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Great challenges are faced in the off-line recognition of realistic Chinese handwriting. This paper presents
a segmentation-free strategy based on Hidden Markov Model (HMM) to handle this problem, where
character segmentation stage is avoided prior to recognition. Handwritten textlines are first converted to
observation sequence by sliding windows. Then embedded Baum–Welch algorithm is adopted to train
character HMMs. Finally, best character string maximizing the a posteriori is located through Viterbi
algorithm. Experiments are conducted on the HIT-MW database written by more than 780 writers. The
results show the feasibility of such systems and reveal apparent complementary capacities between the
segmentation-free systems and the segmentation-based ones.

Published by Elsevier Ltd.

1. Introduction

Many advances have been achieved in Chinese handprinted char-
acter recognition since the 1980s [1–3]. In general, the recognition
task is decomposed into four stages in literature (see Fig. 1). As for
handwriting normalization, not only dozens of nonlinear methods
are presented to remedy the variability of strokes [4,5], but also al-
ternative schemes, such as elastic cell [6] and global transformation
[7], are developed to avoid the zigzag effect. Quantity of effective
feature extraction methods are contributed, for example, four plane
features (FPFs) [8], directional element features [9], Gabor features
[10,11], gradient histogram features [12], to capture the nature of
Chinese character from different perspectives. As regards to charac-
ter classifiers, support vector machine (SVM) [13], Hidden Markov
Model (HMM) [14], quadratic discriminant function (QDF) [2,15], and
structure matching [16] are explored and pleasing advances are ob-
served. Recently, character-based and word-based language models
[17,18] are available and show promising results.

These recognition algorithms are all trained on isolated-character
databases, such as ETL-8/ETL-9 [19,20], IAAS-4M [21], HCL2000 [22].
However, strict restrictions are posed on the writers during col-
lecting their character samples. Each participant is requested to
write a large set of Chinese characters (e.g. at least 3755 characters
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concerning IAAS-4M and HCL2000), and write each character care-
fully in a preprinted character box. As a result, characters present
little writing variability, and the same quantity of and enough in-
stances per character (at least 100 samples per character) are avail-
able no matter whether that character is frequently used (refer to
Ref. [23] for more thorough discussion). The restricted character style
in isolated-character databases affects the experimental setup.

Current experiments on Chinese handprinted character recogni-
tion fall into two categories. Mostly, the evaluation is performed on
the same database as what has been used to train character models
[8–16]. The performance under this setup is unavoidably overesti-
mated because it only considers the ideal and simplified situation,
and pays no attention to handwriting complexities, such as the char-
acter touching, textline skewness.

In the other case, the recognizer is tested on high quality hand-
writing, though trained on isolated-character databases [17,18,24].
To identify the textline image, a character segmentation stage is em-
ployed first, and then feature selection and pattern classification are
executed. Here, an ill-posed request should be fulfilled: the char-
acters are written discretely, with no touching or overlapping, etc.
However once character touching or conjunction are encountered,
the character segmentation stage becomes the obvious bottleneck
to the whole system.

Since the former is just to verify the matching algorithm, it can be
seen as a special case of the latter. According to the definition in Ref.
[25], they can be classified as segmentation-based strategy. In other
words, the state-of-the-art recognizers for Chinese handwriting usu-
ally employ a character segmentation stage or the characters should
be separated before the handwriting is sent into the recognition
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Fig. 1. The flowchart of Chinese handprinted character recognition. Most works fall into at least one of those four categories.

Fig. 2. Complex relationships between adjacent characters: (a) severe overlapping,
(b) touching and (c) crossing. These handwritten phrases are extracted from HIT-MW
database [23] and the ground truth of each phrase is placed under it.

algorithms. Such recognizers may work smoothly on high quality
Chinese handwriting. When the realistic one is fed, however, the
results may deteriorate dramatically [26]. Great challenges, there-
fore, remain in the reliable recognition of the real-life Chinese
handwriting.

1.1. Difficulties in the recognition of realistic Chinese handwriting

In fact, real-life Chinese handwritten documents may present
complex textlines, instead of easily separated characters. Gener-
ally, there exist three hierarchies of complexities. At the document
level, there are overlapping, touching, and crossing between adja-
cent textlines. Moreover, at the textline level, besides undulation
and skewness of textline, overlapping, touching and crossing among
character neighbors may also present. In addition, at the character
level, the variable size of characters, deformation of strokes and even
erasure of characters may exist. Present paper only covers the last
two kinds of complexities.

These complexities pose great obstacles to recognizers. The sub-
stantial problems they face can be coarsely dichotomized as follows:

Ambiguity of segmentation. Commonly, realistic handwriting is
written in cursive style and there is no extra gap between adjacent
characters than that between radicals of the same character. If over-
lapping, touching, crossing or noise are presented, the determination
of the right segmentation path is nontrivial (see Fig. 2). Even when
it runs discretely, new problem–how to merge the over-segmented
parts of Chinese character—arises to left–right structure character
(see Fig. 3).

Intricacy of modeling. The writing style may vary from person to
person. Even worse, character may differ much when produced by
the same writer in different times, places or environments. In addi-
tion, there are many characters with negligible distinction (see Ref.
[3, Fig. 5]). Two kinds of efforts have been made to enhance the mod-
eling precision of Chinese character in the state-of-the-art strategy:
reduce the variability at image level, for example, using shape nor-
malization, and absorbing the distortion at abstract level resorting

Fig. 3. Chinese characters with left–right structure. Each radical is also a valid
character in itself. The ground truth is placed under each character box.

handwritten word/textline recognition

segmentation-based segmentation-free 

classification-based holisticHMM-based

Fig. 4. The method hierarchy of handwritten word/textline recognition. As for Chi-
nese handwritten character recognition, HMM is merely used in segmentation-based
systems till now.

to robust feature representation, powerful classifier or contextual
information. However, novel modeling techniques and perspectives
are still in great need to the realistic handwriting recognition.

1.2. Related work

Parallel to segmentation-based systems, there are segmentation-
free ones for the recognition of English text. Their relationships are
depicted in Fig. 4. Just as Sayre's paradox goes [27], character seg-
mentation is prone to error and difficult to make correction after-
wards. The segmentation-free systems do not explicitly segment the
textline into characters or graphemes in order to tackle the huge dif-
ficulties in the character segmentation. One kind of them is holistic
word recognition [28]. Features are extracted to capture the word
image as a whole and the underlying word is identified by exhaus-
tively search a prior lexicon. This kind of systems is mainly used
in a small lexicon or constrained domain, such as in check amount
reading and address phrase interpretation.

