Tony Avril

Tony Avril
Centre Eugène Marquis · Centre Eugène Marquis - Unité INSERM UMR1242

PhD

About

78
Publications
10,069
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,711
Citations
Additional affiliations
January 2016 - present
ER440 INSERM OSS - PROS@C team
Position
  • Ingénieur-Biologiste
January 2012 - December 2015
Centre Eugène Marquis
Position
  • Ingénieur-Biologiste
January 2008 - present
Centre Eugène Marquis
Position
  • Ingénieur-Biologiste
Education
October 2018 - October 2018
Université de Rennes 1
Field of study
  • Ecole Doctorale « Vie, Agronomie et Santé »

Publications

Publications (78)
Preprint
Full-text available
Inositol Requiring Enzyme 1 (IRE1) is a bifunctional serine/threonine kinase and endoribonuclease. It is a major mediator of the Unfolded Protein Response (UPR), which is activated during endoplasmic reticulum (ER) stress. Tumor cells experience ER stress due to adverse microenvironmental cues such as hypoxia or nutrient shortage and high metabolic...
Preprint
Full-text available
Unfolded Protein Response (UPR) and Death Receptor (DR) signalling are cellular stress pathways frequently activated towards pro-tumoral cellular outputs in cancer. Experimental evidence has highlighted functional links between the UPR and signalling by the DR TRAIL-R1/2. Herein, we demonstrate that the UPR sensor IRE1 controls the expression of th...
Article
Full-text available
This protocol describes a flow cytometry approach to evaluate antibody responses against SARS-CoV-2 transmembrane proteins in COVID-19 positive patient sera samples without the need of specific laboratory facilities for viral infection. We developed a human cell-based system using Spike-expressing HEK293T cells that mimics membrane insertion and N-...
Preprint
Full-text available
Inositol Requiring Enzyme 1 (IRE1) is a bifunctional serine/threonine kinase and endoribonuclease. It is a major mediator of the Unfolded Protein Response (UPR), which is activated during endoplasmic reticulum (ER) stress. Tumor cells experience ER stress due to adverse microenvironmental cues such as hypoxia or nutrient shortage and high metabolic...
Article
Full-text available
SARS-CoV-2 pandemic has elicited a unique mobilization of the scientific community to develop efficient tools to understand and combat infection. Like other coronavirae, SARS-CoV-2 hijacks host cell secretory machinery to produce viral proteins that compose the nascent virions; including Spike (S), Envelope (E) and Membrane (M) proteins, the most e...
Article
Full-text available
The unfolded protein response (UPR) is an adaptive mechanism that regulates protein and cellular homeostasis. Three endoplasmic reticulum (ER) membrane localized stress sensors, IRE1, PERK and ATF6, coordinate the UPR in order to maintain ER proteostasis and cell survival, or induce cell death when homeostasis cannot be restored. However, recent st...
Article
Endoplasmic Reticulum (ER) stress signaling is an adaptive mechanism triggered when protein folding demand overcomes the folding capacity of this compartment, thereby leading to the accumulation of improperly folded proteins. This stress signaling pathway is named the Unfolded Protein Response (UPR) and aims at restoring ER homeostasis. However, if...
Preprint
Full-text available
The SARS-CoV-2 pandemic has elicited a unique international mobilization of the scientific community to better understand this coronavirus and its associated disease and to develop efficient tools to combat infection. Similar to other coronavirae, SARS-CoV-2 hijacks the host cell complex secretory machinery to produce properly folded viral proteins...
Article
Endoplasmic reticulum (ER) stress signaling has long been associated with various pathological states in particular with the development of diseases with an underlying inflammation, such as diabetes, liver or cardiovascular dysfunctions, and cancer. ER stress signaling is mediated by three stress sensors. The most evolutionarily conserved one, the...
Article
Glioblastoma multiforme (GBM) is the most severe primary brain cancer. Despite an aggressive treatment comprising surgical resection and radio/chemotherapy, patient's survival post diagnosis remains short. A limitation for success in finding novel improved therapeutic options for such dismal disease partly lies in the lack of a relevant animal mode...
Article
Full-text available
The B7 family member, B7H6, is a ligand for the natural killer cell receptor NKp30. B7H6 is hardly expressed on normal tissues, but undergoes upregulation on different types of tumors, implicating it as an attractive target for cancer immunotherapy. The molecular mechanisms that control B7H6 expression are poorly understood. We report that in contr...
