the W3C Web of Things (WoT) standard to enable IoT interoperability on...
Preprint
Full-text available
Very large time series are increasingly available from an ever wider range of IoT-enabled sensors, from which significant insights can be obtained through mining temporal patterns from them. A useful type of patterns found in many real-world applications exhibits periodic occurrences, and is thus called seasonal temporal pattern (STP). Compared to...
Preprint
Full-text available
The wide deployment of IoT sensors has enabled the collection of very big time series across different domains, from which advanced analytics can be performed to find unknown relationships, most importantly the correlations between them. However, current approaches for correlation search on time series are limited to only a single temporal scale an...
Article
Full-text available
RDF triplestores’ ability to store and query knowledge bases augmented with semantic annotations has attracted the attention of both research and industry. A multitude of systems offer varying data representation and indexing schemes. However, as recently shown for designing data structures, many design choices are biased by outdated considerations...
Article
Very large time series are increasingly available from an ever wider range of IoT-enabled sensors deployed in different environments. Significant insights can be gained by mining temporal patterns from these time series. Unlike traditional pattern mining, temporal pattern mining (TPM) adds event time intervals into extracted patterns, making them m...
Article
Large amounts of spatial, textual, and temporal (STT) data are being produced daily. This is data containing an unstructured component (text), a spatial component (geographic position), and a time component (timestamp). Therefore, there is a need for a powerful and general way of analyzing STT data together. In this paper, we define and formalize t...
Article
In Spatial crowdsourcing, mobile users perform spatio-temporal tasks that involve travel to specified locations. Spatial crowdsourcing (SC) is enabled by SC platforms that support mobile worker recruitment and retention, as well as task assignment, which is essential to maximize profits that are accrued from serving task requests. Specifically, how...
Article
Full-text available
The popularity of the Semantic Web (SW) encourages organizations to organize and publish semantic data using the RDF model. This growth poses new requirements to Business Intelligence technologies to enable On-Line Analytical Processing (OLAP)-like analysis over semantic data. The incorporation of semantic data into a Data Warehouse (DW) is not sup...
Preprint
The widespread deployment of smartphones and location-enabled, networked in-vehicle devices renders it increasingly feasible to collect streaming trajectory data of moving objects. The continuous clustering of such data can enable a variety of real-time services, such as identifying representative paths or common moving trends among objects in real...
Chapter
Given a record of geo-tagged activities, how can we suggest groups, or cohorts of likely companions? A brute-force approach is to perform a spatio-temporal join over past activity traces to find groups of users recorded as moving together; yet such an approach is inherently unscalable. In this paper, we propose that we can identify and predict such...
Chapter
In the originally published version of chapter 3, there was an error in the affiliation and email address of the author Ove Andersen, as well as in reference 17. This has been corrected.
Chapter
Full-text available
Extract-Transform-Load (ETL) flows are used to extract data, transform it, and load it into data warehouses (DWs). The dominating ETL tools use graphical user interfaces (GUIs) where users must manually place steps/components on a canvas and manually connect them using lines. This provides an easy to understand overview of the ETL flow but can also...
Article
Full-text available
Tremendous increase in the use of the mobile devices equipped with the GPS and other location sensors has resulted in the generation of a huge amount of movement data. In recent years, mining this data to understand the collective mobility behavior of humans, animals and other objects has become popular. Numerous mobility patterns, or their mining...
Article
The deployment of vehicle location services generates increasingly massive vehicle trajectory data, which incurs high storage and transmission costs. A range of studies target offline compression to reduce the storage cost. However, to enable online services such as real-time traffic monitoring, it is attractive to also reduce transmission costs by...
Article
Full-text available
Large volumes of spatial data and multidimensional data are being published on the Semantic Web, which has led to new opportunities for advanced analysis, such as Spatial Online Analytical Processing (SOLAP). The RDF Data Cube (QB) and QB4OLAP vocabularies have been widely used for annotating and publishing statistical and multidimensional RDF data...
Preprint
The proliferation of advanced mobile terminals opened up a new crowdsourcing avenue, spatial crowdsourcing, to utilize the crowd potential to perform real-world tasks. In this work, we study a new type of spatial crowdsourcing, called time-continuous spatial crowdsourcing (TCSC in short). It supports broad applications for long-term continuous spat...
Preprint
Very large time series are increasingly available from an ever wider range of IoT-enabled sensors deployed in different environments. Significant insights can be obtained through mining temporal patterns from these time series. Unlike traditional pattern mining, temporal pattern mining (TPM) adds additional temporal aspect into extracted patterns,...
Article
Knowledge graphs (KGs) represent facts in the form of subject-predicate-object triples and are widely used to represent and share knowledge on the Web. Their ability to represent data in complex domains augmented with semantic annotations has attracted the attention of both research and industry. Yet, their widespread adoption in various domains an...
