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Evi1 defines leukemia-initiating capacity and tyrosine
kinase inhibitor resistance in chronic myeloid leukemia
T Sato1,2, S Goyama1,5, K Kataoka1, R Nasu1, T Tsuruta-Kishino1, Y Kagoya1, A Nukina1, K Kumagai3, N Kubota3, M Nakagawa1,
S Arai1, A Yoshimi1, H Honda4, T Kadowaki3 and M Kurokawa1

Relapse of chronic myeloid leukemia (CML) is triggered by stem cells with a reconstituting capacity similar to that of hematopoietic
stem cells (HSCs) and CML stem cells are a source of resistance in drug therapy with tyrosine kinase inhibitors (TKIs). Ecotropic viral
integration site 1 (EVI1), a key transcription factor in HSC regulation, is known to predict poor outcomes in myeloid malignancies,
however, incapability of prospective isolation of EVI1-high leukemic cells precludes the functional evaluation of intraindividual
EVI1-high cells. Introduction of CML into Evi1-internal ribosomal entry site (IRES)-green fluorescent protein (GFP) knock-in mice, a
versatile HSC-reporter strain, enables us to separate Evi1-high CML cells from the individual. Evi1-IRES-GFP allele models of CML in
chronic phase (CML-CP), by retroviral overexpression of BCR–ABL and by crossing BCR–ABL transgenic mice, revealed that Evi1 is
predominantly enriched in the stem cell fraction and associated with an enhanced proliferative as well as a leukemia-initiating capacity
and that Evi1-high CML-CP cells exhibit resistance to TKIs. Overexpressing BCR–ABL and NUP98–HOXA9 in Evi1-IRES-GFP knock-in mice
to model CML in blast crisis (CML-BC), in which Evi1-high cells turned to be a major population as opposed to a minor population in
CML-CP models, showed that Evi1-high CML-BC cells have a greater potential to recapitulate the disease and appear resistant to TKIs.
Furthermore, given that Evi1 heterozygosity ameliorates CML-CP and CML-BC development and that the combination of Evi1 and
BCR–ABL causes acute myeloid leukemia resembling CML-BC, Evi1 could regulate CML development as a potent driver. In addition, in
human CML-CP cases, we show that EVI1 is highly expressed in stem cell-enriched CD34+CD38–CD90+ fraction at single-cell level. This
is the first report to clarify directly that Evi1-high leukemic cells themselves possess the superior potential to Evi1-low cells in oncogenic
self-renewal, which highlights the role of Evi1 as a valuable and a functional marker of CML stem cells.
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INTRODUCTION
As multipotent hematopoietic stem cells (HSCs) reside at the apex
of hematopoietic hierarchy, leukemic progeny from leukemic stem
cells (LSCs) shape the bulk of the tumor with intact capacity of
LSCs to self-renew. Physiological and biological similarities of LSCs
to those of HSCs are supposed to be the main causes of the
difficulties in establishment of LSC-targeted therapy.1,2

Chronic myeloid leukemia (CML) is a myeloproliferative disor-
der by BCR–ABL, which can transform HSCs into LSCs with a limitless
capacity for self-renewal, whereas LSCs of acute myeloid leukemia
(AML) are mainly composed of more differentiated progenitor
cells.3–5 The relentless march of CML from chronic phase (CP) to
blast crisis (BC) phase can result in fatal survival outcomes.6 Despite
substantial prognostic improvement of CML by a specific debulking
of tumor burden with a tyrosine kinase inhibitor (TKI) targeting ABL
kinase, imatinib-treated CP patients can relapse and progress to BC
because of the remnant CML stem cells.7–10 Although recent
findings have started to unveil the biological nature of CML stem
cells,11–16 further elucidation of the mechanisms controlling the
self-renewal of these cells is still needed.
Defects in the molecular components that control hemato-

poiesis severely perturb normal development, one of which is

ecotropic viral integration site 1 (Evi1), a predictor of poor
outcomes in myeloid malignancies such as AML, myelodysplastic
syndrome and CML-BC.17–21 In normal hematopoiesis, Evi1 is
restricted to embryonic and adult HSCs22 and cumulative data
have placed Evi1 as one of ‘stemness’ genes.23–25 The recent gene
expression profiling of bulk samples or selective populations have
shown that EVI1 is one of LSC signature genes in AML and that
stem cell-enriched CML CD34+ cells have high EVI1, underlining
the relevance of EVI1 and LSCs.26,27 As EVI1 is an oncogenic
transcription factor,28–34 prospective isolation of EVI1-high leuke-
mic cells from clinical patients is unfeasible, so is the functional
assessment of EVI1-high cells compared with EVI1-low cells
intraindividually.
In this study, we aimed to cover in depth the regulation of CML