Preprint
Glioblastoma multiforme (GBM) is the most severe primary brain cancer. Despite an aggressive treatment comprising surgical resection and radio/chemotherapy patients survival post diagnosis remains short. A limitation for success in finding novel improved therapeutic options for such dismal disease partly lies in the lack of a relevant animal model...
Article
Full-text available
Human anterior gradient proteins AGR2 and AGR3 are overexpressed in a variety of adenocarcinomas and are often secreted in cancer patients' specimens, which suggests a role for AGR proteins in intra and extracellular compartments. Although these proteins exhibit high sequence homology, AGR2 is predominantly described as a pro-oncogene and a potenti...
Article
Glioblastoma Multiforme (GBM) is the most severe primary brain tumor and represents more than 15% of all brain tumors. Despite an aggressive treatment comprising surgical resection and radio/chemotherapy, patient’s survival post diagnosis remains short with a median overall survival of 15 months. The lack of efficacy of the current treatments is mo...
Article
Full-text available
Bevacizumab (Bv) remains frequently prescribed in glioblastoma (GBM) patients, especially at recurrence. We conducted a prospective clinical trial with 29 recurrent GBM patients treated with Bv alone with a longitudinal follow-up of different circulating immune cells [complete blood count, myeloid-derived suppressor cells (MDSCs), classical, interm...
Article
Full-text available
Endoplasmic reticulum (ER) proteostasis is often altered in tumor cells due to intrinsic (oncogene expression, aneuploidy) and extrinsic (environmental) challenges. ER stress triggers the activation of an adaptive response named the Unfolded Protein Response (UPR), leading to protein translation repression, and to the improvement of ER protein fold...
Article
Full-text available
Anterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the...
Article
Full-text available
CD90 is a membrane GPI-anchored protein with one Ig V-type superfamily domain that was initially described in mouse T cells. Besides the specific expression pattern and functions of CD90 that were described in normal tissues i.e. neurons, fibroblasts and T cells, increasing evidences are currently highlighting the possible involvement of CD90 in ca...
Preprint
Full-text available
Cancer cell reprogramming contributes to antineoplastic treatment resistance and disease recurrence through cancer stem cell re-emergence. Glioblastoma multiforme (GBM) is a lethal, primary, central nervous system tumor, in which reprogramming compounds prognostic severity. The endoplasmic reticulum (ER) stress sensor IRE1alpha (referred to as IRE1...
Preprint
Many intrinsic and environmental stresses trigger the accumulation of misfolded proteins in the endoplasmic reticulum (ER), leading to ER stress. This condition has been observed in various human diseases, including cancer. As such, glioblastoma multiforme (GBM), the most aggressive and lethal primary brain tumor, was reported to present features o...
Article
Full-text available
Background Glioblastoma (GB) is a highly invasive primary brain tumor that nearly always systematically recurs at the site of resection despite aggressive radio-chemotherapy. Previously, we reported a gene expression signature related to tumor infiltration. Within this signature, the EMX2 gene encodes a homeodomain transcription factor that we foun...
Article
The unfolded protein response (UPR) is an adaptive signaling pathway activated in response to endoplasmic reticulum (ER) stress. The effectors of the UPR are potent transcription activators; however, some genes are suppressed by ER stress at the mRNA level. The mechanisms underlying UPR-mediated gene suppression are less known. Exploration of the e...
Article
Activating transcription factor 6 alpha (referred to as ATF6 hereafter) is an endoplasmic reticulum (ER)-resident glycoprotein and one of the 3 sensors of the unfolded protein response (UPR). Upon ER stress, ATF6 is exported to the Golgi complex where it is cleaved by the S1P and S2P proteases thus releasing ATF6 cytosolic fragment and leading to t...
Article
Dietary restriction (DR) was shown to impact on tumor growth with very variable effects depending on the cancer type. However, how DR limits cancer progression remains largely unknown. Here, we demonstrate that feeding mice a low-protein (Low PROT) isocaloric diet but not a low-carbohydrate (Low CHO) diet reduced tumor growth in three independent m...
