About
63
Publications
7,182
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
684
Citations
Citations since 2017
Introduction
Tomo Aoyagi currently works at the Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology. Tomo does research in Environmental Microbiology. Their current project is 'Ecology and ecophysiology of microorganisms in natural environments.
Publications
Publications (63)
Stable isotope probing (SIP) of rRNA directly identifies microorganisms assimilating an isotopically labeled substrate. High-throughput DNA sequencing is available for label screening at high resolution and high sensitivity, yet its effectiveness and validity remain to be clarified. Here, we investigated whether the detection sensitivity of rRNA-SI...
Although environmental stimuli are known to affect the structure and function of microbial communities, their impact on the metabolic network of microorganisms has not been well investigated. Here, geochemical analyses, high-throughput sequencing of 16S rRNA genes and transcripts, and isolation of potentially relevant bacteria were carried out to e...
Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet a limited number of isolates makes it difficult to understand physiology and ecological impact of the microorganisms involved. Here, two-staged cultivation was implemented to selectively enrich and isolate...
Selenate is one of the most common toxic metal compounds in contaminated soils. Its redox status can be changed by microbial activity, thus affecting its water solubility and soil mobility. However, current knowledge of microbial dynamics has been limited by the low sensitivity of past isolation and identification protocols. Here, high-throughput I...
Many studies have been performed on microbial community succession and/or predominant taxa during the composting process; however, the ecophysiological roles of microorganisms are not well understood because microbial community structures are highly diverse and dynamic. Bacteria are the most important contributors to the organic-waste decomposition...
Deciphering unclear microbial interactions is key to improving biological wastewater treatment processes. Microbial predation and parasitism in wastewater treatment ecosystems are unexplored survival strategies that have long been known and have recently attracted attention because these interspecies interactions may contribute to the reduction of...
The discharge of high-strength oily wastewater adversely affects the environment; therefore, the treatment of wastewater containing fats, oils, and grease from the food industry is of importance. In this study, we used a membrane bioreactor (MBR) to treat Ramen noodle-soup wastewater, and we evaluated the optimal oil concentration in the wastewater...
Anaerobic soil disinfestation (ASD) consists of the application of labile organic materials to soil, flooding, and covering the soil surface with plastic film. Anaerobic soil disinfestation is a widely used ecofriendly alternative to chemical fumigation for eliminating soil-borne plant pathogens. However, the exact mode of action of ASD has not bee...
Difficulty in treating ironworks wastewater with high concentrations of nitrate is a major issue in steel manufacturing. We developed an N2 gas aerated anaerobic membrane bioreactor (AnMBR) and further assessed its nitrate removal capacity at the bench (0.026 m³) and pilot (4 m³) scales using a comprehensive microbiome survey. Both scale AnMBRs wer...
The decolorization of 11 dyes by granular sludge from an anaerobic expanded granular sludge bed (EGSB) reactor was evaluated. Biological decolorization of Reactive Red 21, 23, and 180, and Reactive Yellow 15, 17, and 23 in model textile wastewater was observed for the first time after a 7-day incubation (over 94% decolorization). According to the s...
Urban rivers receive used water derived from anthropogenic activities and are a crucial source of the potent greenhouse gas nitrous oxide (N2O). However, considerable uncertainties still exist regarding the variation and mechanisms of N2O production in response to the discharge of treated sewage from municipal wastewater treatment plants (WWTPs). T...
Sulfurovum spp. TSL1 and TSL6 are sulfur-oxidizing chemolithoautotrophic bacteria isolated from the tsunami-launched marine sediment in the Great East Japan earthquake. This announcement describes the draft genome sequences of the two isolates that possess the gene sets for the sulfur oxidation pathway.
Here, we report the draft genome sequences of two Geobacter sp. strains, AOG1 and AOG2, isolated from enrichment cultures using crystalline Fe(III) oxides as electron acceptors. Strains AOG1 and AOG2 possess numerous genes encoding multiheme c-type cytochromes and pilA-N genes encoding the pilin mono-mer of nanowires in their genomes.
Typically, sulfate-reducing bioreactors used to treat acid mine drainage (AMD) undergo an initial incubation period of a few weeks to acclimatize sulfate-reducing bacteria (SRB), although necessity of this preincubation has rarely been evaluated. To reduce time and economic cost, we developed an SRB acclimatization method using the continuous flow...
In the Seto Inland Sea, Japan, chemical oxygen demand has increased over recent decades, while average dissolved oxygen concentrations in the bottom water have increased. In this study, we investigated responses of organic carbon (OC) in hypoxic sediment to changes of redox conditions using experimental columns containing sediment and overlying wat...
