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 Preface 

  

 The therapeutic margin for neuroprotectors, which at 
present is very narrow, may be even more challenged by 
the progressively more common use of thrombolytic 
treatment in regular clinical practice. However, the 
knowledge that recanalization may permit the arrival of 
a neuroprotector to the ischemic zone with greater ease 
and effectiveness does not allow us to be despondent. 

 Faced with this situation, it seems to be appropriate 
to ask what the therapeutic margin for pharmacological 
neuroprotection will be. Considering that the therapeutic 
objective in acute cerebral infarction is to boost reperfu-
sion and to reduce damage by ischemia-reperfusion, the 
most reasonable expectations for neuroprotection sug-
gest that this will have its place in a variety of clinical 
situations: maintaining viability of the ischemic tissue 
longer and lengthening the therapeutic window for 
thrombolysis, inhibiting or controlling adverse reactions 
arising from reperfusion and reducing the risk of brain 
hemorrhage in those patients who receive thrombolytic 
treatment. This gives us the opportunity for a combined 
therapy for thrombolysis with neuroprotection, for which 
there already are satisfactory experiences in animal
models. 

 Pressure from industry to develop a neuroprotective 
drug for universal application that is highly effective and 
has maximum tolerance, has probably led to two major 
methodological errors: (1) simplifying the complexity of 
ischemic damage that affects the brain as a functional 
unit by blocking one single molecular mechanism, and 
(2) overlooking the value of neuroprotection in enhancing 
neurorecovery and plasticity, which is essential for the 
recovery of a stroke patient. 

 Consequently, in order to achieve better results in 
acute stroke trials in the future, many changes are needed 

 Protecting the Ischemic Brain 

 Despite many years of research, treatment and preven-
tion of ischemic stroke continue to be one of the major 
challenges in current medicine. 

 Progressive understanding of the complex mecha-
nisms of cerebral ischemia has infl uenced the develop-
ment of a large number of molecules to block the ischemic 
cascade at different levels. Many of these drugs have dem-
onstrated considerable effi cacy in a range of animal mod-
els of cerebral ischemia. The transfer of these results to 
human clinical practice has not, however, proved to be 
suffi ciently satisfactory. More than 140 clinical trials 
have been conducted in stroke and some 250 drugs, either 
alone or in combination, have been studied both in isch-
emic stroke and in cerebral hemorrhages. From this re-
search, only revascularization of the occluded cerebral 
arteries has proven to be effective, but only when it has 
been utilized at a very early stage, and in selected pa-
tients. 

 Much recent neurovascular research has been designed 
to identify molecular changes deriving from cerebral isch-
emia that are capable of becoming therapeutic targets: 
mechanisms associated with energy failure, excitotoxici-
ty, lesions associated with free radicals, infl ammation and 
apoptosis. The hope of having a drug available for uni-
versal application that by itself cures ischemic stroke is, 
without a doubt, an unattainable utopia. However, anal-
yses and reviews of successes as well as of various failures 
that have occurred in clinical trials developed for study-
ing neuroprotection in ischemic stroke, permit us to be 
reasonably certain that in the near future we will have 
available neuroprotectors that are effective in particular 
situations and for particular patients with stroke. 

 Published online: May 2, 2006   
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 Preface VI

in study designs. Future therapeutic options will probably 
include, in the following order and in accordance with the 
various time windows, neuroprotection, reperfusion, 
neuroprotection once again and treatments to enhance 
neurorepair. 

 We think that only optimism is acceptable, because 
never before have so many positive factors existed simul-
taneously: extensive understanding of the mechanisms 
involved in cerebral ischemia, overwhelming biotechno-
logical development, investment by the pharmaceutical 
industry that would have been unimaginable in the past 
times of therapeutic nihilism, and a growing awareness 

among health authorities and the public that stroke is a 
treatable neurological emergency. 

 In this context, the present supplement of  Cerebrovas-
cular Diseases  is well justifi ed. The supplement addresses 
widely neuroprotection in cerebral ischemia. It covers not 
only molecular, cellular, cerebral and vascular aspects, 
with particular mention of neurorepair, but also clinical 
entities that are most susceptible. We hope that the time-
ly information offered here will be of use to the readers. 