The other is word/textline recognition where an HMM is adopted
as the engine. A good review on word recognition is available in
Ref. [29] and some combination strategies are developed, for in-
stance, integration of recognition and verification [30], combination
of segmentation-based system and segmentation-free system [31],
ensemble of classifiers [32]. As for textline recognition, two typ-
ical systems for English handwriting with a large vocabulary are
described in Refs. [33,34], respectively. Themethod employs the sim-
ilar framework to continuous speech recognition [35]. In the training
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stage, the initial character models are linked together and optimized
by embedded Baum–Welch algorithm. During recognition, the rec-
ognizer outputs a character string of maximum probability through
Viterbi algorithm [36]. Such strategy possesses desirable character-
istics. For instance, it avoids the crisp character segmentation stage
and extra language information can be easily incorporated. In Ref.
[37], this kind of system is claimed as implicit segmentation strategy.
In our study, the term “segmentation-free strategy” will be used con-
sistently to stress on the primary aim of the maximizing the string
probability criteria.

Extending this framework from speech recognition to cursive En-
glish handwriting recognition may be straightforward, due to their
one-dimensional nature [38]. However, as for Chinese handwriting,
no evidence has been provided yet since Chinese character has typi-
cal two-dimensional structure, and even worse, there are a large set
of characters to be distinguished from each other.

As shown in Fig. 4, HMM method can be used in segmentation-
based systems too. Herein, we merely focus our interest on the Chi-
nese character recognition field. To our knowledge, HMM method
is first applied to the Chinese printed character recognition in 1990
[39]. To each predefined character class, seven states with left-to-
right transition were given. The underlying distribution is a dis-
crete type. The codebook in this case composes of 64 entries, whose
index encodes the projection values in horizontal and vertical di-
rections. Similar system is adapted to recognize the handprinted
Chinese character [14]. Its feature is extracted with a column-wise or
row-wise manner, which is to simulate the time variable in speech
recognition. The codebook is generated on feature vectors of train-
ing data by a K-means clustering [40]. Instead of codebook, a mix-
ture of multivariate Gaussian probability density functions is used
to represent the output probability in Ref. [10]. In their implemen-
tation, the character image is partitioned into horizontal (vertical)
slices, and within each slice, Gabor features are extracted and their
deviations are integrated. As for the HMM structure, eight states and
four Gaussian components are given. The above HMM-based Chi-
nese character recognizers are all trained and later tested on isolated
character database, and the results are pleasing.

1.3. Our motivation

We attempt to recognize Chinese handwriting with a large vo-
cabulary from segmentation-free strategy in present paper. This in-
vestigation is motivated by the following observations:

Low expenditure in preparation of training data. Labeling each
character in training data, which is a tedious and time-consuming
process, is passed by in segmentation-free systems. In the
segmentation-free strategy, we only input the textlines and their
underlying character string. The system automatically aligns each
character to its image counterpart and then estimates the model of
that character. It simplifies the expansion of training data as well as
quickens the experimental process.

Desirable features of different origins. Segmentation-free systems
usually adopt sliding windows moving along the textline without re-
gard to the boundary of underlying characters, while segmentation-
based ones extract features within each character segment. Their
different origins result in different abilities in characterizing the char-
acter pattern, which plays important role in the system combination.
For example, segmentation-based systems can express the certain
classmore elaborately, especially in vertical direction; segmentation-
free ones can utilize the conjunction relationship between adjacent
characters in a simple way.

Intrinsic advantages of the strategy. Segmentation-free strategy
performs character segmentation and recognition in one step, and
outputs a best transcription in probabilistic criteria. Compared with
the segmentation-based strategy, it can utilize both the boundary

information of slidingwindows and the knowledge of charactermod-
els, and avoid the blind character segmentation. Moreover, due to its
solid mathematic foundation and powerful dynamic capacity, HMM
can properly absorb the writing variability [30]. In addition, language
models can be incorporated conveniently [33,34], though that is out
of the scope of this paper.

Extra options to multiple classifier combination research. Given the
huge challenges in the recognition of Chinese handwriting, as in
the English word recognition task, multiple classification methods
or properly combining a variety of classifier outputs may be the
future trends. Segmentation-free strategy is devised from overall
different perspective to the segmentation-based one and may serve
as a desirable complementary strategy.

Unlike previous Chinese character recognition setup, an uncon-
strained Chinese handwriting database, which is written by more
than 780 writers, is used as experimental dataset [23,41]. The ex-
periments show the promising results of the segmentation-free
strategy as well as the apparent evidence on the complemen-
tary capacities between the segmentation-free strategy and the
segmentation-based one. We hope that this paper will encourage
more researchers to re-examine the task and eventually advance
the realistic Chinese handwriting recognition.

The paper is organized as follows. The next section briefly de-
scribes the HIT-MW database. Section 3 details components of our
system including sliding window, feature extraction method and
HMM modeling. Experiments are conducted and results are sum-
marized in Section 4. Finally, discussions and conclusions are drawn
from this work in Sections 5 and 6, respectively.

2. Database

The benchmark data used in this paper come from the HIT-MW
database [41]. It is collected frommore than 780 participants with an
unconstrained manner. The writers are mainly college students and
the department distribution and gender distribution of them are near
to those of real distributions of college students. The underlying texts
of the HIT-MW database are randomly sampled from China Daily
corpus with a systematic way. As a result, a high character coverage
on China Daily corpus (with approximately 80 million characters) is
obtained (the coverage rate is 99.33%). The HIT-MW database can
be seen as a representative subset of real Chinese handwriting (Ref.
[23] for more details).

Currently, the HIT-MW database provides 5667 textlines which
can be used freely. To partition the data into train, validation
and test sets, we consider following procedure (the HIT-MW
database and the experimental data in this paper are available at:
http://hitmwdb.googlepages.com).

Step 1: Randomly select 383 textlines as test set (8471 characters).
Step 2: Within the 5284 remainder textlines, discard the textlines

which are written by the same writer of test set. By this way, only
3172 textlines are retained for the following processing.

Step 3: Similar to step 1, draw 189 textlines uniformly out of 3172
ones as validation set (4100 characters).

Step 4: Further discard textlines written by the same writer of
validation set (2306 textlines are left).

Step 5: Among the 2306 textlines, randomly select 953 ones as
train set (20,701 characters).

This process is to reproduce a realistic scenario where the hand-
written textlines for recognition in test set have not been seen before
(in train or validation set). The validation set here is used to tune the
parameters, such as the number of Gaussian components in mixture
density and training iterations, which will be used to evaluate the
recognizer's performance on test set. Some textlines selected from
test set are demonstrated in Fig. 5.

http://hitmwdb.googlepages.com
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Fig. 5. Some complex textlines in test set which pose great challenges to the state-of-the-art segmentation-based systems. The ground truth of each textline is placed under
it. (a) high-quality textline with long downwards strokes and a little stroke overlapping; (b) textline with three instances of erasures (represented with ER); (c) textline
with digit, punctuation and Chinese characters; (d) textline with severe stroke touching, also with broken strokes; (e) textline with undulation and skewness.
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Fig. 6. System architecture. The ground truth database is the reference text of textline database, and it is used not only in the training stage but also in the performance
evaluation stage; the character HMMs are generated by embedded Baum–Welch algorithm (B–W algorithm) on training and validation sets after the sliding window-based
feature selection stage; using Viterbi algorithm, the test set is mapped into the symbol space.