Background: Halotolerant Fe (III) oxide reducers affiliated in the family Desulfuromonadaceae are ubiquitous and drive the carbon, nitrogen, sulfur and metal cycles in marine subsurface sediment. Due to their possible application in bioremediation and bioelectrochemical engineering, some of phylogenetically close Desulfuromonas spp. strains have be...
A bacterium capable of complete ammonia oxidation (comammox) has been widely found in various environments, whereas its industrial application is limited due to the difficulty of cultivation and/or enrichment. We developed a biological system to produce a high-quality nitrate solution for use in hydroponic fertilizer. The system was composed of two...
Waste rocks generated from tunnel excavation contain the metalloid selenium (Se) and its concentration sometimes exceeds the environmental standards. The possibility and effectiveness of dissolved Se removal by the indigenous microorganisms are unknown. Chemical analyses and high-throughput 16S rRNA gene sequencing were implemented to investigate t...
The Great East Japan Earthquake caused a serious accident at the first Fukushima nuclear power plant (NPP), which in turn released a large amount of radionuclides. Little attention has been paid to in-situ soil microorganisms exposed to radioactive contamination by the actual NPP accident. We herein investigated bacterial communities in the radioac...
Anaerobic membrane bioreactor (AnMBR) is used for the treatment of organic solid waste. Clogging of filtration membrane pores, called membrane fouling, is one of the most serious issues for the sustainable operation of AnMBR. Although the physical and chemical mechanisms of the membrane fouling have been widely studied, the biological mechanisms ar...
The adoption of anaerobic membrane bioreactors (AnMBRs) for organic solid waste management is important for the recovery of energy and high-quality treated water. However, few studies have focused on AnMBR treatment of high-strength organic solid waste and the microorganisms involved under deteriorated operating conditions. In the present study, a...
Population shifts in the activated sludge microbiome of a membrane bioreactor (MBR) during the treatment of Ramen noodle-soup wastewater were analyzed by high-throughput sequencing. An MBR underwent stable treatment of wastewater containing increasing oil concentrations (from 135 to 1,350 mg/L) for 26 days; however, after feeding with wastewater co...
Sulfate-reducing bioreactors, also called biochemical reactors, represent a promising option for passive treatment of mining-influenced water (MIW) based on similar technology to aerobic/anaerobic-constructed wetlands and vertical-flow wetlands. MIW from each mine site has a variety of site-specific properties related to its treatment; therefore, d...
In anaerobic membrane bioreactor (AnMBR) treating organic solid waste, acetate is one of the most important precursors to CH4. However, the identity and diversity of anaerobic acetate degraders are largely unknown, possibly due to their slow growth rates and low abundances. Here, we identified acetate-degrading microorganisms in the AnMBR sludges b...
Desulfuromonas sp. strain AOP6, with iron(III)-reducing activity, was isolated from subseafloor sediment in Nankai Trough. We report the complete genome of this strain determined by Illumina MiSeq sequencing and PCR/Sanger sequencing-based gap closing. The genome includes the genes encoding c-type cytochromes, type IV pili, and fatty acid degradati...
In this study, anaerobic membrane bioreactor (AnMBR) was applied for the treatment of a model slurry of high-strength organic solid waste. Continuous monitoring of reactor performances by chemical analyses and fine-scale tracing of the AnMBR sludge microbiome by high-throughput 16S rRNA gene sequencing were conducted during the long-term operation...
Although membrane fouling is a major issue when operating membrane bioreactors (MBRs), information regarding MBR performance and the sludge microbiome after the development of fouling remains limited. For the present study, two MBRs were operated for approximately 1 month under conditions of membrane fouling to investigate the effects of highly str...
Pathogens are known to survive in compost and to regrow under the influence of certain factors, such as moisture content, temperature and nutrient availability. Dead biomass, by providing available nutrients, is a factor that may affect pathogen regrowth. However, the indigenous microorganisms, including pathogens, that grown on the dead biomass of...
The natural microbial communities involved in arsenic (As) extraction under biostimulated conditions are still unclear. In this study, soil slurry was incubated with arsenate [As(V)]-laden Fe(III) or Al (hydr)oxides with lactate or acetate. After 40 d, dissolved As released from As(V)-laden Fe(III) accounted for 54% of the initial solid-phase As in...
Five types of sulfate-reducing passive bioreactors with rice bran as substrate were operated at three different mine sites under various operating conditions to investigate and compare the dominant sulfate-reducing bacteria (SRBs) involved in acid mine drainage (AMD) treatment. In all bioreactors, AMD was properly treated under the national effluen...