  Markku Kaste,  Helsinki 
  José Castillo,  Santiago de Compostela 
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the transporter EAAT2 is responsible for up to 90% of all 
glutamate transport. We will discuss the effect of differ-
ent neuroprotective tools (membrane stabilizers or en-
dogenous neuroprotection) affecting glutamate effl ux 
and/or expression of EAAT2. We will also describe the 
fi nding of a novel polymorphism in the EAAT2 promoter 
region which could be responsible for differences in both 
gene function and regulation under pathological condi-
tions such as cerebral ischemia, and which might well 
account for the failure of glutamate antagonists in the 
clinical practice. These results may possess important 
therapeutic implications in the management of patients 
at risk of ischemic events, since it has been demonstrated 
that those patients with progressing stroke have higher 
plasma concentrations of glutamate which remain ele-
vated up to 24 h when compared to the levels in patients 
without neurological deterioration. 

 Copyright © 2006 S. Karger AG, Basel 

 Cytoprotection and Ischemic Cascade 

 In the last years, much has been written about neuro-
protection. Although we normally use the word neuropro-
tection, the term cytoprotection is likely more accurate 
since our objective is to recover the entire brain tissue 
including not only neurons but also non-neuronal cells. 

 Key Words 
 Antioxidants  �  Glutamate  �  Infl ammation  �  
Neuroprotection

  Abstract 
 Although the management of stroke has improved re-
markably over the last decade due mainly to the advent 
of thrombolysis, most neuroprotective agents, although 
successful in animal studies, have failed in humans. Our 
increasing knowledge concerning the ischemic cascade 
is leading to a considerable development of pharmaco-
logical tools suggesting that each step of this cascade 
might be a target for cytoprotection. Glutamate has long 
been recognized to play key roles in the pathophysiology 
of ischemia. However, although some trials are still on-
going, the results from several completed trials with 
drugs interfering with the glutamatergic pathway have 
been disappointing. Regarding the inhibition of gluta-
mate release as a possible target for cytoprotection, it 
might be afforded either by decreasing glutamate effl ux 
or by increasing glutamate uptake. In this context, it has 
been shown that glutamate transport is the primary and 
only mechanism for maintaining extracellular glutamate 
concentrations below excitotoxic levels. This transport is 
executed by the fi ve high-affi nity, sodium-dependent 
plasma membrane glutamate transporters. Among them, 
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 In order to defi ne the targets of cytoprotection, we will 
fi rst illustrate briefl y the ischemic cascade (see  fi g. 1 ) in 
which, at least theoretically, each step of this cascade 
might be a target for therapeutic intervention. 

 In most cases, stroke results from the obstruction of 
blood fl ow in a major cerebral vessel. The brain requires 
a continuous supply of oxygen and glucose to maintain 
normal function and viability. When this supply is inter-
rupted, a cascade of events takes place: energy source 
 depletion mainly due to reduction of ATP leads to an al-
tered cell function by interruption of ATP-dependent 
processes, such as the disruption of ionic gradients across 
membranes due to the failure of the Na + ,K + -ATPase. This 
causes an increase in extracellular K +  as well as an infl ux 
of Na + , Cl –  and Ca 2+  into the cells. The initial increase in 
extracellular K +  concentration may spread, triggering de-

polarizations and reversal of the amino acid transporters. 
In these conditions, both voltage-operated and receptor-
operated calcium channels are recruited, thus provoking 
an elevation of free cytosolic Ca 2+ . A massive release of 
excitatory amino acids, mainly glutamate, may derive 
from both reversal of glutamate transporters and Ca 2+ -
dependent exocytosis. Glutamate, an excitatory amino 
acid which has been implicated in the pathogenesis of 
brain injury, results in excitotoxicity in which excessive 
extracellular glutamate kills neurons through Ca 2+ -de-
pendent and -independent mechanisms. Glutamate-me-
diated excitotoxicity is thought to occur mainly because 
of the overactivation of AMPA and NMDA synaptic glu-
tamate receptors [for review, see  1] . Such overactivation, 
mainly of the NMDA subtype, further leads to Na + , Ca 2+ , 
Cl –  and H 2 O accumulation, cell swelling and cytotoxic 

  Fig. 1.  Neuroprotective drugs acting on the ischemic cascade. 
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edema. In addition, elevated intracellular Ca 2+  causes mi-
tochondrial calcium overload, termination of ATP pro-
duction and vast breakdown of phospholipids, proteins 
and nucleic acids by activation of calcium-dependent 
phospholipases, proteases, and endonucleases. In addi-
tion, the augmented intracellular Ca 2+  enhances the in-
crease in extracellular glutamate, thus propagating exci-
totoxicity. 