3. System descriptions

When a textline image is fed into a recognizer, it is converted
to a sequence of feature vectors or observations O= o1, . . . ,om. The
recognition task is to identify a string of characters Ŝ = s1, . . . , sn
maximizing the a posteriori (MAP) P(S|O). The recognizer described
in this paper consists of three main components: sliding window,
feature extraction and selection, HMM training and decoding. The
system architecture is illustrated in Fig. 6.

3.1. Sliding window

Windowing is a common localization technique in signal pro-
cessing domain. Since the character string runs in certain direction,

a movable window called sliding window following the same order
can be used to draw an interested zone and then extract features
within it. Generally, the height of the sliding window is the same as
that of textline. The other two parameters, the widthW and the shift
step S, should be assigned by researchers or determined through
experiments. Supposing f (p, q) is the digital image of a textline, the
running mechanism of the sliding window is illustrated in Fig. 7. The
window function can be expressed as

g(w, v)=
{
1, w= 1, . . . ,W ,
0 otherwise.

(1)

Then, the window at step i can be denoted as

fi = f ((i− 1)S+w, v) · g(w, v), (2)
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Fig. 7. Feature selection process using sliding window. (W − S) columns are shared
between adjacent windows in ith step and (i + 1)th step (marked with solid and
dashed lines, respectively).
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Fig. 8. The zone used to extract features. The blank parts in the upper and lower
window are excluded.

where · is the multiplication operator. The feature vector at step i,
oi, in observation sequence O= o1, . . . ,om is calculated as follows:

oi =�(fi), (3)

where � is the feature mapping function from image space to feature
space.

The sliding window used in Refs. [31,33] is of one pixel width
and one pixel step. There is no overlap between adjacent windows.
Another kind of sliding window with step of one pixel and width of
10 pixels is given in Ref. [34]. Obviously, nine-tenth contents of two
consecutive windows are identical. In addition, [42] presents a bit
adaptive sliding window relative to the height of textline: the width
is of one-fifteenth its height and the step of one-third its width. This
paper setsW=12 pixels (one-fifth the character's average width) and
S = 2 pixels (one-sixth its width). The window width W is selected
to make a balance between the HMM structure and the smallest
character width, and the tuning process of window step S is detailed
in Ref. [43].

3.2. Feature representation

To resist the undulation of textlines, we partition the window
into three zones, as shown in Fig. 8 and only the body zone is used to
extract feature vector instead of the whole window. The body zone
is separated by the topmost and bottommost foreground pixels in
vertical direction.

Our baseline system is based on cell features. The window is
divided into 8× 2 cells, and then the foreground pixels are summed
in each cell. We also adapt another feature representation method,
FPF [8], which is originally used in Chinese isolated-character
recognition. Each character image is scanned in four directions

(horizontal, vertical, right diagonal and left diagonal) and only the
strokes longer than a threshold are retained. Then each plane is di-
vided into cells within which stroke crossing can be counted. Some
modifications of the original algorithm are needed to fit the problem
of handwriting recognition: (1) the feature vector is extracted from
certain sliding window instead of character segment; (2) the aver-
age stroke width SW is estimated on whole textline by the analysis
of stroke histogram (as in Ref. [44]) rather than on single character
by contour following; (3) the four planes are formed by excluding
the strokes smaller than 2×SW . We use this 64-dimensional feature
vector in this paper to improve the performance of the baseline
system. Fig. 9 shows the extraction process of FPFs. Further, we in-
corporate the previous two features as an extended 80-dimensional
feature vector to enhance the recognizer.

In addition, principal component analysis (PCA) is adopted. The
covariance matrix is calculated from train and validation sets and
36 out of 80 principal components are retained according to the
criteria declared in Ref. [45] as a compact representation of previous
mentioned 80-dimensional fused features. Further information in
this aspect is available in Ref. [46].

3.3. HMM training and decoding

Supposing the sequence of feature vectors corresponding to hand-
written textline is O = o1, . . . ,om, the task of the recognizer is to
identify a character string, Ŝ= s1, . . . , sn, by MAP:

Ŝ= argmax
S

P(S|O). (4)

Using Bayes' theorem, we get

Ŝ= argmax
S

P(O|S)P(S)
P(O)

. (5)

Since P(O) is the a priori of feature vectors and independent of S,
above equation is equivalent to

Ŝ= argmax
S

P(O|S)P(S). (6)

We call P(O|S) the string model and P(S) the language model. The
former encodes the probability of feature vectors O under character
string S and the latter constrains the search space. Provided that O is
of conditional independence, P(O|S) can be further approximated as

P(O|S) ≈
n∏

i=1
P(Oi|si), (7)

where Oi is the observations of character si. The P(Oi|si) is the char-
acter HMM and estimated by embedded Baum–Welch algorithm in
this paper. When P(O|S) and P(S) are in order, the best character
string in the MAP sense (as in Formula (6)) can be located by Viterbi
algorithm [36]. Note that the meaning of Oi is different from oi in
that oi is derived from certain sliding window and Oi is a series of
oi which is the counterpart of a character. Their relationship can be
characterized as

O= o1, . . . ,om = O1, . . . ,On, m�n. (8)

An HMM is an extended Markov chain. The transitions between
states represent the shifts of character segments and each state of the
chain associates a probability density spanned on a d-dimensional
feature space. A continuous-density HMM (CDHMM) can be notated
as �=(A,B,�). A=(aij) is the state transition probability. B={bj(o)} is
the observation probability. Further, the probability of observation o
for state j, bj(o), can be approximated by a finite mixture of Gaussian
density of the form:

bj(o)=
∑

cjk�(o,�jk,�jk), 1� j�N, (9)
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Fig. 9. The process of extracting 64-dimensional four plane features. The sliding window plotted here is larger than the actual size to give a clear illustration.

where N is the total states, o a d-dimensional vector, cjk the mix-
ture coefficient and �jk, �jk the mean vector and covariance matrix
for Gaussian distribution �, respectively. � is the initial parameter
set concerning the HMM topography, mean vector and covariance
matrix in each state, mixture coefficients etc.

Our recognizer models each Chinese character class as a 11-state
CDHMM, while a four-state CDHMM is given to the character class in
digit or punctuation. The structure of the HMM is a Bakis form (left-
to-right, with no skip). The initialization of parameters A and B, is
done by a flat start. Before detail the technique aspect of embedded
Baum–Welch algorithm, we visualize the key factors and explain
their roles in the training process as shown in Fig. 10. To simplify
the expression, one entry state and one exit state are added to each
character HMM. However, output probability is not associated to
them. From Fig. 10, we can see that character HMMs are embedded
in sentence HMMs. The parameter set of sentence HMM is updated
during training and the character HMMs in the sentence HMM will
be renewed simultaneously.

