Tongtong Li

Tongtong Li
  • Doctor of Philosophy
  • Professor (Assistant) at University of Maryland, Baltimore County

About

17
Publications
687
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
72
Citations
Current institution
University of Maryland, Baltimore County
Current position
  • Professor (Assistant)

Publications

Publications (17)
Article
Full-text available
Fourier partial sum approximations yield exponential accuracy for smooth and periodic functions, but produce the infamous Gibbs phenomenon for non-periodic ones. Spectral reprojection resolves the Gibbs phenomenon by projecting the Fourier partial sum onto a Gibbs complementary basis, often prescribed as the Gegenbauer polynomials. Noise in the Fou...
Preprint
Full-text available
We propose an entropy-stable conservative flux form neural network (CFN) that integrates classical numerical conservation laws into a data-driven framework using the entropy-stable, second-order, and non-oscillatory Kurganov-Tadmor (KT) scheme. The proposed entropy-stable CFN uses slope limiting as a denoising mechanism, ensuring accurate predictio...
Preprint
Fourier partial sum approximations yield exponential accuracy for smooth and periodic functions, but produce the infamous Gibbs phenomenon for non-periodic ones. Spectral reprojection resolves the Gibbs phenomenon by projecting the Fourier partial sum onto a Gibbs complementary basis, often prescribed as the Gegenbauer polynomials. Noise in the Fou...
Preprint
Ensemble transform Kalman filtering (ETKF) data assimilation is often used to combine available observations with numerical simulations to obtain statistically accurate and reliable state representations in dynamical systems. However, it is well known that the commonly used Gaussian distribution assumption introduces biases for state variables that...
Article
We introduce and analyze a partially augmented fully mixed formulation and a mixed finite element method for the coupled problem arising in the interaction between a free fluid and a poroelastic medium. The flows in the free fluid and poroelastic regions are governed by the Navier–Stokes and Biot equations, respectively, and the transmission condit...
Preprint
We introduce and analyze a partially augmented fully-mixed formulation and a mixed finite element method for the coupled problem arising in the interaction between a free fluid and a poroelastic medium. The flows in the free fluid and poroelastic regions are governed by the Navier-Stokes and Biot equations, respectively, and the transmission condit...
Article
Full-text available
In this paper we present and analyze a fully-mixed formulation for the coupled problem arising in the interaction between a free fluid and a poroelastic medium. The flows in the free fluid and poroelastic regions are governed by the Stokes and Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of s...
Preprint
Accurate modeling of sea ice dynamics is critical for predicting environmental variables and is important in applications such as navigating ice breaker ships. Research for both modeling and simulating sea ice dynamics is ongoing, with the most widely accepted model based on the viscous-plastic (VP) formulation introduced by Hibler in 1979. Due to...
Article
Full-text available
We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers-Joseph-Saffman condition are imposed on the interface. We consider...
Preprint
In this paper we present and analyze a fully-mixed formulation for the coupled problem arising in the interaction between a free fluid and a flow in a poroelastic medium. The flows are governed by the Stokes and Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of stresses, and the Beavers-Joseph-...
Preprint
We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers-Joseph-Saffman condition are imposed on the interface. We consider...
Preprint
Full-text available
In this paper, we focus on investigating the influence on hydrodynamic factors of different coupled computational models describing the interaction between an incompressible fluid and two symmetric elastic or poroelastic structures. The fluid region is governed by time dependent Navier-Stokes equations; while for the structure region, we employ two...
Chapter
We develop a cell-centered finite volume method for the Navier–Stokes/Biot model, based on a fully mixed formulation with weakly symmetric stresses. The multipoint stress mixed finite element method is employed for the Navier–Stokes and elasticity equations, while the multipoint flux mixed finite element method is used for Darcy’s flow. These metho...

Network

Cited By