 A main event during ischemia is the generation of 
free radicals; due to their high reactivity, they provoke 
damage to lipids, DNA and proteins and produce neu-
ronal death. They also contribute to the breakdown of 
the blood-brain barrier and brain edema. One of these 
radicals which is elevated after the ischemic insult is ni-
tric oxide (NO). NO generated primarily by neuronal 
and inducible NO synthases (NOS) promotes neuronal 
damage following ischemia. In addition, the conversion 
of xanthine dehydrogenase to xanthine oxidase pro-
motes the cellular formation of toxic oxygen free radicals 
such as the superoxide anion which further breaks down 
membrane, cytoskeletal, and nuclear structures. An im-
portant source of oxidative stress-mediated brain dam-
age is the oxidant reactions due to the formation of per-
oxynitrite, a powerful oxidant that results from the in-
teraction between NO and superoxide. This anion has 
been shown to cause cell damage by several mechanisms 
that include lipid peroxidation, tyrosine nitration, sulf-
hydryl oxidation and nitrosylation, and DNA break-
age. 

 Ischemic injury is associated to an infl ammatory re-
sponse in which several mediators are released or acti-
vated, such as infl ammatory cytokines and adhesion mol-
ecules. The result is the infi ltration of leukocytes to the 
brain parenchyma, and the activation of resident microg-
lial and astroglial cells [for review, see  2] . The infl amma-
tory response is a consequence of an active gene expres-
sion which is triggered by ischemia. In this context, 
 important transcription factors are activated and/or syn-
thesized, including NF- � B, hypoxia-inducible factor 1, 
interferon regulatory factor 1 and STAT3 [for review, see 
 3] . Apart from the expression of adhesion molecules and 
the initiation of the infl ammatory reaction, cytokines 
might activate the expression of infl ammation-related 
genes, such as iNOS and cyclooxygenase-2 [for review, 
see  4] . Other important infl ammatory mediators being 
expressed and/or activated in this setting are several pro-
teolytic enzymes belonging to the family of the metallo-
proteases, including matrix metalloproteases, implicated 
in damage to extracellular matrix  [2] , as well as their en-
dogenous protease inhibitors. 

 During the last 20 years, many neuroprotective drugs 
have been studied in experimental stroke models [for re-
view, see  5] , however very few have shown effi cacy in 
clinical trials (see  fi g. 1  and for further details see Stroke 
Trials Directory in The Internet Stroke Center at http://
www.strokecenter.org/trials and see Ferro and Dávalos, 
pp. 127–130, this supplement). Several families of com-
pounds have been studied according to different targets 
of cytoprotection, which include calcium channel block-
ers, sodium channel blockers, potassium channel open-
ers, calcium chelators, antioxidants or free radical scav-
engers, GABA agonists, glutamate antagonists, growth 
factors, leukocyte adhesion inhibitors, NO inhibitors, 
opioid antagonists, phosphatidylcholine precursors, and 
serotonin agonists. 