Once the initialization of �'s is done, the embedded HMMs
are re-estimated by embedded Baum–Welch algorithm. Suppose
the training data (sequence of textline observations) is denoted
as Or(1� r�R), Nq is the number of states of the qth HMM in a
certain sentence HMM. As the estimation of output distribution
can be easily derived from the estimation formula of Baum–Welch

algorithm [36], we only provide the re-estimation of transition
matrix as follows:

â(q)ij =
∑R

r=1(1/Pr)
∑Tr−1

t=1 �(q)ri (t)a(q)ij b(q)j (ort+1)	
(q)r
j (t + 1)

∑R
r=1(1/Pr)

∑Tr
t=1�

(q)r
i (t)	(q)r

i (t)

(i �= 1, j �= Nq), (10)

where Pr is the probability of the rth observation, and �(q)ri (t),

	(q)r
j (t + 1) are the forward and backward probability, respectively.

The transition updating of entry state and exit state is trivial and
omitted here.

The forward probability at time t, �(q)rj (t), can be calculated in a
recursive way:

�(q)rj (t)=
⎡
⎣�(q)r1 (t)a(q)1j +

Nq−1∑
i=2

�(q)ri (t − 1)a(q)ij

⎤
⎦ b(q)j (ort )

(t >1, j �= 1, j �= Nq). (11)

Similarly, backward probability can be expressed.
In the recognition phase, the character models are concatenated

to strings [34]. Currently there is no extra language information in-
corporated yet. Since any character can occur at any position, a string
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Fig. 10. The factors in the running process of embedded Baum–Welch algorithm.
Handwritten textline is first mapped to textline observations by feature extraction
function. Character HMMs are often coarsely initialized and concatenated to form
the sentence HMM at the guidance of textline label. As the last step, embedded
Baum–Welch algorithm will update the character HMMs using textline observations.

Sentence HMMsCharacter HMMs 

O

s1

...

s2

sn

Ŝ

... ... 
...

...

...

p(sn|hn)

p(s3|s1s2)

p(s2|s1)

Fig. 11. Recognition process is to map features to symbols. Here, hn is the history
of sn .

network can be formed. The best path is found out through Viterbi
algorithm by a MAP criterion [36]. This phase actually maps the
textline image to a character string (see Fig. 11). There is no ex-
plicit segmentation of the textline into characters, though the soft
segmentation is delivered as a byproduct in recognition phase.

4. Experimental results

4.1. Experimental setup

In our recognizer, an HMM per character is given and all era-
sures (three erasures are presented in the second line of Fig. 5) are
modeled as one HMM. In addition, to model the large space be-
tween characters, we add a “blank” HMM. Eventually, there are 2075

character models. The results are counted excluding English letters,
due to their too limited occurrences in Chinese environment (13 let-
ters with only 20 instances in all).

We use an incremental way to enhance the segmentation-free
systems. As mentioned previously, the baseline system uses a 16-
dimensional feature vector, which is derived from cell features
(labeled as 16DCELL). Then we replace the 16-dimensional cell
features with 64-dimensional FPFs, 80-dimensional fused features
(the corresponding systems are denoted as 64DFPF, 80DFUS, re-
spectively) to study the effect of different features. Moreover, a
dimension reduction process by PCA is evaluated (the system is
labeled as 36DPCA). Finally, a grand variance tying method (refer-
eed as 36DGVS) which is originally used in speech recognition is
taken into consideration. Grand variance system is a typical data
sharing method to alleviate the data insufficiency and it means that
all HMMs share the same Gaussian variance. When re-estimating
the variance, training data which would have been used for each of
original unshared variance are deposited. As a result, more reliable
estimation of Gaussian density can be obtained.

Segmentation-based systems are also inspected. All of them are
trained and tested on the same data as in segmentation-free systems,
since our main concern is to investigate the complementary abil-
ities between segmentation-free and segmentation-based systems.
As stated in Section 1, most state-of-the-art recognizers can only deal
with isolated characters. Therefore, we briefly describe the character
extraction process before the specifications of segmentation-based
systems are clarified.

To the characters in train and validation sets, we extract them
manually. Here we only use linear paths, considering the sliding win-
dow adopted in segmentation-free systems uses a linear boundary.
A character segmentation method similar to Ref. [24] is adopted to
segment the characters in test set before classifier runs. However, to
simplify the process, only the basic segmentation and the fine seg-
mentation stages are used to generate the candidate paths. The path
with minimal variance is selected as the final segmentation path.
Parameters in the basic segmentation stage are 17, 13, 9, 5 and 1
pixel(s).

Modified quadratic discriminant function (MQDF) has become
one of the most leading classifiers due to its advantages in digit and
Chinese character recognition. Multiple-prototype template match-
ing (MPTM) classifier is also evaluated besides the MQDF. It may be
more probable to yield complementary abilities when distinct fea-
tures are used in segmentation-based systems and segmentation-free
ones. However, we pose more strict restrictions: the segmentation-
based systems just employ the fused features similarly derived from
FPFs and cell features in segmentation-free systems.

Previous empirical results on isolated-character recognition have
shown that shape normalization can greatly reduce the within-class
dispersions of character shape and improve the recognition rate. We
study the effect of character size scaling, one-dimensional nonlinear
normalization and elastic cell in MPTM approach and the right com-
bination of them yielding best classification rate is adopted in the
MQDF approach. Specially, to the Gaussian classifiers (MQDF in this
paper), Box–Cox variable transformation is evaluated.

In the following, we will provide the technique details and exper-
imental setup of above segmentation-based systems. As regards to
MPTM approach, eight systems (MPTM-1 ∼ MPTM-8) are designed
and they are put aside in Fig. 12 as vertices of a cube. In Fig. 12, three
techniques are evaluated. To determine the aspect ratio, either fixed
aspect ratio or sine of aspect ratio can be used [37]. To accomplish
the coordinate transformation, nonlinear normalization with the line
density initialization of Tsukumo and Tanaka [4] or linear normal-
ization with bicubic interpolation are examined. And to partition the
character images, 8×8 uniform cell or 8×8 elastic cell (the line den-
sity is also calculated by the method of Tsukumo and Tanaka) can be
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MPTM-1 MPTM-2

MPTM-3MPTM-4

MPTM-6

MPTM-7MPTM-8

MPTM-5
MPTM-5: NLN+FAR+EC 

MPTM-6: NLN+SAR+EC 

MPTM-7: LN+FAR+UC 

MPTM-8: LN+SAR+UC 

MPTM-1: LN+FAR+EC

MPTM-2: NLN+FAR+UC

MPTM-3: LN+SAR+EC

MPTM-4: NLN+SAR+UC

Fig. 12. Segmentation-based systems in MPTM approach. Eight systems are launched to evaluate the effect of three technologies. LN stands for linear normalization, NLN
for nonlinear normalization, FAR for fixed aspect ratio, SAR for sine of aspect ratio, UC for uniform cell and EC for elastic cell.

applied. Since the FPFs are dependent on stroke width, four direc-
tional planes are generated before any shape normalization methods
are applied. During the training stage, 12 models per character class
are produced using K-means clustering method. In the classification
phase, the feature vector of a character segment to be recognized
is compared with all prototypes, and the character class associating
the minimal city block distance is selected as the output class.