Preprint
The popularity of the Semantic Web (SW) encourages organizations to organize and publish semantic data using the RDF model. This growth poses new requirements to Business Intelligence (BI) technologies to enable On-Line Analytical Processing (OLAP)-like analysis over semantic data. The incorporation of semantic data into a Data Warehouse (DW) is no...
Article
Full-text available
Besides the traditional cartographic data sources, spatial information can also be derived from location-based sources. However, even though different location-based sources refer to the same physical world, each one has only partial coverage of the spatial entities, describe them with different attributes, and sometimes provide contradicting infor...
Conference Paper
Very large time series are increasingly available from an ever wider range of IoT-enabled sensors deployed in different environments. Significant insights and values can be obtained from these time series through performing cross-domain analyses, one of which is analyzing time delay temporal correlations across different datasets. Most existing wor...
Article
Massive volumes of uncertain trajectory data are being generated by GPS devices. Due to the limitations of GPS data, these trajectories are generally uncertain. This state of affairs renders it is attractive to be able to compress uncertain trajectories and to be able to query the trajectories efficiently without the need for (full) decompression....
Preprint
Large volumes of spatial data and multidimensional data are being published on the Semantic Web, which has led to new opportunities for advanced analysis, such as Spatial Online Analytical Processing (SOLAP). The RDF Data Cube (QB) and QB4OLAP vocabularies have been widely used for annotating and publishing statistical and multidimensional RDF data...
Preprint
Besides the traditional cartographic data sources, spatial information can also be derived from location-based sources. However, even though different location-based sources refer to the same physical world, each one has only partial coverage of the spatial entities, describe them with different attributes, and sometimes provide contradicting infor...
Conference Paper
OpenStreetMap (OSM) is a popular community-driven mapping platform with voluntary contributions from (amateur) cartographers. However, it is a difficult process for the cartographer to identify the areas where she can best contribute to OSM. Furthermore, the current OSM spatial entities are missing many tags; for example, top three road network tag...
Article
Full-text available
Location-based social networks (LBSN) are social networks complemented with location data such as geo-tagged activity data of its users. In this paper, we study how users of an LBSN are navigating between locations and based on this information we select the most influential locations. In contrast to existing works on influence maximization, we are...
Conference Paper
Geo-social data has been an attractive source for a variety of problems such as mining mobility patterns, link prediction, location recommendation, and influence maximization. However, new geo-social data is increasingly unavailable and suffers several limitations. In this paper, we aim to remedy the problem of effective data extraction from geo-so...
Conference Paper
Besides the traditional cartographic data sources, spatial information can also be derived from location-based sources. Location-based sources offer rich spatial information describing the semantics of locations. However, even though different location-based sources refer to the same physical world, each one has only partial coverage of the spatial...
Article
Full-text available
This paper provides a survey of the state-of-the-art and future directions of one of the most important emerging technologies within business analytics (BA), namely prescriptive analytics (PSA). BA focuses on data-driven decision-making and consists of three phases: descriptive, predictive, and prescriptive analytics. While descriptive and predicti...
Conference Paper
Accelerated local deployments of renewable energy sources and energy storage units, as well as increased overall flexibility in local demand and supply through active user involvement and smart energy solutions, open up new opportunities (e.g., self-sufficiency and CO2 neutrality through local renewables) and yet pose new challenges (e.g., how to m...
Preprint
Full-text available
Recent development in computing, sensing and crowd-sourced data have resulted in an explosion in the availability of quantitative information. The possibilities of analyzing this so-called Big Data to inform research and the decision-making process are virtually endless. In general, analyses have to be done across multiple data sets in order to bri...
Conference Paper
Due to the big amounts of sensor data produced, it is infeasible to store all of the data points collected and practitioners currently hide outliers by storing simple aggregates instead. As a remedy, we demonstrate \sys , a model-based \actsms for time series with dimensions and possibly gaps. In this demonstration, participants can ingest data set...
Article
With the increase of devices equipped with location sensors, mining spatio-temporal data for interesting behavioral patterns has gained attention in recent years. One of such well-known patterns is the convoy pattern which can be used, e.g., to find groups of people moving together in public transport or to prevent traffic jams. A convoy consists o...
Article
Full-text available
On-Line Analytical Processing (OLAP) enables powerful analytics by quickly computing aggregate values of numerical measures over multiple hierarchical dimensions for massive datasets. However, many types of source data, e.g., from GPS, sensors, and other measurement devices, are intrinsically inaccurate (imprecise and/or uncertain) and thus OLAP ca...
Article
Recent development in computing, sensing and crowd-sourced data have resulted in an explosion in the availability of quantitative information. The possibilities of analyzing this so-called "Big Data" to inform research and the decision-making process are virtually endless. In general, analyses have to be done across multiple data sets in order to b...