Article
Full-text available
Proteostasis imbalance is emerging as a major hallmark of cancer, driving tumor aggressiveness. Evidence suggests that the endoplasmic reticulum (ER), a major site for protein folding and quality control, plays a critical role in cancer development. This concept is valid in glioblastoma multiform (GBM), the most lethal primary brain cancer with no...
Article
The unfolded protein response (UPR) is a conserved adaptive pathway that helps cells cope with the protein misfolding burden within the endoplasmic reticulum (ER). Imbalance between protein folding demand and capacity in the ER leads to a situation called ER stress that is often observed in highly proliferative and secretory tumor cells. As such, a...
Article
Purpose: CD90 (Thy-1) is a glycophosphatidylinositol-anchored glycoprotein considered as a surrogate marker for a variety of stem cells including glioblastoma (GBM) stem cells (GSCs). However, the molecular and cellular functions of CD90 remain unclear. Experimental design: The function of CD90 in GBM was addressed using cellular models from imm...
Article
Full-text available
The unfolded protein response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress. During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply) challenges, with which they must cope to survive. Moreover, chemotherapy represents...
Article
Full-text available
The unfolded protein response (UPR) is an integrated, adaptive biochemical process that is inextricably linked with cell homeostasis and paramount to maintenance of normal physiological function. Prolonged accumulation of improperly folded proteins in the endoplasmic reticulum (ER) leads to stress. This is the driving stimulus behind the UPR. As su...
Article
Cellular stress induced by the accumulation of misfolded proteins at the endoplasmic reticulum (ER) is a central feature of secretory cells and is observed in many tissues in various diseases, including cancer, diabetes, obesity, and neurodegenerative disorders. Cellular adaptation to ER stress is achieved by the activation of the unfolded protein...
Article
Full-text available
Introduction Glioblastoma multiforme (GBM) is the most lethal form of glioma with an overall survival at 5 years nearly null (< 5%). Increasing evidences point towards the RNase activity of IRE1 as a central player in GBM development, particularly in cancer cell invasion, tumor vascularization and recruitment of inflammatory or immune cells. Indeed...
Article
Full-text available
A subset of patients with recurrent high-grade gliomas benefits from the anti-angiogenic therapy bevacizumab (BVZ). An increased number of research efforts are performed to develop predictive biomarkers that allow for screening of patients. The immune system plays a crucial role in angiogenesis induction and maintenance. We analysed circulating imm...
Article
The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which...
Article
Tumor cells are often exposed to intrinsic and external factors that alter protein homeostasis, thus producing endoplasmic reticulum (ER) stress. To cope with this, cells evoke an adaptive mechanism to restore ER proteostasis known as the unfolded protein response (UPR). The three main UPR signaling branches initiated by IRE1α, PERK, and ATF6 are c...
Article
Full-text available
The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein fol...
Article
Full-text available
The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein fol...
Article
The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which...
Article
In this issue of Science Signaling, Zhang et al. find a new role for verteporfin in the control of colorectal cancer progression through the selective induction of proteotoxicity rather than through inhibition of the transcription cofactor YAP. The study further documents the potential strategy of targeting proteostasis to kill cancer cells.
Article
Full-text available
Glioblastoma (GB) is a highly infiltrative tumor recurring within a few centimeters of the resection cavity in 85 % of cases, even in cases of complete tumor resection and adjuvant chemo/radiotherapy. We recently isolated GB-associated stromal cells (GASCs) from the GB peritumoral zone, with phenotypic and functional properties similar to those of...
Article
Unlabelled: Primary cell lines derived as neurospheres, enriched in cancer stem cells, are currently the focus of interest in glioblastoma to test new drugs, because of their tumor initiating abilities and resistance to conventional therapies. However, not all glioblastoma samples are propagatable under neurosphere culture and not all neurosphere...
Article
Glioblastoma (GB) displays diffusely infiltrative growth patterns. Dispersive cells escape surgical resection and contribute to tumor recurrence within a few centimeters of the resection cavity in 90% of cases. We know that the non-neoplastic stromal compartment, in addition to infiltrative tumor cells, plays an active role in tumor recurrence. We...