 Among them, the major group corresponds to drugs 
interfering with the glutamatergic transmission. Again, 
preclinical studies demonstrating its utility are contradic-
tory when compared with the clinical trials. As regards 
drugs that act on the NMDA receptor, NMDA antago-
nists were tested in well-controlled trials with negative 
results: Selfotel, a potent competitive antagonist, Elipro-
dil, a polyamine site antagonist, Aptiganel, an NMDA 
channel blocker, and Gavestinel (GV150526), an NMDA 
antagonist at the glycine site  [6–9] . Phase III trials are still 
ongoing with Troxoprodil (CP-101,606, an antagonist of 
the NR2B subunit of the NMDA receptor). Magnesium 
is an ideal neuroprotectant because of its different mech-
anisms of action (NMDA channel blocker, calcium chan-
nel blocker, promotes vasodilation, inhibits infl amma-
tory response), low cost, easy administration and good 
safety profi le. It is being studied in two ongoing phase III 
trials [for review, see  10,  and FAST-MAG website]. The 
competitive AMPA antagonist, YM872 (Zonampanel, a 
high-affi nity competitive antagonist) is still under study 
in two ongoing clinical trials; however, the studies with 
the AMPA antagonist ZK200775 (MPQX) were halted 
due to adverse effects  [11, 12] . Metabotropic glutamate 
receptors are quite different from ionotropic receptors 
because its activation or inhibition would modulate glu-
tamate release. Therefore, these drugs are expected to 
have a better safety profi le, free of psychotropic side ef-
fects, than those acting on ionotropic receptors [for re-
view, see  13] . 

 Regarding glutamate release, there have been some at-
tempts with negative results, such as the sodium channel 
blocker and anticonvulsant fosphenytoin, the sodium 
and calcium channel blocker Sipatrigine (619C89), or the 
potassium channel activator BMS-204352 (MaxiPost) 
 [14] , although a second multicenter trial of the latter is 
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being considered. A trial is also ongoing with ONO-2506, 
a compound that modulates uptake capacity of glutamate 
transporters. 

 The phosphatidylcholine precursor citicoline has dem-
onstrated a neuroprotective effect in animal models of 
stroke. In this case, a meta-analysis of seven controlled 
clinical stroke trials showed that treatment with oral citi-
coline within the fi rst 24 h after onset in patients with 
moderate to severe stroke increases the probability of 
complete recovery at 3 months  [15] . We will discuss how 
this drug may be targeting glutamate release as a major 
mechanism of action. 

 In other chapters of this supplement issue new ap-
proaches for neuroprotection are discussed, such as cas-
pase inhibitors to reduce apoptosis (see Ferrer, pp. 9–20), 
maneuvers to confer vascular protection (see Rodríguez-
Yáñez et al., pp. 21–29) or to modify gene expression (see 
Blanco et al., pp. 38–47) and estrogen or its derivatives 
phytoestrogens as future neuroprotective treatment (see 
Alonso de Leciñana and Egido, pp. 48–53). 

 In summary, preclinical studies have demonstrated 
that numerous drugs are effective for treating stroke in 
animals; however, most of them have failed in clinical 
trials. Therefore, the study of the discrepancies between 
preclinical studies and clinical trials to form a basis for 
future trials together with the search of new targets for 
neuroprotection will help us to fi nd a better neuroprotec-
tive drug. 

 Strategies to Search New Targets: 
Ischemic Preconditioning 

 Since 1990, when Kitagawa et al.  [16]  described the 
phenomenon called  ischemic tolerance,  we know that a 
short or mild ischemic event called ischemic precondi-
tioning (IPC) can result in subsequent resistance to severe 
ischemic injury. Thus, elucidation of mechanisms that 
regulate the acquisition of brain tolerance could guide 
 efforts to develop effective and safe pharmacological 
agents to protect the brain or reduce ischemic injury (see 
Alonso de Leciñana and Egido, pp. 48–53). 

 The mechanisms by which IPC can produce tolerance 
have been reviewed  [17] . It has been described that anti-
excitotoxicity, anti-infl ammatory, antiapoptotic and re-
generation mechanisms can be involved at different 
times. It is well known that mechanisms, which are im-
portant during the phase of ischemic cell death, are also 
targets of ischemic tolerance. In this sense, glutamate has 
long been recognized to play key roles in the pathophysi-

ology of ischemia, due to its excessive accumulation in 
the extracellular space and the subsequent activation of 
its receptors, mainly the N-methyl- D -aspartate (NMDA) 
type of glutamate receptor  [18, 19] . In humans, the con-
centrations of glutamate in plasma have been found to be 
signifi cantly higher in patients with large cerebral in-
farcts, and in those with a higher risk of early neurological 
deterioration, supporting the excitotoxic activity of glu-
tamate in patients with cerebral infarction  [19, 20] . Fur-
thermore, although glutamate release is very rapid after 
the insult in stable infarcts, its release may last longer as 
it has been demonstrated in progressing infarcts  [21] . 

