Tomasz Piotr KucnerAalto University · Department of Electrical Engineering and Automation
Tomasz Piotr Kucner
PhD
About
61
Publications
11,314
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
877
Citations
Introduction
I currently work as an Assistant Professor at the School of Electrical Engineering at Aalto University in Finland. My primary research revolves around problems of safe, efficient and legible robot navigation in dynamic environments shared with humans.
I am vice-chair of the IEEE/RAS Working Group for the IEEE standard 1873 for representing map data for robot navigation in 3D.
Additional affiliations
September 2021 - present
November 2018 - August 2021
September 2018 - November 2018
Publications
Publications (61)
In this paper we introduce a method for learning motion patterns in dynamic environments. Representations of dynamic environments have recently received an increasing amount of attention in the research community. Understanding dynamic environments is seen as one of the key challenges in order to enable autonomous navigation in real-world scenarios...
Autonomous mobile robots often require information about the environment beyond merely the shape of the work-space. In this work we present a probabilistic method for mapping dynamics, in the sense of learning and representing statistics about the flow of discrete objects (e.g., vehicles, people) as well as continuous media (e.g., air flow). We als...
Understanding the environment is a key requirement for any autonomous robot operation. There is extensive research on mapping geometric structure and perceiving objects. However, the environment is also defined by the movement patterns in it. Information about human motion patterns can, e.g., lead to safer and socially more acceptable robot traject...
We present an ample description of a socially compliant mobile robotic platform, which is developed in the EU-funded project SPENCER. The purpose of this robot is to assist, inform and guide passengers in large and busy airports. One particular aim is to bring travellers of connecting flights conveniently and efficiently from their arrival gate to...
We present a new large dataset of indoor human and robot navigation and interaction, called THÖR-MAGNI, that is designed to facilitate research on social human navigation: for example, modeling and predicting human motion, analyzing goal-oriented interactions between humans and robots, and investigating visual attention in a social interaction cont...
The advancement of socially-aware autonomous vehicles hinges on precise modeling of human behavior. Within this broad paradigm, the specific challenge lies in accurately predicting pedestrian's trajectory and intention. Traditional methodologies have leaned heavily on historical trajectory data, frequently overlooking vital contextual cues such as...
Robots and other intelligent systems navigating in complex dynamic environments should predict future actions and intentions of surrounding agents to reach their goals efficiently and avoid collisions. The dynamics of those agents strongly depends on their tasks, roles, or observable labels. Class-conditioned motion prediction is thus an appealing...
This paper motivates and describes the THÖR-MAGNI dataset: a collection of human motion data aligned with eye tracking data and robot sensor data.
Submitted to The International Journal of Robotics Research (IJRR) on 28 of February 2024.
Simulation is essential in robotics to evaluate models and techniques in a controlled setting before conducting experiments on tangible agents. However, developing simulation environments can be a challenging and time-consuming task. To address this issue, a proposed solution involves building a functional pipeline that generates 3D realistic terra...
Autonomous systems, that need to operate in human environments and interact with the users, rely on understanding and anticipating human activity and motion. Among the many factors which influence human motion, semantic attributes, such as the roles and ongoing activities of the detected people, provide a powerful cue on their future motion, action...
Human motion prediction is important for mobile service robots and intelligent vehicles to operate safely and smoothly around people. The more accurate predictions are, particularly over extended periods of time, the better a system can, e.g., assess collision risks and plan ahead. In this paper, we propose to exploit maps of dynamics (MoDs, a clas...
Mapping the surrounding environment is essential for the successful operation of autonomous robots. While extensive research has focused on mapping geometric structures and static objects, the environment is also influenced by the movement of dynamic objects. Incorporating information about spatial motion patterns can allow mobile robots to navigat...
Robotic mapping provides spatial information for autonomous agents. Depending on the tasks they seek to enable, the maps created range from simple 2D representations of the environment geometry to complex, multilayered semantic maps. This survey article is about maps of dynamics (MoDs), which store semantic information about typical motion patterns...
Human motion prediction is essential for the safe and smooth operation of mobile service robots and intelligent vehicles around people. Commonly used neural network-based approaches often require large amounts of complete trajectories to represent motion dynamics in complex semantically-rich spaces. This requirement may complicate deployment of phy...
Current intralogistics services require keeping up with e-commerce demands, reducing delivery times and waste, and increasing overall flexibility. As a consequence, the use of automated guided vehicles (AGVs) and, more recently, autonomous mobile robots (AMRs) for logistics operations is steadily increasing.
Robots operating with humans in highly dynamic environments need not only react to moving persons and objects but also to anticipate and adhere to patterns of motion of dynamic agents in their environment. Currently, robotic systems use information about dynamics locally, through tracking and predicting motion within their direct perceptual range....
Rapid development of social robots stimulates active research in human motion modeling, interpretation and prediction, proactive collision avoidance, human-robot interaction and co-habitation in shared spaces. Modern approaches to this end require high quality datasets for training and evaluation. However, the majority of available datasets suffers...