Article
4th Quadrennial Meeting of the World-Federation-of-Neuro-Oncology (WFNO) held in conjunction with the 18th Annual Meeting of the Society-for-Neuro-Oncology (SNO), San Francisco, CA, NOV 21-24, 2013
Article
Putative cancer stem cells have been identified in glioblastoma (GBM), associated with resistance to conventional therapies. Overcoming this resistance is a major challenge to manage this deadly brain tumor. Epidermal growth factor receptor (EGFR) is commonly amplified, over-expressed, and/or mutated in GBM, making it a compelling target for therap...
Article
Full-text available
Background: Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults. Several recent transcriptomic studies in GBM have identified different signatures involving immune genes associated with GBM pathology, overall survival (OS) or response to treatment. Methods: In order to clarify the immune signatures found in GBM, we per...
Article
Glioblastoma (GB) is a highly infiltrative tumor recurring in 90% of cases within a few centimeters of the resection cavity, even in cases of complete tumor resection and adjuvant chemo/radiotherapy. This observation highlights the importance of understanding this special zone of brain tissue surrounding the tumor. It is becoming clear that the non...
Article
Glioblastoma multiforme (GBM) is the most dramatic primary brain cancer with a very poor prognosis because of inevitable disease recurrence. The median overall survival is less than 1 year after diagnosis. Cancer stem cells have recently been disclosed in GBM. GBM stem-like cells (GSCs) exhibit resistance to radio/chemotherapeutic treatments and ar...
Article
Full-text available
Genomics, transcriptomics and proteomics of glioblastoma multiforme (GBM) have recently emerged as possible tools to discover therapeutic targets and biomarkers for new therapies including immunotherapy. It is well known that macroscopically complete surgical excision, radiotherapy and chemotherapy have therapeutic limitations to improve survival i...
Article
Glioblastoma multiforme (GBM), WHO grade IV astrocytoma, is the most dramatic primary brain cancer with a very poor prognosis due to inevitable disease recurrence. Less than 10% of GBM patients are still alive 5 years after diagnosis despite a multimodal treatment with surgical resection of the tumor, radiation therapy and chemotherapy. Cellular im...
Article
PI-2301 is an amino acid copolymer acting as an immunomodulator for the treatment of autoimmune diseases. The present study evaluated the safety, pharmacokinetics (PK), and pharmacodynamics of PI-2301 in a single ascending dose, first-in-human study involving healthy, male adult volunteers. A total of 56 subjects were given a subcutaneous injection...
Article
Immunotherapy is a promising new treatment for patients suffering from glioma, in particular glioblastoma multiforme (GBM). However, tumour cells use different mechanisms to escape the immune responses induced by the treatment. As many other tumours, gliomas express or secrete several immunosuppressive molecules that regulate immune cell functions....
Article
Full-text available
High grade gliomas (HGG) including glioblastomas (GBM) are the most common and devastating primary brain tumours. Despite important progresses in GBM treatment that currently includes surgery combined to radio- and chemotherapy, GBM patients' prognosis remains very poor. Immunotherapy is one of the new promising therapeutic approaches that can spec...
Article
This study compares the behavior of 2 commercially available polyriboinosinic-polyribocytidylic acids (poly I:C1 and poly I:C2) and the structural analog poly I:C12U in regard to dendritic cell (DC) maturation. When the Toll-like receptor 3 (TLR3) agonists are tested in combination with interferon-alpha, tumor necrosis factor-alpha, interleukin (IL...
Article
In this study, we investigated the mRNA and protein expression of nine tumour antigens in human glioblastoma multiforme with a view to their possible use in dendritic cell-based immunotherapy. Expression of ALK, EGFRvIII, GALT3, gp100, IL-13Ralpha2, MAGE-A3, NA17-A, TRP-2 and tyrosinase were studied by real-time RT-PCR on frozen tissues using a ser...
Article
Full-text available
The siglecs (sialic acid-binding Ig-like lectins) are a family of transmembrane receptors expressed in the haemopoietic, immune and nervous systems. The CD33-related siglecs are a distinct subset mostly expressed in the innate immune system where they can function as inhibitory receptors by suppressing the signalling mediated by receptors coupled w...
Article
Full-text available
Siglec-7 is a CD33-related sialic acid-binding Ig-like lectin expressed strongly on NK cells, where it can function as an inhibitory receptor. Its sialic acid-binding activity on NK cells is masked by cis interactions with sialylated glycans, which are likely to be important for regulating the inhibitory function of Siglec-7, which exhibits an unus...