stem cells by Evi1. Our single-cell analysis of primitive or
differentiated subsets from primary CML-CP samples show that
EVI1 is highly expressed in stem cell-enriched CD34+CD38–CD90+
cells. Furthermore, we have established multiple CML mice
model with Evi1-Internal Ribosomal Entry Site (IRES)-green
fluorescent protein (GFP) knock-in allele, in which Evi1-high CML
cells can be separated directly and prospectively using a single
GFP35 to evaluate their capacity for leukemia development.
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Evi1-IRES-GFP allele leukemia animals provide us for the first time
with a more definite hierarchical map in CML hematopoiesis and,
through loss- and gain-of-function studies we could evaluate the
functional role of Evi1 in CML. This study could also determine
whether Evi1-high CML cells could have resistance to TKI therapy.

RESULTS
EVI1 is highly expressed in human CML-CP stem cells
To ask whether CML-CP stem cells have high EVI1, we performed
gene expression analysis in single primary CML-CP cells prospec-
tively isolated from bone marrow (BM) samples of two newly
diagnosed CML-CP patients (Supplementary Table S1). A total of 120
single cells (21 and 16 stem (CD34+CD38–CD90+) cells, 31 and
25 progenitor (CD34+CD38+) cells, 14 and 13 differentiated
(CD34–CD33+) cells in cases 1 and 2, respectively) were subjected
to single-cell gene expression analysis of housekeeping genes
(beta-actin and gapdh), BCR–ABL and EVI1 (Supplementary
Figure S1). As CML-CP cells could be distinguished by their positive
expression of BCR–ABL from normal BM cells, it was revealed that,
among CML-CP cells, CD34+CD38–CD90+ cells showed lower Ct
values of EVI1 than CD34+CD38+ cells or CD34–CD33+ cells
intraindividually, implying the highest EVI1 in CML-CP stem cells
(Figure 1a). When Ct = 30 was set as a threshold of EVI1 positivity, all
CD34+CD38–CD90+ cells were EVI1 positive (Cto30; n=21/21 for
case 1, n=12/12 for case 2), while one-fifth of CD34+CD38+ cells
(n=5/24 (20.8%), n=4/25 (16%), respectively) or three to four-fifths
of CD34–CD33+ cells (n=7/11 (63.8%), n=9/11 (81.8%), respec-
tively) were EVI1 negative (Ct>30) (Figure 1b). Microarray data from
Radich et al.1 revealed that EVI1 in the whole BM is upregulated in
advanced phase (accelerated phase (AP) and BC) of CML compared
with CML-CP, possibly implying the limited EVI1 in CML-CP stem
cells and the extended EVI1 in BM of CML-AP and CML-BC
(Figure 1c). These clinical data indicate a potential role of EVI1 as a
valuable marker of CML-CP stem cells.

Evi1-high CML-CP cells have LSK phenotype in murine CML model
To elucidate the in vivo expression pattern of Evi1 in CML-CP,
5-fluorouracil (5FU)-primed BM cells from heterozygous Evi1-IRES-
GFP (Evi1+/GFP) knock-in mice were retrovirally transduced with
BCR–ABL (detected with Kusabira Orange (KuOr) fluorescent
protein) and injected into lethally irradiated recipient mice to
generate ‘Evi1-reporter’ CML-CP mice (Figure 1d). Within BCR–
ABL-positive (KuOr+) BM cells from moribund Evi1-reporter
CML-CP mice (3-4 weeks after transplantation), the flow cytometry
(FCM) analysis showed that immature (Gr-1-negative) CML cells
have a higher GFP-positive rate than mature (Gr-1-positive) CML
cells. GFP-positive rates of sub-populations in these mice revealed
that Lineage-Sca-1+c-kit+ (LSK) fraction is the highest compared
with myeloid progenitor (MP; Lineage-Sca-1-c-kit+) fraction,
Lineage– (Lin–) fraction and whole BM cells (Figures 1e and f,
Supplementary Figure S2a). Evi1-high KuOr+ cells comprised only
0.065% in the BM, were mostly Gr-1-, and about 90% of these cells
showed LSK immunophenotype (Supplementary Figure S2b). The
enlarged spleens from these mice also contained Evi1-high cells,
which were the most abundant in LSK (Supplementary Figure S2c).
Collectively, our data from human CML-CP samples and CML-CP
mice revealed that Evi1 is highly expressed in the stem cell
fraction.

Evi1-high CML-CP LSK cells have a higher proliferative potential
As LSK cells showed a heterogeneous pattern of Evi1 in BM of
Evi1-reporter CML-CP mice, we sorted the Evi1-high or Evi1-low
fractions from KuOr+ LSK cells (Figure 2a). Evi1-high LSK cells
showed a higher colony-forming potential in vitro, the sizes of
which were larger than those from Evi1-low cells (Figures 2b and c).