 There are few references in the literature associating 
glutamate and ischemic tolerance. In this context, it has 
been demonstrated that glutamate receptor subtypes are 
differentially expressed after ischemic tolerance with sup-
pression of mGluR1b and 5  [22]  or GluR2 genes expres-
sion  [23] . Glutamate release is also affected as it is inhib-
ited in rat brain cortical slices preconditioned by expo-
sure to hypoxia/hypoglycemia  [24] , as well as in murine 
cortical neurons preconditioned with KCl  [25] . 

 We have recently studied antiexcitotoxicity mecha-
nisms in an experimental model of ischemic tolerance by 
using a primary culture of rat neurons or astrocytes ex-
posed to an experimental ischemia (oxygen-glucose de-
privation (OGD))  [26] . Our data have confi rmed that IPC 
produced by sublethal OGD causes ischemic tolerance to 
subsequent lethal OGD exposures, as previously reported 
 [27–29] . We have also shown that OGD-induced increase 
in extracellular glutamate is lower in IPC-exposed cul-
tures, in agreement with previous reports in other settings 
 [24, 25] . And, more interestingly, we have demonstrated 
that glutamate uptake is increased in cells exposed to IPC 
 [26] , suggesting the involvement of glutamate transport-
ers in the phenomenon of tolerance. 

 Glutamate transport is the primary and only mecha-
nism for maintaining extracellular glutamate concentra-
tions below excitotoxic levels  [30, 31] . To date, fi ve high-
affi nity, sodium-dependent glutamate transporters have 
been cloned from mammalian tissue  [32] : EAAT1/
GLAST and EAAT2/GLT-1 are localized primarily in 
astrocytes (it has been shown recently that a splicing vari-
ant of EAAT2, EAAT2b, is found also in neurons), 
EAAT3/EAAC1 and EAAT4 are distributed in neuronal 
membranes, and EAAT5 is retinal. When we evaluated 
the involvement of transporter regulation in ischemic tol-
erance, our data showed that IPC increases the expression 
of the glutamate transporters EAAT2 and EAAT3, an ef-
fect that mediates ischemic tolerance by decreasing exci-
totoxicity due to OGD-induced increase in extracellular 
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glutamate in rat cortical cultures  [26] . These new data 
point to glutamate transporters as a new target for cyto-
protection. 

 Clinical Relevance of Glutamate Transporters 
(EAAT2) as New Targets of Cytoprotection 

 As mentioned before, the inhibition of glutamate ac-
tions has demonstrated to be a very powerful strategy to 
decrease brain damage after experimental ischemia and, 
indeed, the larger part of efforts to reduce ischemia-in-
duced brain injury has primarily focused on attenuating 
excitotoxicity with several neuroprotective drugs which 
block glutamate receptors or inhibit glutamate release in-
duced by brain ischemia  [33] . However, the notion of the 
glutamate transporters as a new target of neuroprotection 
has not been explored. Among the fi ve high-affi nity, sodi-
um-dependent glutamate transporters, the astroglial trans-
porter EAAT2 (GLT-1)  [34, 35] , also found in some neu-
rons, is responsible for up to 90% of all glutamate transport 
in adult tissue [reviewed in  36] . Reductions of EAAT2 
protein expression have been suggested to take place in 
ischemia  [37] . Furthermore, several studies have shown 
that EAAT2 deletion using either antisense or gene dele-
tion strategies is related to larger increases in extracellular 
glutamate, neuronal damage and brain edema after exper-
imental brain ischemia  [38–41] . Therefore, an increased 
function and/or expression of this transporter would be 
expected to play a protective role in pathologies in which 
extracellular glutamate levels lead to neuronal damage, 
such as stroke. As it will be discussed below, some neuro-
protective drugs may be acting via this mechanism. 