As for MQDF classifier, minor modification is applied to consider
the unbalanced distributions of different classes:

g3(x,
i)=
k∑

j=1

1
�ij

[�T
ij(x− �i)]

2 +
d∑

j=k+1

1
�i

[�T
ij(x− �i)]

2

+
k∑

j=1
log�ij + (d− k) log�i − 2 log P(
i). (12)

where 
i is the ith character class, �i denotes the mean vector of 
i,
�ij is the eigenvalue in nonincreasing order of the covariance matrix
of 
i and �ij is its eigenvector, and �i is optimized proportional to
the global variance. For our modification is applied to MQDF2, we
denote above classifier as MQDF3. In addition, special attention is
given to the character class of small sample size. If the number of
samples is below 10, �ij and�ij will be degenerated as the eigenvalue
and eigenvector of global covariance matrix. The character segment
will be classified into class 
j, if

g3(x,
j)=min
i

g3(x,
i). (13)

4.2. Analytical techniques

4.2.1. Correct rate and accurate rate
The output of certain recognizer is compared with the reference

text and two metrics, the correct rate (CR) and accurate rate (AR),
are calculated to evaluate the results. Supposing the number of sub-
stitution errors (Se), deletion errors (De) and insertion errors (Ie) are
known, CR and AR are defined, respectively, as
{
CR= (Nt − De − Se)/Nt ,
AR= (Nt − De − Se − Ie)/Nt ,

(14)

where Nt is the total characters in the reference text. In general,
CR is nonnegative while AR may be negative if there are overmany
insertion errors.

4.2.2. Curve of character matching rate
Character matching rate (CMR) is used to reflect the complemen-

tary capacity of two systems at certain recognition rate. Suppose
Ai, Bi are the sets of characters whose CR is bigger than i% given
by two systems, respectively. More specifically, if we assume Ai =
{“1”, “2”, “9”, “7”} and Bi={“2”, “9”, “7”}, we say Ai∩Bi(={“2”, “9”, “7”})
is the match set between Ai and Bi. The cardinality of the match set

Table 1
The digit recognition rates of different systems evaluated on test set (%)

16DCELL 64DFPF 80DFUS 36DPCA 36DGVS

CR 42.61 (∇) 44.35 57.39 (�) 56.96 52.17
AR 36.09 36.52 39.13 46.09 (�) 35.22 (∇)

Table 2
The punctuation recognition rates of different systems evaluated on test set (%)

16DCELL 64DFPF 80DFUS 36DPCA 36DGVS

CR 29.28 (�) 19.39 27.63 28.14 5.58 (∇)
AR 25.48 (�) 16.22 22.69 17.36 4.18 (∇)

Table 3
The Chinese character recognition rates of different systems evaluated on test set (%)

16DCELL 64DFPF 80DFUS 36DPCA 36DGVS

CR 33.72 (∇) 35.2 36.57 39.54 48.09 (�)
AR 29.37 (∇) 32.47 32.43 34.93 42.91 (�)

is given by |Ai ∩ Bi| ( = 3, in this example). The CMR of them at the
CR of i% is defined as the normalization of the above cardinality:

CMRi = |Ai ∩ Bi|
min{|Ai|, |Bi|} . (15)

From the formula, we can see that less matches between two sys-
tems, the smaller the value of CMRi. So, we can use CMR to charac-
terize the possible complementary capacities between two systems
when CR is bigger than i%. The curve of CMR manifests the possi-
ble complementary capacity dynamically by visualizing the CMRi vs
different i's.

4.3. Comparison within segmentation-free systems

4.3.1. The recognition rates
Due to their distinct differences in shape, the results of digit,

punctuation and Chinese character by the segmentation-free systems
are separately evaluated and are summarized in Tables 1–3, respec-
tively. The maximal and minimal items in each row are highlighted
with � and ∇, respectively. Seen from Table 1, no system achieves
the best or worst CR and AR simultaneously. As for CR, 16DCELL is the
lowest one. The performance of 64DFPF in this respect outperforms
16DCELL. The 80DFUS reaches the best CR by the fusion of cell fea-
tures and FPFs. The CRs of 36DPCA and 36DGVS drop down in turn.
Similar trend can be observed in their AR performances. However,
a mass of insertions are occurred in digit, and 80DFUS and 36DGVS
are the two systems that were most suffered by this problem. As a
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result, 80DFUS does not reach the maximum while 36DGVS reaches
the minimum.

The best performance is demonstrated in 16DCELL when
identifying the punctuation (see Table 2). The results of 64DFPF
are inferior to 16DCELL. The feature fusion, dimension reduction
and variance sharing techniques present no improvement at all in
recognition rates, and a sharp decrease in CR and AR can be easily
observed relating to 36DGVS.

Unlike the punctuation recognition, almost all enhancement op-
erations increase the performance with regard to the Chinese char-
acter recognition, as shown in Table 3. The best performance is
achieved by 36DGVS and the worst is by 16DCELL.

Moreover, we consider the average recognition rates, as shown in
Table 4. It is clear that a noticeable improvement has been achieved
after incremental enhancement. The CR and AR have increased
from 33.54% and 29.18% (of baseline system) to 44.22% and 39.08%
(of 36DGVS), respectively. Both promotions account for about 10%.
Among such segmentation-free systems, the smallest two promo-
tions are laid in the CR of 64DFPF and the AR of 80DFUS. Using
Wilcoxon signed-rank test in Ref. [47], their statistical significance
holds at 0.16 and 0.09 levels, respectively. Other improvements are
all statistically significant with confidence more than 99%.

4.3.2. The analysis of errors
We proceed to analyse the error distribution of the segmentation-

free systems. Three types of errors, delete error, insertion error and
substitute error, are separately considered to each system and the
error ratios are summarized in Table 5 as regards to digit, punctua-
tion and Chinese characters, respectively. For example, the deletion
errors of digit constitute 7.93% of whole deletion errors. Among 8471
characters in test set, 2.72%, 9.36% and 87.92% are comprised by digit,
punctuation and Chinese character samples, respectively. Comparing
64DFPF with 16DCELL, obvious advantages are shown in character-
izing the Chinese characters, seeing that all types of error ratios in
Chinese characters are lower, while the opposite effect is observed
in punctuation. On the fusion of FPFs and cell features (80DFUS),
the insertion and the deletion error ratios in Chinese characters de-
crease. However, higher error ratios of insertion and deletion are
occurred in digit and in punctuation, respectively. The small strokes
of Chinese character are more likely to be misinterpreted as digit.
On the contrary, punctuation tends to be viewed as a part of the
neighboring Chinese character. The error ratios of Chinese character
decrease from 80DFUS to 36DPCA. This finding verifies the positive
role of PCA technique in the discriminative description of Chinese
characters. As for 36DGVS, a remarkable reduction of deletion error
ratio and substitution error ratio are observed in Chinese characters
and as a result, a promising recognition rates are achieved in Table 3.