Co-culture of LSK cells with OP-9 cells revealed a higher clonogenic
potential of Evi1-high LSK cells (Supplementary Figure S2e).
Transcripts of BCR–ABL were comparable between Evi1-high and
Evi1-low LSK populations (Figure 2d), suggesting little relevance of
BCR–ABL to the enhanced proliferation of Evi1-high CML cells.
These results suggest that Evi1-high CML-CP LSK cells have the
proliferative advantage.

Evi1-high CML LSK cells have SLAM LSK marker profile with
CML-initiating potential and TKI resistance
Generating primary CML-CP mice by BCR–ABL retrovirus with
irradiated recipients inevitably leads to damaged BM microenvir-
onment and likely overestimation of extramedullary hematopoi-
esis. To clarify the precise behavior of Evi1-high CML LSK cells
in vivo, we crossed Evi1+/GFP mice with p210 BCR–ABL transgenic
mice (BCR–ABLtg/−),36 which develop a CML-like disease
(Supplementary Figure S3a), to analyze undamaged BM of CML-
CP (Figure 2e). Evi1+/GFP BCR–ABLtg/− (CML) mice showed myeloid
cell expansion in BM with mild splenomegaly (Supplementary
Figures S3b and c) representing a myeloproliferative disorder
phenotype of this model. The median survival of Evi1+/GFP

BCR–ABLtg/− mice in our experiments was 287 days, consistent
with the previous report,36 which revealed that Evi1-IRES-GFP
allele had no unforeseen effect on CML development. In addition
to the expanded bulk of CML BM cells, Evi1+/GFP BCR–ABLtg/− mice
showed an increase in GFP intensity and the number of LSK cells
(Supplementary Figures S2a and S3c). Evi1-high cells in the BM of
these mice only amounted to 0.05% with negative marker profiles
of Gr-1, B220, CD4, CD8, TER-119 and intermediate Mac-1, while
almost all Evi1-low cells were Gr-1+Mac-1+. In Lin– cells, the
majority of Evi1-high cells resided in Sca-1+c-kit+ fraction,
consistent with the profile of a retroviral CML-CP model bearing
Evi1+/GFP allele (Supplementary Figure S3d). Strikingly, analysis of
CD150/signaling lymphocyte activation molecule (SLAM) markers
in LSK cells of Evi1+/GFP BCR–ABLtg/− mice clearly showed that Evi1-
high LSK cells had a higher percentage of CD150+CD48– cells, a
well-established marker phenotype of long-term stem cells
(Figures 2f and g). Evi1-high CML LSK cells were the most in G0/
G1 phase (quiescent) in CML setting, similar to the trend of sub-
populations from normal Evi1+/GFP mice (Figure 2h). Colony-
forming assay showed the advantageous phenotype of Evi1-high
CML LSK cells to proliferate in vitro (Supplementary Figure S3e).
From these data, Evi1-high Evi1+/GFP BCR–ABLtg/− LSK cells had the
most immature immunophenotype.
To evaluate the stem cell activity of Evi1-high CML LSK cells

in vivo, we next performed BM transplantation (BMT) experiments,
in which 5 × 103 Evi1-high or Evi1-low LSK cells were injected
intravenously into sublethally irradiated recipients (Figure 3a).
FCM analyses of peripheral blood (PB) in recipients revealed the
efficient engraftment of donor cells from Evi1-high LSK-trans-
planted cohort as contrasted with recipients of Evi1-low LSK cells
(Figure 3b). The successive engraftment and multilineage
reconstitution up to 16 weeks after BMT clearly indicated the
higher repopulating capacity of Evi1-high LSK cells (Figure 3c,
Supplementary Figure S3f). With such a prolonged engraftment,
recipients with Evi1-high LSK cells died of CML (4 deaths per 6
mice), while those with Evi1-low LSK cells had no incidence of CML
(0 death per 6 mice), revealing high CML-initiating potential of
Evi1-high CML LSK cells (Figure 3d).
Drug resistance is one of critical characteristics of LSCs, which