With a focus on marine sediment launched by the tsunami accompanying the Great East Japan Earthquake, we examined the vertical (i.e., depths of 0–2, 2–10, and 10–20 mm) profiles of reduced inorganic sulfur species and microbial community using a newly improved sulfur-fractionation method and 16S rRNA gene sequencing. S0 accumulated at the largest q...
The prokaryotic and eukaryotic microbial communities of activated sludge in a chemical plant wastewater treatment facility, processing relatively oligotrophic wastewater containing aromatic compounds and high-strength bromide ions, were characterized by high-throughput sequencing of rRNA genes based on DNA and RNA extracts. The microbial community...
Here, we report a draft genome sequence of the Sporomusaceae bacterial strain FL31, a novel lactate-fermenting bacterium of the family Sporomusaceae within the class Negativicutes . This genome furthers our understanding of the physiological functions of this taxonomic group in natural environments.
The present study characterized the interactions of microbial populations in activated sludge systems during the operational period after an increase in the wastewater flow rate and consequential ammonia accumulation using a 16S rRNA gene sequencing-based network analysis. Two hundred microbial populations accounting for 81.8% of the total microbio...
Sulfate-reducing passive bioreactor is an option for treating acid mine drainage (AMD) for a long period of time without maintenance. A 35-L packed-bed sulfate-reducing bioreactor containing rice bran was continuously operated for over 800 days, however, reactor performance became progressively worsened after day 871, resulting in the effluent zinc...
1,4-Dioxane is one of the most common and persistent artificial pollutants in petrochemical industrial wastewaters and chlorinated solvent groundwater plumes. Despite its possible biological treatment in natural environments, the identity and dynamics of the microorganisms involved are largely unknown. Here, we identified active and diverse 1,4-dio...
We report here a draft genome sequence of Azospira sp. strain I13 in the class Betaproteobacteria , a facultative anaerobic bacterium responsible for nitrous oxide (N 2 O) reduction. Deciphering this genome would pave the way for the use of Azospira sp. strain I13 to facilitate N 2 O consumption in a nitrogen-removing bioreactor emitting N 2 O.
Long-term exposure of nitrifiers to high concentrations of free ammonia (FA) and free nitrous acid (FNA) may affect nitrifiers activity and nitrous oxide (N2O) emission. Two sequencing batch reactors (SBRs) were operated at influent ammonium nitrogen (NH4-N) concentrations of 800 mg/L (SBRH) and 335 mg/L (SBRL), respectively. The NH4-N removal rate...
Limited information is currently available on the contribution of eukaryotes to the reactor performance of membrane bioreactors (MBRs). Using high-throughput Illumina sequencing of 18S rRNA genes and microscopic observations, we investigated eukaryotic microbiomes in membrane-attached biofilms in MBRs treating piggery wastewater. Protozoa preying o...
For acceleration of removing toxic metals from acid mine drainage (AMD), the effects of hydraulic retention time (HRT) and pH on the reactor performance and microbial community structure in the depth direction of a laboratory-scale packed-bed bioreactor containing rice bran as waste organic material were investigated. The HRT was shortened stepwise...
Here, we report a draft genome sequence of Geobacter pelophilus strain Dfr2, a ferric iron reducing bacterium. This genome information will further our understanding of the mechanisms underlying the electron transfer from the microorganism to ferric iron oxides.
A large amount of marine sediment was launched on land by the Great East Japan earthquake. Here, we employed both on-site and laboratory studies on the launched marine sediment to investigate the succession of microbial communities and its effects on geochemical properties of the sediment. Twenty-two-month on-site survey showed that microbial commu...
Two strains of alkaliphilic lactic acid bacteria, L-120 and AY103, which can produce L-lactic acid extensively, were isolated during trials of L-lactic acid production under unsterilized conditions at pH 9. Strains L-120 and AY103 are similar to Enterococcus casseliflavus and Enterococcus faecalis, respectively, as determined by 16S rRNA gene seque...
Many studies have been performed on microbial community succession and/or predominant taxa during the composting process; however, the ecophysiological roles of microorganisms are not well understood because microbial community structures are highly diverse and dynamic. Bacteria are the most important contributors to the organic-waste decomposition...
The diversity and abundance of Burkholderia species in sugarcane field soils were investigated by a 16S rRNA gene-based approach using genus-specific primers. A total of 365,721 sequences generated by the Illumina MiSeq platform were assigned to the genus Burkholderia. Nearly 58% of these sequences were placed in a previously defined cluster, inclu...
Organically enriched sediment has been found in water environments. The tsunami originating from the Great East Japan Earthquake in 2011 deposited large amount of sediment, thus providing evidence about its huge accumulation in coastal marine areas possibly due to human activities such as fish culture and marine product processing of industries. He...