 Interestingly, we have recently described a novel and 
highly prevalent polymorphism in the promoter of the 
EAAT2 glutamate transporter  [42, 43] . This polymor-
phism is not associated with increased risk for stroke be-
cause its prevalence is comparable in stroke patients and 
in healthy subjects. However, this polymorphism is as-
sociated with higher and maintained plasma glutamate 
concentrations as well as with higher frequency of neuro-
logical deterioration in patients with acute hemispheric 
stroke. Transfection experiments in rat astrocytes show 
that the mutant EAAT2 promoter has a 30% reduction in 
activity when compared with the wild-type, in agreement 
with greater glutamate concentrations found in patients 
with the mutant genotype. Moreover, our data show that 
the polymorphism abolishes an AP2 consensus sequence 
and creates a new sequence that corresponds to the con-
sensus binding site for the transcription factor GCF2. 

Whereas AP2 is a transcriptional activator  [44] , GCF2 is 
a transcriptional repressor that decreases activity of sev-
eral genes  [45] . This fi nding further explains the differ-
ences in the glutamate concentrations and clinical evolu-
tion in patients with the polymorphism. We have also 
shown that GCF2 is remarkably induced after an isch-
emic insult, suggesting that newly created consensus 
binding site for GCF2 is active, thus leading to an active 
repression of EAAT2 expression  [46] . 

 This new polymorphism supports the hypothesis that, 
in patients with acute ischemic stroke, the magnitude of 
the excitotoxic damage could be genetically determined 
due to a decrease in the glutamate uptake. Plasma and 
CSF glutamate levels are threefold higher in patients 
with subsequent early neurological deterioration than in 
those with stable or improving stroke  [19, 20] . In addi-
tion, CSF glutamate levels on admission have been found 
to remain elevated up to 24 h in patients who develop 
progressing stroke in the following 48 h, whereas they 
drop to the normal range within the fi rst 6 h after onset 
of the ischemia in patients without later neurological 
worsening  [21] . Thus, it remains to be explored whether 
progressing stroke is due to the presence of this polymor-
phism. 

 In conclusion, this study has revealed a novel func-
tional polymorphism in the EAAT2 promoter region and 
a pattern of regulation that decreases promoter activity. 
This polymorphism is associated with higher plasma glu-
tamate levels and a clinically relevant trend towards neu-
rologic worsening after stroke. These fi ndings may ex-
plain the reported failure of glutamate antagonists in hu-
man stroke, and prompt the use of pharmacogenetics in 
future clinical trials with drugs blocking or modifying the 
excitotoxic pathway. 

 A New Neuroprotective Drug Acting on 
EAAT2 Expression or Functionality: Citicoline 

 Cytidine-5 � -diphosphocholine (citicoline or CDP-cho-
line) is a compound normally present in all cells through-
out the body and an intermediate in the biosynthesis of 
phosphatidylcholine (PtdCho). It has been shown that 
citicoline produces neuroprotective effects in a variety of 
CNS injury models including cerebral ischemia. At the 
experimental level, it has been reported to decrease in-
farct volume and edema, and/or to improve neurological 
defi cits, either alone or in combination with other agents 
 [47–55] . In humans, citicoline is the only neuroprotectant 
that has shown positive trends in all randomized, double-
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blind trials and has demonstrated effi cacy in a meta-anal-
ysis with an overall safety similar to placebo  [15] . 

 The effects proposed to explain the neuroprotective 
actions of citicoline have been thoroughly reviewed  [56–
60] , but its precise mechanism is not well defi ned. 

 We have demonstrated a neuroprotective effect of cit-
icoline in experimental brain ischemia, as indicated by a 
reduction in infarct volume and/or neurological defi cits 
after middle cerebral artery occlusion (MCAO)  [61] . Cit-
icoline, in our study, decreases extracellular glutamate 
accumulation after ischemia by a dual mechanism in-
volving both a decreased neuronal glutamate effl ux and 
an increased astrocytic glutamate uptake. 

 Using in vivo and in vitro models of ischemia, we have 
shown that citicoline is able to recover the ischemic-in-
duced fall on neuronal ATP levels and this effect is re-
sponsible, at least in part, for the decrease in extracellular 
glutamate and the subsequent neuroprotection after isch-
emia, very likely due to a reduced reversal of the neuronal 
transporters. Several mechanisms might explain the ef-
fect of citicoline on ATP levels both in control and isch-
emia, either in vivo or in vitro. In this context, it has been 
demonstrated that citicoline prevents the loss of cardio-
lipin which is an exclusive inner mitochondrial phospho-
lipid and it is essential for mitochondrial electron trans-
port  [62] . Furthermore, citicoline restores Na + ,K + -
ATPase activity in vivo  [63]  and has a direct stimulatory 
effect in vitro  [64] . Although the inhibition of phospho-
lipase A 2  has been recently shown  [59] , the precise mech-
anism by which citicoline produces these effects is not 
known, and further studies are required to clarify this 
point. 