motivated us to conduct in vivo therapeutical interventions to
Evi1+/GFP BCR–ABLtg/− mice. Oral administration of nilotinib, a
potent BCR–ABL inhibitor, to Evi1+/GFP BCR–ABLtg/− mice for 7 days
resulted in amelioration of BM cellularity and splenomegaly, which
underlay the efficacy of the drug (Supplementary Figure S3c). In
LSK fraction, although nilotinib-treated Evi1+/GFP BCR–ABLtg/− mice
showed the reduced number of Evi1-low LSK cells in BM
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compared with vehicle-treated Evi1+/GFP BCR–ABLtg/− mice, that of
Evi1-high LSK cells had no change irrespective of nilotinib
treatment, which implied nilotinib resistance of Evi1-high CML
cells (Figure 3e). The relatively nilotinib-resistant aspect of these
cells was confirmed by in vitro colony-forming assay
(Supplementary Figure S3g). FCM analysis of the residual cells in
BM and spleen of nilotinib-treated Evi1+/GFP BCR–ABLtg/− mice
revealed a marked increase in the percentage of CD150+
CD48– fraction of Evi1-high LSK cells (Supplementary Figure S3h).

The treatment had no impact on normal Evi1+/GFP mice as to
Evi1-positive rate (data not shown). These data of Evi1+/GFP

BCR–ABLtg/− mice revealed CML stem cell activity and nilotinib
resistance of Evi1-high cells.

Evi1 heterozygosity impairs CML development
Based on these findings, we next crossed Evi1 heterozygous
knock-out (Evi1+/−) mice with BCR–ABLtg/− mice to clarify whether

+
BCR-ABL
(Kusabira
Orange)

(%)

Gr-1

C
ou

nt

Bone marrow cells

BCR-ABL(+) BM

Evi1+/GFP

5FU-primed BM
Evi1+/GFP

CML-CP mouse

** ** **

Case1 Case2

EVI1
negative
(Ct > 30)

EVI1
positive
(Ct < 30)

CML-CP Case1 CML-CP Case2

C
t v

al
ue

 (
hu

m
an

 E
V

I1
)

R
at

io
 o

f E
V

I1
+

 o
r 

- 
ce

lls

Normal
CML-CP

CML-AP
CML-BC

hE
V

I1
 (

ra
tio

)

KuOr
(BCR-ABL)

C
ou

nt

KuOr(+) (-)

Normal

CML-CP

Lineage

S
S

C

MP LSK

(+)

GFP

C
ou

nt

Gr-1(+)
Gr-1(-)

BM

MP
Lin-

LSK

Sca-1

c-
ki

t

C
ou

nt

6.34 5.915.7

BCR-ABL(+) BM

28.4 69

0

0.2

0.4

0.6

0.8

1

C
D

34
+

C
D

38
-C

D
90

+

C
D

34
+

C
D

38
+

C
D

33
+

C
D

34
-

C
D

34
+

C
D

38
-C

D
90

+

C
D

34
+

C
D

38
+

C
D

33
+

C
D

34
-

C
D

34
+

C
D

38
-C

D
90

+

C
D

34
+

C
D

38
+

C
D

34
-C

D
33

+

C
D

34
+

C
D

38
-C

D
90

+

C
D

34
+

C
D

38
+

C
D

34
-C

D
33

+

15

20

25

30

35

40

45

-1.5

-1

-0.5

0

0.5

1

1.5

2

0
2
4

G
F

P
-p

os
iti

ve
 r

at
e

6
8

10
12
14
16
18

LSK BMLin-MP

GFP
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loss of Evi1 would affect CML development (Figure 3f). Surpris-
ingly, 1-year follow-up revealed a significantly prolonged survival
of Evi1+/− BCR–ABLtg/− mice (4 deaths per 7 cases), with an obvious
contrast to the high lethality of Evi1+/+ BCR–ABLtg/− mice (12
deaths per 14 cases; Figure 3g, P= 0.0106). All dead mice in both
cohorts had granulocytosis and mild splenoegaly (data not
shown). Given that Evi1+/− mice are fertile with no sign of BM
failure over a year,25 these data suggest that Evi1 has a distinctive
role in CML development.

BCR–ABL and NUP98–HOXA9 induce myeloid BC of CML with Evi1
upregulation
The BC phase of CML is characterized by high mortality and
resistance to both TKI therapy and conventional chemotherapy,
with HSC transplantation being the only therapy providing
appreciable efficacy. Among CML-BC cases with high EVI1, there
exist not only 3q-rearranged cases but also cases without 3q
rearrangement, possibly suggesting unknown EVI1 regulation. To
evaluate a leukemogenic function of Evi1-high cells in CML-BC,
BCR–ABL and NUP98–HOXA9 were co-transduced37 into 5FU-

primed BM of Evi1+/GFP mice to establish Evi1-reporter CML-BC
mice (Figure 4a). Evi1-reporter CML-BC mice had an obviously high
level of Evi1-positive cells in the BM compared with Evi1-reporter
CML-CP mice (Figures 4b and e). Evi1-reporter CML-BC mice died
at 14 days after BMT and showed emergence of blast cells in PB as
well as in BM and spleen, a AML-like phenotype, which was
markedly different from that of CML-CP model.