Mapping people dynamics is a crucial skill, because it enables robots to coexist in human-inhabited environments. However, learning a model of people dynamics is a time consuming process which requires observation of large amount of people moving in an environment. Moreover, approaches for mapping dynamics are unable to transfer the learned models...
Identifying the environment’s structure, through detecting core components such as rooms and walls, can facilitate several tasks fundamental for the successful operation of indoor autonomous mobile robots, including semantic environment understanding. These robots often rely on 2D occupancy maps for core tasks such as localisation and motion and ta...
Identifying the environment's structure, i.e., to detect core components as rooms and walls, can facilitate several tasks fundamental for the successful operation of indoor autonomous mobile robots, including semantic environment understanding. These robots often rely on 2D occupancy maps for core tasks such as localisation and motion and task plan...
This book describes how robots can make sense of motion in their surroundings and use the patterns they observe to blend in better in dynamic environments shared with humans.
The world around us is constantly changing. Nonetheless, we can find our way and aren’t overwhelmed by all the buzz, since motion often follows discernible patterns. Just like...
We propose a method for measuring how well each point in an indoor 2D robot map agrees with the underlying structure that governs the construction of the environment. This structure scoring has applications for, e. g., easier robot deployment and Cleaning of maps. In particular, we demonstrate its effectiveness for removing clutter and artifacts fr...
The key idea of modelling flow of discrete objects is to capture the way they move through the environment. One method to capture the flow is to observe changes in occupancy caused by the motion of discrete objects. In this chapter, we present a method to model and learn occupancy shifts caused by an object moving through the environment. The key i...
The task of building maps of dynamics is the key focus of this book, as well as how to use them for motion planning. In this chapter, we present a categorisation and overview of different types of maps of dynamics. Furthermore, we give an overview of approaches to motion planning in dynamic environments, with a focus on motion planning over maps of...
Maps of dynamics can be beneficial for motion planning. Information about motion patterns in the environment can lead to finding flow-aware paths, allowing robots to align better to the expected motion: either of other agents in the environment or the flow of air or another medium. The key idea of flow-aware motion planning is to include adherence...
The shared feature of the flow of discrete objects and continuous media is that they both can be represented as velocity vectors encapsulating direction and speed of motion. In this chapter, we present a method for modelling the flow of discrete objects and continuous media as continuous Gaussian mixture fields. The proposed model associates to eac...
Understanding human behavior is key for robots and intelligent systems that share a space with people. Accordingly, research that enables such systems to perceive, track, learn and predict human behavior as well as to plan and interact with humans has received increasing attention over the last years. The availability of large human motion datasets...
Understanding human behavior is key for robots and intelligent systems that share a space with people. Accordingly, research that enables such systems to perceive, track, learn and predict human behavior as well as to plan and interact with humans has received increasing attention over the last years. The availability of large human motion datasets...
We present a spatio-temporal modelling method for robots operating in human-populated environments for extended time periods. The presented method integrates observations of pedestrians at different locations and times into an efficient representation of spatial and temporal structure of pedestrian flows. Long-term variations of the observed flows...
Ventilation systems are critically important components of many public buildings and workspaces. Proper ventilation is often crucial for preventing accidents, such as explosions in mines and avoiding health issues, for example, through long-term exposure to harmful respirable matter. Validation and maintenance of ventilation systems is thus of key...
To bring robots closer to real-world autonomy, it is necessary to equip them with tools allowing them to perceive, model and behave adequately to dynamic changes in the environment. The idea of incorporating information about dynamics not only in the robots reactive behaviours but also in global planning process stems from the fact that dynamic cha...
The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. Using mobile robots for gas detection has several advantages and can reduce danger for humans. In our work, we address the problem of planning a path for a mobile robotic platform equipped with a remote ga...
Environment monitoring remains a major challenge for mobile robots, especially in densely cluttered or highly populated dynamic environments, where uncertainties originated from environment and sensor significantly challenge the robot's perception. This paper proposes an effective occupancy filtering method called the dual probability hypothesis de...
Matching and merging overlapping point clouds is a common procedure in many applications, including mobile robotics, three-dimensional mapping, and object visualization. However, fully automatic point-cloud matching, without manual verification, is still not possible because no matching algorithms exist today that can provide any certain methods fo...
For mobile robots that operate in complex, uncontrolled environments, estimating air flow models can be of great importance. Aerial robots use air flow models to plan optimal navigation paths and to avoid turbulence-ridden areas. Search and rescue platforms use air flow models to infer the location of gas leaks. Environmental monitoring robots enri...
- Discrete representation of velocity field. - Hierarchical approach to estimate the parameters of the model. - An interpolation method for filling in unobserved regions of the map.
We present an ample description of a socially compliant mobile robotic platform, which is developed in the EU-funded project SPENCER. The purpose of this robot is to assist, inform and guide passengers in large and busy airports. One particular aim is to bring travellers of connecting flights conveniently and efficiently from their arrival gate to...
Autonomous handling of piled materials is an emerging topic in automation science and engineering. A central question for material rehandling tasks (transporting materials that have been assembled in piles) is “where to dig, in order to optimise performance”? In particular, we are interested in the application of autonomous wheel loaders to handle...