Table 4
The average recognition rates of different systems evaluated on test set (%)

16DCELL 64DFPF 80DFUS 36DPCA 36DGVS

CR 33.54 (∇) 33.96 36.29 38.94 44.22 (�)
AR 29.18 (∇) 31.06 31.7 33.59 39.08 (�)

Table 5
The error ratios on test set between digit punctuation and Chinese character of segmentation-free systems

16DCELL (%) 64DFPF (%) 80DFUS (%) 36DPCA (%) 36DGVS (%)

DI PU CH DI PU CH DI PU CH DI PU CH DI PU CH

Delete error 7.39 17.43 75.18 5.47 19.50 75.03 5.35 20.36 74.29 5.65 20.68 73.67 6.00 37.67 56.33
Insertion error 3.79 8.13 88.08 6.50 10.16 83.34 10.80 10.03 79.17 5.52 18.76 75.72 8.97 2.53 88.50
Substitute error 1.62 8.95 89.43 1.64 10.00 88.36 1.31 9.26 89.43 1.41 9.71 88.88 1.49 10.82 87.69

CH, DI and PU are the acronyms of Chinese characters, digit and punctuation, respectively.

Above robustness is achieved at some loss of modeling precision. For
example, the GVS gives a larger insertion error ratio than 36DPCA.

The recognition results of the textlines in Fig. 5(c)–(e) are illus-
trated in Figs. 13–15, respectively. The correctly identified charac-
ters are underlined. As the character boundary can be obtained as a
byproduct of the recognition process (see Section 3.3), we plot it in
the first row of each subfigure whose intensity expressing the prob-
ability in that position and the segments enclosed by two adjacent
boundary lines are labeled with numbers. The boundary line is of
the same width of the sliding window.

We can see that substitution errors often occurs between similar
characters. Two kinds of similar characters are clarified in Ref. [48]
due to their inherent similarity or distortion during writing process.
The former is the main source of substitution errors. Such instances
are marked with “S1” in Figs. 13–15. In cursive characters, substitu-
tions often fall into the latter. Such cases aremarkedwith “S2” in Figs.
13 and 15. The other substitution errors are mainly resulted from the
precision of the HMMs. Moreover, we can see that the misidentified
segments contribute to the deletion and insertion errors.

In addition, the noise resistance can be verified. Some outliers
incurred from small stroke can be solved. Examples cast in this cat-
egory are marked with “H1” in Figs. 13–15. Even unacceptable seg-
ments may be correctly identified (see the examples marked with
“H2” in Figs. 13–15).

To establish a reliable inference in statistics, we only consider
those characters whose sample size is over 20. Following points are
observed. First, substitutions are often found between similar char-
acters. Several characters with large substitution errors are given in
Fig. 16. Second, deletion is mainly occurred in digit and punctuation,
as digit or punctuation is often mis-explained as a component of its
neighboring Chinese character. Such digit and punctuation, whose
deletion error rates are bigger than 1%, include zero, comma, period,
caesura sign and left-double quotation mark. Last, insertion seems
more dependent on system setup. Only the insertion error rate of
the digit, “1”, is consistently bigger than 1% in all segmentation-free
systems in this paper.

To sum up, it is preferable and important to design discriminative
features and represent them properly. The cell features are sensitive
to the stroke width but more suitable than FPFs to represent the
punctuation. On the contrary, the FPF seems a good descriptor in
characterizing the directional structures most presented in digits or
Chinese characters. The fusion of above two kinds of features yields
acceptable tradeoff or improvement of performance. The dimension
reduction by PCA and variance sharing through GVS show efficiencies
in alleviating the insufficient training data. However, adverse effects
are observed in the recognition of digits and punctuation. We will
revisit this in Section 5.

4.4. Comparison between segmentation-based and segmentation-free
systems

4.4.1. The recognition rates
The results of MPTM approach are summarized in Table 6. Herein

we first compareMPTM-1 vsMPTM-5, MPTM-7 vsMPTM-2, MPTM-3
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Fig. 13. Recognition results of the textline in Fig. 5c by: (a) 16DCELL, (b) 64DFPF, (c) 80DFUS, (d) 36DPCA and (e) 36DGVS. Upper row of each subfigure shows the soft
segmentation boundary imposed on the textline. Middle row of each subfigure is copied from the recognition result of the textline and the correctly recognized characters
are underlined to give a clear view. Lower row of each subfigure highlights some segments and characters with S1 (substitute error is due to their inherent similarity), S2
(substitute error results from writing distortion), H1 (correctly identified segment with small outliers) and H2 (correctly identified block with large outliers).

vs MPTM-6 and MPTM-8 vs MPTM-4. Clear advantages of nonlinear
normalization are observed in digit recognition. Also, we compare
MPTM-1 vs MPTM-3, MPTM-2 vs MPTM-4, MPTM-5 vs MPTM-6 and
MPTM-7 vs MPTM-8. We can see a positive effect of sine of aspect
ratio in both digit and punctuation recognition. Finally, we compare
results using elastic cell with those using uniform cell (MPTM-2 vs
MPTM-5, MPTM-4 vs MPTM-6, MPTM-7 vs MPTM-1 and MPTM-8 vs
MPTM-3). Elastic cell yields a consistent improvement than uniform
cell in Chinese character recognition rate and the average recognition
rate. However, the best average recognition rates are not achieved
by the combination of nonlinear normalization, sine of aspect ratio
and elastic cell (MPTM-6). Instead, MPTM-1 is the averagely best
recognizer due to its great discriminative ability in Chinese character.
We will directly employ this kind of combination in the evaluation
of MQDF3 classifier.

Two systems with MQDF3 classifier are experimented. One of
them (MQDF3-2) applies Box–Cox transformation in the feature ex-
traction stage besides the combination of linear normalization, fixed
aspect ratio and elastic cell methods. The power of the transfor-
mation is set to 0.5 intuitively. The other (MQDF3-1) is a baseline
system which uses an uniform cell but no Box–Cox transformation
is applied. The parameters, k and �i, are tuned on validation set
with MQDF3-2, and it shows that the classification rate yields best
when k and �i are set to 7 and 1.7 times of the global variance.

Their results are presented in Table 7. Following two points can be
concluded:

(1) The recognition rates of MQDF3-1 are much lower than
80DFUS. As previous description of segmentation-free systems,
neither shape normalization (including size scaling, nonlinear nor-
malization and elastic cell) nor variable transformation is exploited
till now. Thus, it appears that HMM may properly model the
stroke variabilities and the sliding window-based feature extrac-
tion method may encode appealing information between adjacent
characters (refer to Section 1.3).

(2) MQDF3-2 yields a great improvement than MQDF3-1. Fur-
ther compared with 80DFUS, obvious increments are observed in
the recognition rates of Chinese character. Certainly, after three
decades research on handwritten Chinese isolated-character recog-
nition, there are many techniques available to improve the recog-
nizers. However, 80DFUS manifests advantages in the recognition
of digit and punctuation. This consideration pushes us to combine
MQDF3-2 with 80DFUS.