Preprint
To monitor critical infrastructure, high quality sensors sampled at a high frequency are increasingly installed. However, due to the big amounts of data produced, only simple aggregates are stored. This removes outliers and hides fluctuations that could indicate problems. As a solution we propose compressing time series with dimensions using a mode...
Article
Widespread use of advanced mobile devices has led to the emergence of a new class of crowdsourcing called spatial crowdsourcing. Spatial crowdsourcing advances the potential of a crowd to perform tasks related to real-world scenarios involving physical locations, which were not feasible with conventional crowdsourcing methods. The main feature of s...
Preprint
Geo-social data has been an attractive source for a variety of problems such as mining mobility patterns, link prediction, location recommendation, and influence maximization. However, new geo-social data is increasingly unavailable and suffers several limitations. In this paper, we aim to remedy the problem of effective data extraction from geo-so...
Chapter
The steadily-growing popularity of semantic data on the Web and the support for aggregation queries in SPARQL 1.1 have propelled the interest in Online Analytical Processing (OLAP) and data cubes in RDF. Query processing in such settings is challenging because SPARQL OLAP queries usually contain many triple patterns with grouping and aggregation. M...
Article
Full-text available
Agile software development allows us to continuously evolve and run a software system. However, this is not possible in databases, as established methods are very expensive, error-prone, and far from agile. We present InVerDa, a multi-schema-version database management system (MSVDB) for agile database development. MSVDBs realize co-existing schema...
Chapter
Extract-Transform-Load (ETL) processes are used for extracting data, transforming it and loading it into data warehouses (DWs). The dominating ETL tools use graphical user interfaces (GUIs) such that the developer “draws” the ETL flow by connecting steps/transformations with lines. This gives an easy overview, but can also be rather tedious and req...
Article
Industrial systems, e.g., wind turbines, generate big amounts of data from reliable sensors with high velocity. As it is unfeasible to store and query such big amounts of data, only simple aggregates are currently stored. However, aggregates remove fluctuations and outliers that can reveal underlying problems and limit the knowledge to be gained fr...
Conference Paper
Flexibility of small loads, in particular from Electric Vehicles (EVs), has recently attracted a lot of interest due to their possibility of participating in the energy market and the new commercial potentials. Different from existing work, the aggregation technique proposed in this paper produces flexible aggregated loads from EVs taking into acco...
Conference Paper
The uncertainty in the power supply due to fluctuating Renewable Energy Sources (RES) has severe (financial and other) implications for energy market players. In this paper, we present a device-level Demand Response (DR) scheme that captures the atomic (all available) flexibilities in energy demand and provides the largest possible solution space t...
Article
Business Intelligence (BI) systems are extensively used as in-house solutions to support decision-making in organizations. Next generation BI 2.0 systems claim for expanding the use of BI solutions to external data sources and assisting the user in conducting data analysis. In this context, the Analytical Metadata (AM) framework defines the metadat...
Preprint
Demand Response (DR) schemes are effective tools to maintain a dynamic balance in energy markets with higher integration of fluctuating renewable energy sources. DR schemes can be used to harness residential devices' flexibility and to utilize it to achieve social and financial objectives. However, existing DR schemes suffer from low user participa...
Preprint
Full-text available
Flexibility of small loads, in particular from Electric Vehicles (EVs), has recently attracted a lot of interest due to their possibility of participating in the energy market and the new commercial potentials. Different from existing work, the aggregation techniques proposed in this paper produce flexible aggregated loads from EVs taking into acco...
Preprint
Full-text available
The uncertainty in the power supply due to fluctuating Renewable Energy Sources (RES) has severe (financial and other) implications for energy market players. In this paper, we present a device-level Demand Response (DR) scheme that captures the atomic (all available) flexibilities in energy demand and provides the largest possible solution space t...
Conference Paper
Due to the popularity of social networks with geo-tagged activities, so-called location-based social networks (LBSN), a number of methods have been proposed for influence maximization for applications such as word-of-mouth marketing (WOMM), and out-of-home marketing (OOH). It is thus important to analyze and compare these different approaches. In t...
Article
Technologies such as RFID and Bluetooth have received considerable attention for tracking indoor moving objects. In a time-critical indoor tracking scenario such as airport baggage handling, a bag has to move through a sequence of locations until it is loaded into the aircraft. Inefficiency or inaccuracy at any step can make the bag risky, i.e., th...
Preprint
The collection of time series data increases as more monitoring and automation are being deployed. These deployments range in scale from an Internet of things (IoT) device located in a household to enormous distributed Cyber-Physical Systems (CPSs) producing large volumes of data at high velocity. To store and analyze these vast amounts of data, sp...
Article
Full-text available
The collection of time series data increases as more monitoring and automation are being deployed. These deployments range in scale from an Internet of things (IoT) device located in a household to enormous distributed Cyber-Physical Systems (CPSs) producing large volumes of data at high velocity. To store and analyze these vast amounts of data, sp...