Evi1-high CML-BC cells are enriched in the progenitor fraction
The morphological analyses of BM in Evi1-reporter CML-BC mice
showed that Evi1-high cells mostly comprises leukemic blasts,
while more than half of Evi1-low cells were differentiated cells
(Figures 4c and d). From FCM analyses, most of Evi1-high CML-BC
cells were negative for Gr-1, as opposed to Gr-1+ immunopheno-
type of Evi1-low cells. In Lin– cells of these mice, Evi1-high cells
had a higher percentage of c-kit (Figure 4b). Totally, Evi1-high cells
were rich in Lin-c-kit+ (LK) fraction of myeloid progenitor
immunophenotype, the level of which was apparently higher
than that of CML-CP (Figure 4e). Evi1-high LK cells had higher
colony-forming capacity, indicating their proliferative advantage
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(Figure 4f, Supplementary Figure S4a). Transcripts of BCR–ABL and
HOXA9 were comparable between Evi1-high and Evi1-low LK
populations (Figure 4g, Supplementary Figure S4b), reflecting little
relevance of BCR–ABL or NUP98–HOXA9 dosage to the enhanced

proliferation of Evi1-high cells. The majority of CML-BC LK cells
showed higher Evi1 than CML-CP LSK cells, whereas CML-CP LSK
cells had a wide range of Evi1, suggesting Evi1 upregulation in
CML-BC model (Figure 4h). Cell cycle analysis revealed that Evi1-
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high LK cells were more in S/G2/M phase than their Evi1-low
counterpart, possibly reflecting their higher proliferating potential
(Figure 4i).

Evi1-high CML-BC cells have higher leukemogenic potential and
TKI resistance
To assess the leukemogenic potential of Evi1-high CML-BC cells
in vivo, we performed serial BMT experiments. Recipients with
5 × 104 Evi1-high CML-BC cells recapitulated the disease, while
recipeints with Evi1-low cells showed no leukemia incidence.
When 1× 103 LK cells were transplanted, leukemia-initiating cells
were found to be enriched in the Evi1-high fraction with the
frequency of 1/62 cells (1.6%), indicative of high leukemogenicity,

whereas Evi1-low cells even in LK fraction had no potential for
CML-BC development (Figure 5a, Supplementary Table S4). Under
in vitro nilotinib treatment, Evi1-high LK cells showed a relatively
higher proliferative capacity than Evi1-low cells (Supplementary
Figure S4c). Seven-day in vivo nilotinib treatment resulted in the
significant improvement of hepatosplenomegaly and only Evi1-
low LK cells showed a significant decrease in number, indicating
that Evi1-high LK cells are more resistant to TKI than the Evi1-low
counterpart (Figure 5b,Supplementary Figure S4d). Even residual
Evi1-high LK cells in BM after nilotinib still possessed leukemo-
genic potential (Supplementary Figure S4e). All of CML-BC mice
treated with nilotinib relapsed with the expansion of Evi1-high
cells after the drug cessation, reflecting a limited role of TKI for
CML-BC (data not shown).
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We next tested whether loss of Evi1 would affect the
development of CML-BC. 5FU-primed Evi1+/+ or Evi1+/− BM cells
transduced with BCR–ABL and NUP98–HOXA9 were injected into
lethally irradiated recipients (Figure 5c). All of the primary
recipients developed CML-BC regardless of Evi1 dosage, with a
slight delayed onset in Evi1+/− cohort (Figure 5d). In the secondary
recipients receiving 5 × 104 CML-BC BM cells, however, Evi1+/−

CML-BC cells showed a significantly attenuated leukemogenic
potential, whereas Evi1+/+ CML-BC retained the full capacity
(Figure 5e). These results indicate that the development of CML-
BC is dependent on Evi1 dosage.

Combination of BCR–ABL and Evi1 induces AML
Having established that Evi1 was upregulated in vivo by BCR–ABL
and NUP98–HOXA9, we analyzed a role for Evi1 as a direct
driver in CML-BC. Co-transduction of BCR–ABL and Evi1 caused
lethality in transplanted mice (median survival: 24 days after
BMT, Figures 6a and f). These recipients showed marked
predominance of leukemic blasts in BM, spleen and PB, with a
neutrophilic component, hypercellular BM and hepato-
splenomegaly (Figures 6b–d). Splenomegaly was more obvious
in the recipients of BCR–ABL plus Evi1 than those of either
BCR–ABL alone or BCR–ABL plus NUP98–HOXA9, whereas
liver sizes were comparable (Figure 6e). The disease was