4.4.2. The time and memory consumption
We also report computational time and memory both on a desk-

top PC computer and a laptop. The description of computers is listed
in Tables 8. The average CPU time per character of segmentation-
free and segmentation-based systems are separately given in
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Fig. 14. Recognition results of the textline in Fig. 5d by: (a) 16DCELL, (b) 64DFPF, (c) 80DFUS, (d) 36DPCA, and (e) 36DGVS. Upper row of each subfigure shows the soft
segmentation boundary imposed on the textline. Middle row of each subfigure is copied from the recognition result of the textline and the correctly recognized characters
are underlined to give a clear view. Lower row of each subfigure highlights some segments and characters with S1 (substitute error is due to their inherent similarity), H1
(correctly identified segment with small outliers) and H2 (correctly identified block with large outliers).

Tables 9 and 10. The former include the CPU time of feature extrac-
tion and that of recognition. As for the latter, the time of character
segmentation is provided, too. To estimate the memory consump-
tion of each recognizer, the storage size of character models is
summarized in Table 11.

From Tables 9–11, following points can be inferred:

(1) The CPU time and memory needed by segmentation-free sys-
tems in this paper are mainly dependent on their dimensional-
ity of feature vector and the number of Gaussian mixtures; The
16DCELL (with five Gaussian mixtures) consumes smallest time
and memory. With the increase of feature size, 64DFPF (also with
five Gaussian mixtures) requires above double time and nearly
quadruple storage. The 80DFUS (with six Gaussian mixtures) be-
comes the most intensive recognizer in time and storage con-
sumptions. Once PCA is used, the overall time and storage are
greatly saved in 36DPCA (with four Gaussian mixtures) though
the time spent on feature extraction increases. More Gaussian
mixtures are needed in 36DGVS (with eight Gaussian mixtures)
when GVS is further adopted, which results in a bit more time
consumption and a slight increase of storage. However, with an
eye to the recognition rates, PCA and GVS are effective techniques
to enhance the segmentation-free systems.

(2) MQDF3 runs faster than MPTM with an acceptable memory re-
quirement, though MQDF is often claimed with intensive time

and memory consuming in literature. Due to the shortage of
samples, the parameter k in Formula 12 is set with 7. However,
experiments on isolated-character databases choose k around 40
wherein a huge memory and an increase of time are required.
Commonly, coarse classification stage is often performed to give
a small set of candidate characters before the MQDF3 classifier
and the CPU time to classify the candidates can be effectively
reduced. And the huge memory requirement of MQDF3 is often
alleviated by dimensionality reduction to some extent.

(3) Disadvantages in speed are observed in segmentation-free sys-
tems when compared with MQDF3-2. Among them, 80DFUS re-
quires the most intensive CPU time andmemory. In Section 4.5.2,
the integration of 80DFUS and MQDF3-2 provides improvement
in average recognition rates, while made a tradeoff between their
CPU time.

4.5. Verification of the complementary capacities

Due to the huge complexities and difficulties in the recognition of
realistic Chinese handwriting, the combination of segmentation-free
and segmentation-based systems may be an important direction in
the future. To pave the road to the fusion trends, we mainly explore
the complementary capacities between them in Section 4.5.1 and
then a simple integration mechanism is provided in Section 4.5.2.
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Fig. 15. Recognition results of the textline in Fig. 5e by: (a) 16DCELL, (b) 64DFPF, (c) 80DFUS, (d) 36DPCA and (e) 36DGVS. Upper row of each subfigure shows the soft
segmentation boundary imposed on the textline. Middle row of each subfigure is copied from the recognition result of the textline and the correctly recognized characters
are underlined to give a clear view. Lower row of each subfigure highlights some segments and characters with S1 (substitute error is due to their inherent similarity), S2
(substitute error results from writing distortion), H1 (correctly identified segment with small outliers) and H2 (correctly identified block with large outliers).

Fig. 16. Character pairs with high substitution errors in confusion matrix. Substitution
errors are often found between similar characters.

4.5.1. CMR curves
We first plot the CMR curve in Fig. 17 between 80DFUS and

MQDF3-2 (denoted as 80DFUS+MQDF3-2). It can be regarded as the
measurement of complementary capacities between two different
recognition strategies when they are trained on the same training
data and their features are of the same type.

As references, we add another two CMR curves between
two different segmentation-free systems: one is 80DFUS and
16DCELL (80DFUS+16DCELL), the other is 80DFUS and 64DFPF
(80DFUS+64DFPF). Seen from the previous experiments, the fusion
of cell features and FPFs demonstrates apparent improvement to
each original set of features. Thus, we also illustrate their CMR curve
in Fig. 17 (it is labeled as 64DFPF+16DCELL) to give a more concrete
reference.

Table 6
The recognition rates of MPTM-based systems on test set

Digit (%) Punctuation (%) Chinese character (%) Average (%)

CR AR CR AR CR AR CR AR

MPTM-1 11.30 8.26 12.12 9.22 28.81 26.33 26.74 24.22
MPTM-2 13.04 10.43 10.35 6.82 23.73 21.30 22.16 19.63
MPTM-3 13.91 12.61 13.76 9.22 27.66 25.41 25.96 23.52
MPTM-4 14.35 10.43 12.75 8.96 23.15 20.92 21.92 19.50
MPTM-5 13.04 10.87 11.36 9.34 24.05 21.39 22.54 19.96
MPTM-6 16.96 13.91 14.77 10.61 24.09 21.70 23.00 20.43
MPTM-7 12.61 9.57 12.37 9.85 23.85 21.47 22.45 20.04
MPTM-8 13.04 10.87 14.02 10.86 24.04 21.67 22.78 20.35

Table 7
The recognition rates of MQDF3-based systems on test set

Digit (%) Punctuation (%) Chinese character (%) Average (%)

CR AR CR AR CR AR CR AR

MQDF3-1 13.91 10.44 13.01 10.99 29.05 26.43 27.11 24.53
MQDF3-2 17.83 14.35 14.02 11.11 38.36 35.98 35.49 33.03
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Table 8
Computers used to measure performance

CPU Memory (MB)

Name Alias Clocks (GHZ)

Desktop PC Pentium 4 P68, Willamette 1.37 256
Laptop Mobile Duo T5600 Merom-2M 1.79 1024

Table 9
Average CPU time consuming of segmentation-free systems (unit: ms/character)

16DCELL 64DFPF 80DFUS 36DPCA 36DGVS

Feature extraction 24.52 (8.23) 155.02 (41.29) 169.72 (45.30) 171.71 (46.36) 171.17 (46.36)
Recognition 1950.21 (704.13) 3599.86 (1514.28) 5788.50 (1923.47) 2272.52 (1089.20) 4039.63 (1769.87)

The CPU time measured on laptop is given in parenthesis.

Table 10
Average CPU time consuming of segmentation-based systems (unit: ms/character)

MPTM-1 MQDF3-1 MQDF3-2

Character segmentation 1.14 (0.37) 1.14 (0.37) 1.14
Feature extraction 336.47 (101.53) 209.89 (75.80) 346.53 (106.53)
Classification 702.10 (322.08) 401.86 (153.35) 574.33 (164.48)

The CPU time measured on laptop is given in parenthesis.