transplantable with the shorter latency and BM cells of the
recipients with BCR–ABL and Evi1 were skewed to the myeloid
lineage (Gr-1+) and Lin-c-kit+ cells were dominant in the
primitive fractions (Figures 6f and g). Based on the criteria of
Bethesda proposals,38 the disease was finally diagnosed as
‘Myeloid leukemia with maturation’. Thus, even without NUP98-
–HOXA9, activation of Evi1 can induce AML, resembling myeloid
BC in CML, in collaboration with BCR–ABL in mice. Given that the
duration of CML-CP development by BCR–ABL retrovirus is about
3–4 weeks, and Evi1 alone could induce myelodysplastic
syndrome/AML in mice after 6 months or more,39,40 these
results indicate that Evi1 can have a causative role in blastic
transformation of CML.

DISCUSSION
Discovery strategies aimed to identify novel driver oncogenic
lesions have succeeded in enrichment of the catalog of
therapeutic targets, the most striking of which is BCR–ABL where
TKI therapy has conferred tremendous benefits to CML patients
with a sustained debulking of tumor burden. Even in the era of TKI
treatment in CML, blastic transformation can occur with the
translocation involving EVI1 locus,41,42 which is crucial because the
clinical outcomes of CML plummet from CP (80%) to BC (20%).43,44

Allogeneic HSC transplantation is so far the only potential remedy
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for high EVI1 cases of CML-BC as well as AML, emphasizing the
need for new therapy targeting EVI1.18,21,45,46

Our hypothesis stems from the fact that EVI1 is a valuable
prognostic factor of myeloid malignancies as well as a critical
regulator of HSCs. To overcome the incapability of prospective
separation of intraindividual EVI1-high cells in human leukemias,
we used our original Evi1+/GFP mice, developing two types of CML-
CP model to show that Evi1 is a valuable marker for CML stem cells.
Both in retrovirally developed CML-CP mice and BCR–ABLtg/− mice,
Evi1 is restricted to a small population with primitive immuno-
phenotypic markers, especially in the latter, the most primitive
profile like SLAM-LSK represents Evi1-high cells. When seen against
previous studies,47–49 the novelty of this study lies in that high Evi1
could distinguish CML-CP stem cells even from SLAM-LSK cells or

non-SLAM-LSK cells. This point can be translated to human CML
cases like that high EVI1means the increasing number of CML stem
cells. Evi1-high CML LSK cells have a superior proliferative potential
in vitro, a superior leukemia-initiating capacity in vivo and nilotinib
resistance. The resistant aspect of Evi1-high cells to nilotinib would
fit into clinical data that high EVI1 is related to TKI resistance.17 The
in vivo quiescent status of Evi1-high CML-CP cells, which could
proliferate aggressively in vitro, may be controlled by hypoxic BM
niche microenvironment.50,51 In line with less dependence of CML
stem cells on BCR–ABL,2,52,53 Evi1-high CML-CP LSK cells showed a
comparable BCR–ABL to their Evi1-low counterpart, reflecting little
addiction to BCR–ABL (Figure 2d).
In accordance with Evi1-reporter CML-CP model, our single-cell

analysis of clinical CML-CP cases revealed the highest EVI1 in stem
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cell-enriched CD34+CD38–CD90+ cells, reflecting CML-CP as a
stem cell disease (Figure 1a). Using BCR–ABL-specific primers, we
could effectively distinguish CML-CP cells (BCR–ABL+) from
remnant normal cells (BCR–ABL–). These human data could
reinforce the value of murine CML data.
We also examined retroviral Evi1-reporter CML-BC mice and

showed that a sizable fraction of LK cells have distinct Evi1
expression in sharp contrast to the CML-CP model. CML-BC stem
cells are exclusively enriched in Evi1-high LK cells with resistance
to nilotinib. The impact of combining the CML-BC with Evi1
upregulation is in strong contrast to that of the simple BCR–ABL
BMT model, which only leads to CML-CP in mice 3–4 weeks
after inoculation (Figure 4h). Taken together, this is the first report
that visualizes Evi1 upregulation in in vivo leukemia models. The
finding is consistent with the previous report that showed the
transcriptional regulation of Evi1 by NUP98–HOXA9 in vitro.54 In
our CML-BC model, HOXA9 showed no difference between Evi1-
high and Evi1-low LK cells, eliminating the possible dependence
of Evi1-high cells on NUP98–HOXA9 (Supplementary Figure S4b).
In our Evi1 knock-out studies of CML-CP and BC mice, Evi1

heterozygosity alleviated the disease (Figures 3g and 5e), high-
lighting a functional role of Evi1 in CML pathogenesis. Although
complete loss of Evi1 causes embryonic lethality in mice,25,55

Evi1+/− mice have no sign of BM failure over a year and are fertile
with a decreased size and function of HSCs.25,35 EVI1 has been
reported to be relevant to BCR–ABL tyrosine kinase activity.27

Collectively, it is supposed that Evi1 reduction may permit the
reversal of CML at the partial expense of HSCs.
We extended this study to establish a new model of AML by

BCR–ABL and Evi1. It is meaningful that overexpression of Evi1
itself is the driver in blastic transformation of CML not only by
Evi1-related fusions. Cuenco et al.56 have previously reported that
EVI1 with BCR–ABL induces not leukemias but a fatal myelopro-
liferative disorder in mice. In contrast to the usage of human EVI1
complementary DNA (in MSCV retroviral vector) in murine BMT
model of Cuenco’s study, we utilized murine Evi1 for Evi1
overexpression. Murine Evi1 especially in pMYs vector is suitable
for establishing myeloid leukemia in mouse BMT model (Jones
et al.42 and unpublished), which resulted in a new AML model by
Evi1 plus BCR–ABL. These findings can remind us of the
importance of controlling Evi1 to impair CML-BC development
by BCR–ABL and NUP98–HOXA9. As authentic Evi1 targets,22,33,34

such as Gata2, Pten and Pbx1, showed no difference in expression
levels between Evi1-high and Evi1-low CML cells (data not shown),
the further exploration of CML-specific Evi1 targets would be
warranted.
As opposed to Evi1-reporter CML models, in AML model by

MLL-ENL retrovirus, Evi1-high MLL-ENL leukemic cells showed no
advantage in leukemia initiation compared with Evi1-low cells
(Supplementary Figure S5). Other Evi1-reporter AML models by
MOZ-TIF2 and TP+AE never generated Evi1-high fraction, suggest-
ing the high affinity of Evi1 for stem cell disease such as CML.
Although Evi1 could not enrich MLL-ENL AML LSCs in our model, it
is possible that Evi1 reduction in the bulk leukemia cells would be
a key in amelioration of MLL-related leukemia as previously
investigated.25 Exact introduction of these oncogenes to HSCs by
different approaches such as via a transgene or a knocking-in
technology could unravel the relation between AML stem cells
and Evi1.
In conclusion, high Evi1 can define the population of CML stem

cells that are resistant to nilotinib. This is the first report that
uncovers the importance of leukemia cells with high Evi1
intraindividually. Combinatorial analyses of Evi1-IRES-GFP allele
CML animals and single cells from primary CML-CP patients
covered in depth the critical regulation of CML stem cells by Evi1.
To elucidate the complex cellular circuits involving Evi1, a further
genetic and epigenetic investigation of Evi1-high cells would
unveil precise mechanisms of the phenotype in leukemias.

MATERIALS AND METHODS
Single-cell gene expression analysis
Primary BM samples of CML-CP patients were stained with anti-CD34, anti-
CD38, anti-CD33 and anti-CD90 (Supplementary Table S2), and single-cell
sorted by FACSAriaII (BD Biosciences, San Jose, CA, USA) gating on each
population excluding cell duplets directly into individual wells of 96-well
plates filled with 5 μl RT/Specific Target Amplification master mix solution
(Fluidigm, San Francisco, CA, USA) immediately followed by reverse
transcription and gene-specific pre-amplification with CellsDirect One-Step
qRT-PCR kit (Life Technologies, Carlsbad, CA, USA) in the same plates. Each
complementary DNA was subjected to quantitative real-time PCR by
LightCycler 480 (Roche, Basel, Switzerland) using SYBR Green (TAKARA,
Otsu, Japan) with the primers inside of the pre-amplified complemen-
tary DNA. Gene-specific primers were listed in Supplementary Table S3.
Only samples with a specific product peak in the melting curve analysis of
housekeeping genes were taken for further analysis. This study was
approved by ethical committee of the University of Tokyo.

Population quantitative real-time–PCR
Target gene expression for bulk samples or sorted populations was
evaluated by LightCycler 480 as described previously.35 All assays were
performed in triplicate and expression levels relative to 18s ribosomal RNA
were determined. Primer sequences are listed in Supplementary Table S3.

Mice
Evi1-IRES-GFP knock-in (Evi1+/GFP) mice, Evi1 knock-out (Evi1+/−) mice and
p210 BCR–ABL transgenic (BCR–ABLtg/−) mice on a C57BL/6 (Ly5.2)
background were used and genotyped as previously described.25,35,57

CML development of BCR–ABLtg/− mice was confirmed by leukocyte
elevation (>10 000 cells/μl) and >80% increase of Gr-1+ cells in PB. Ly5.1
mice were purchased from SRL Inc. (Tokyo, Japan). All mice were kept at
the Animal Center for Biomedical Research of the University of Tokyo.