Table 11
Memory consuming of segmentation-based and segmentation-free systems (unit:
MB)

16DCELL 64DFPF 80DFUS 36DPCA 36DGVS MPTM MQDF3

17.57 58.63 86.48 28.05 30.96 5.92 33.09

Fig. 17. Curves of CMR. Clear complementary capacities can be inferred between
the segmentation-free strategy and the segmentation-based one.

Seen from the figure, the curve of 80DFUS+MQDF3-2 is com-
pletely lower than other three curves derived from segmentation-
free systems. The smallest differential between them is more than 9%
when CR ranges from 40% to 88%. Moreover, when more characters
are considered (with CR decreasing), the differentials may largen.
Therefore we can safely conclude that the two strategies under same
training data may greatly complement each other, even when they
employ the same type of features.

segmentation-free system 

segmentation-based system

(character classification) 

textline

boundary refinement

initial boundaries

final boundaries

character string

Fig. 18. The connection diagram of segmentation-free and segmentation-based sys-
tems. The segmentation-free system is launched to locate the initial character
boundaries.

4.5.2. Integration of segmentation-free and segmentation-based
systems

In Ref. [49], we insert a segmentation-free system into a
segmentation-based system. The block diagram is illustrated in
Fig. 18, wherein the segmentation-free system is used to locate the
initial character boundaries. After tuning the boundaries, a consid-
erable improvement in recognition rates is observed. However, the
CPU time is intensively consumed, since two systems should be
performed one by one.

This paper presents a distinct mechanism to provide a more
concrete evidence for the complementariness between the
segmentation-free system (80DFUS) and segmentation-based sys-
tem (MQDF3-2). A similar strategy for English handwritten word
has been presented in Ref. [31]. If the output of the fed textline
is more “confident” than a threshold TH, 80DFUS will stand away.
Otherwise, we start 80DFUS to give the final output. The confidence
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Table 12
The recognition rates of integrated system on test set

Digit (%) Punctuation (%) Chinese character (%) Average (%)

CR AR CR AR CR AR CR AR

Combination 37.83 26.09 22.73 16.79 41.23 36.84 39.37 34.64

is evaluated on the rth textline by LLr as follows:

LLr =Mr
cs −Mr

df , (16)

where Mr
cs measures the quality of character segmentation and Mr

df
measures the closeness of discriminant function.

Initially, Mr
cs and Mr

df are zeros. If the width of any character

segments are larger than 1.5 times average character width (58 pix-
els in our experiment), Mr

cs will be updated with Mr
cs ← Mr

cs + 1.
To diminish the effect of textline length, Mr

cs will be divided by the
number of average characters in the rth textline. Similarly, Mr

df in-

creases with 10, if any of the differentials of minimum two g3(x,
i)
is smaller than 0.34. Also, the Mr

df should be divided by the number

of character segments in the rth textline.
The integrated system works well, and the results when TH =

95 are shown in Table 12. We can see an obvious improvement in
average recognition rates. It consumes 3078.01ms on the desktop
PC and 1002.38ms on the laptop.

5. Discussions

The recognition rates of both segmentation-based systems and
segmentation-free ones are no more than 50%. The low rates are
partially attributed to the complexities of the realistic handwriting.
However, the data sparseness also has remarkable impact.

Data sparseness is a common problem in natural language pro-
cessing. As soon as Chinese handwriting is concerned, a great deal of
Chinese characters may occur few times ever never. In other words,
many character models have insufficient training samples. As a re-
sult, robust parameter estimation is impossible and on the other
hand the recognizer easily falls into “overfitting”. This problem in al-
phabetic languages like English may be not as severe as in Chinese.
In recognition systems for English text, they can model the letters in-
stead of words and then arrange letter models to word model, since
plenty of letters are available. Unfortunately, Chinese character is
the basic writing unit, thus no straightforward way to condense the
large number of models. We plot the distribution of the samples in
Fig. 19. The coordinate (10, 56) means that there are 56 character
class, which possess 10 samples in train and validation sets. Among
them, 13.83% have no training samples at all and 52.10% possess less
than five training samples.

Alleviating the data sparseness reasonably may improve the
recognition rate remarkably. We further inspect the correlation-ship
between the number of samples and CR. All previously mentioned
systems manifest significant correlations at 0.05 level [45] as regards
the recognition of Chinese characters. The correlation coefficients of
them are listed in Table 13. However, their significance is not con-
firmed as regards digit and punctuation. This is the main reason that
the alleviation of insufficient data by PCA and GVS displays no pos-
itive effect (please refer to Section 4.3). If we expand the available
samples of Chinese characters, the performance will be improved
further, which can be inferred from Fig. 20. As expected, we can see
that MQDF3-2 climbs up slower than segmentation-free systems.

Data sparseness is a hard problem indeed. However, two princi-
ples can alleviate it. The most obvious one is increasing the copies
of samples, for example, collecting the same database several times;
generating artificial samples by computer (refer to Ref. [50] for more
details); incorporating existing character database (we can utilize
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Fig. 19. The histogram of the number of samples. The data are derived from train
and validation sets.

Table 13
The correlation coefficients of different systems between the number of samples
and CR

16DCELL 64DFPF 80DFUS 36DPCA 36DGVS MQDF3-2

0.66 0.65 0.69 0.65 0.57 0.48
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Fig. 20. Relationship between the number of samples and CR. With the exponential
increase in the number of samples, it shows proportional improvements in CR.

the isolated-character database to initialize the character models or
to produce textlines for a more reliable training); data sharing be-
tween similar models. Another principle is to reduce the size of pa-
rameter set to be estimated, for example, using dimension reduction
method (as in present paper) or dispensing the number of Gaussians
proportional to available samples (an example is given in Ref. [51]).

6. Conclusions

Realistic Chinese handwriting poses great challenges to the state-
of-the-art recognizers. On the one hand, the character separation is
still far from solved. The segmentation algorithm falls into under-
segmentation, once it encounters touching, overlapping, and cross-
ing phenomena. On the contrary, over-segmentation cases are often
raised to left–right structure characters. On the other, due to the great
variability in character shape, the character modeling techniques
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should be updated. Currently, the features are extracted within each
character segment. However, the conjunction relationship between
adjacent characters also encodes valuable information. Thus, it is in
great need to handle these problems.

This paper describes HMM-based recognizers for realistic Chinese
handwriting under a segmentation-free framework. The textlines fed
into recognizer have no need to provide the position of the char-
acters, and the output from recognizer is a best string of charac-
ters in MAP sense. Experiments are conducted on HIT-MW database.
Promising results are achieved, which not only show the feasibility
of the segmentation-free strategy but also provide the apparent evi-
dence on the complementary capacities between the segmentation-
free strategy and the segmentation-based one. Based on the obser-
vations found in this paper, we will investigate following points in
the future: the discriminative feature extraction method, which can
make preferable tradeoff between punctuation and Chinese charac-
ters; the synthetic handwriting algorithm to alleviate the insufficient
training data; the approach to properly combine segmentation-free
and segmentation-based systems.
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