Flow cytometry
FACSAriaII was used for cell sorting of stained cells and LSRII (BD
Biosciences) was used for other analyses. Data were analyzed with FlowJo
(TreeStar, Ashland, OR, USA). In experiments with the Evi1-IRES-GFP knock-
in mouse, a ‘fluorescence minus one’ littermate control was analyzed in
parallel to set GFP gates.35 Antibodies are listed in Supplementary Table S2.

Retrovirally developed leukemia model mice
Plat-E packaging cells58 were transiently transfected with retroviral
constructs by FuGENE6 (Roche). 5FU-primed BM cells were incubated in
RPMI1640 medium (Wako, Osaka, Japan) with cytokines (50 ng/ml stem cell
factor, 50 ng/ml thrombopoietin, 10 ng/ml interleukin-6) for 24 h as
previously described,25,35 and cultured cells were infected with retrovirus
on RetroNectin (TAKARA)-coated plate. The combination of donor cells and
retroviruses is as follows; Evi1+/GFP BM with pGCDNsam/BCR–ABL/IRES-KuOr
for Evi1+/GFP CML-CP, Evi1+/GFP BM with pGCDNsam/BCR–ABL/IRES-KuOr
and pMSCVpuro/NUP98–HOXA9 for Evi1+/GFP CML-BC, Evi1+/GFP BM with
pGCDNsam/MLL-ENL/IRES-KuOr or pGCDNsam/MOZ-TIF2/IRES-KuOr or
pMSCV/TEL-PDGFR/IRES/AML1-ETO for Evi1+/GFP AML, and C57BL/6 (Ly5.2)
BM with pGCDNsam/BCR–ABL/IRES-GFP and pGCDNsam/Evi1/IRES-KuOr
for a new AML model. The infected cells were harvested 48 h after
retrovirus infection, and injected into lethally (9.5 Gy) irradiated
recipient mice in competition with 2 × 105 unfractionated BM cells from
congenic mice. BCR–ABL-positive CML cells were distinguished by each
fluorescent protein.

In vivo transplantation assay
For secondary BMT assay of BCR–ABL and NUP98–HOXA9 overexpressing
mice and BCR–ABL and Evi1 overexpressing mice, sublethally irradiated
(7.5 Gy) mice (Ly5.2) were injected with the indicated subsets from these
mice (Ly5.2). Reconstitution of donor-derived cells was monitored by GFP
or KuOr. For BMT assay of BCR–ABLtg/− mice, sublethally irradiated mice
(Ly5.1) were injected with the indicated subsets from Evi1+/GFP BCR–ABLtg/−

mice (Ly5.2). Reconstitution was monitored by Ly5.1, CD4, CD8, B220,
TER-119, Mac-1 and Gr-1.
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Nilotinib treatment
For in vivo treatment, nilotinib (AMN107-AA) was diluted at 10mg/ml in
10% 1-methyl-2-pyrrolidone (Sigma-Aldrich, St Louis, MO, USA), 90%
polyethylenglycol 300 (Sigma-Aldrich) and administered by oral gavage at
75mg/kg once a day for a week. A mixture without nilotinib was used as
vehicle. For in vitro treatment, nilotinib diluted in dimethylsulphox-
ide (Sigma-Aldrich) was used at the final concentration of 1 or 5 μmol/l.

Colony-forming assay
Cells (1 × 103) were plated into MethoCult GF M3434 (StemCell Techno-
logies, Vancouver, BC, Canada) as described previously.59 The number of
colonies was counted at day 7. Images were taken with a Nikon Eclipse
TE2000-U (Nikon, Tokyo, Japan).

Hoechst 33342 staining
Cells were incubated with 5 ng/ml Hoechst 33342 (Invitrogen/Life
Technologies) and 25 μg/ml verapamil at 37 °C for 45min.35

OP-9 co-culture
OP-9 cells were pre-seeded on 24-well plates at day –1.59,60 One
hundred LSK cells from Evi1-reporter CML-CP mice were cultured from
day 0 in alpha-minimum essential medium with 20% fetal calf serum, 1%
penicillin+streptomycin, 2 μmol/l L-glutamine (Gibco/Invitrogen/Life Tech-
nologies), 1 μmol/l sodium pyruvate and 50 μmol/l 2-mercaptoethanol
(Sigma-Aldrich). Culture medium was replaced every 4 days and images
were taken at day 10.

Statistical analysis
Statistical significance of differences between parameters was assessed by
a two-tailed unpaired t-test. The overall survival of mice was analyzed with
a Mantel–Cox test according to the Kaplan–Meier method.
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