 Interestingly, our results also show that citicoline 
causes an increase in glutamate uptake in astrocytes, 
which was not observed in neurons. Furthermore, citico-
line increased remarkably EAAT2 plasma membrane ex-
pression. Citicoline induces the translocation of this 
transporter from the cytosol to the membrane, where it is 
functional and helps to decrease extracellular glutamate 
concentrations. Previously reported actions of citicoline 
on cell membrane  [56–60]  might play a role in its effect 
on astrocytic membrane. 

 In summary, our results show that citicoline exhibits 
a remarkable and specifi c protection which occurs con-
comitantly with an inhibition of ischemia-induced neu-
ronal glutamate release and an increase in astrocytic glu-
tamate uptake by increasing EAAT2 translocation to the 
membrane. 

 Conclusion 

 Preclinical studies have demonstrated that numerous 
drugs are effective for treating stroke in animals; how-
ever, most of them have failed in clinical trials. Therefore, 
the study of the discrepancies between preclinical studies 
and clinical trials to form a basis for future trials together 
with the search of new targets for neuroprotection will 
help us to fi nd a better neuroprotective drug. 

 Elucidation of mechanisms that regulate the acquisi-
tion of brain tolerance could guide efforts to develop ef-
fective and safe pharmacological agents to protect the 
brain or reduce ischemic injury. In this sense, we have 
demonstrated that IPC increases the expression of the 
glutamate transporters EAAT2 and EAAT3, an effect 
that mediates ischemic tolerance by decreasing excito-
toxicity. 

 We have also revealed a novel functional polymor-
phism in the EAAT2 promoter region, which is associ-
ated with higher plasma glutamate levels and a clinically 
relevant trend towards neurologic worsening after stroke. 
These fi ndings reinforce the clinical relevance of EAAT2 
as a new target for neuroprotection and may re-open the 
research on glutamate antagonists for acute stroke treat-
ment by designing new trials in those patients affected by 
the polymorphism. 

 Finally, we have demonstrated that citicoline exhibits 
a remarkable and specifi c protection which occurs con-
comitantly with an inhibition of ischemia-induced neu-
ronal glutamate release and an increase in astrocytic glu-
tamate uptake by increasing EAAT2 translocation to the 
membrane. These results may possess important thera-
peutic implications in the management of patients at risk 
of ischemic events and open a new line of investigation 
to search for compounds able to increase either the func-
tion or the expression of glutamate transporters. 
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the detrimental effects of homeostasis and the activation 
of multiple pathways with opposing signals following 
ischemic stroke indicate that better outcome probably 
does not depend on a single compound but on several 
drugs acting in combination at the optimal time in a par-
ticular patient. 

 Copyright © 2006 S. Karger AG, Basel 

 Introduction 

 Neuroprotection in ischemic stroke has been a topic 
of increasing concern and massive research  [1–9] . More 
than one hundred putative targets and compounds have 
been assayed in vitro and in vivo with variable results. A 
large number of agents have proved to be neuroprotective 
in animal models subjected to transient or focal cerebral 
ischemia, usually produced by middle cerebral artery oc-
clusion, or subjected to global cerebral ischemia. Yet most 
of the same compounds have failed in human stroke tri-
als  [8] . Several reasons may account for these discrepan-
cies. One of them is that experimental animal models are 
designed so that the same insult is applied to the cohort 
which is maintained under the same basal conditions to 
minimize individual variations and to optimize repro-
ducibility. Certainly, this is not the real scenario in hu-
man stroke, in which individual variations and differ-
ences in the characteristics of the insult are the rule. An-
other important fact is that unique observations in one 

 Key Words 
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 Abstract 
 Focal permanent or transient cerebral artery occlusion 
produces massive cell death in the central core of the 
infarction, whereas in the peripheral zone (penumbra) 
nerve cells are subjected to various determining surviv-
al and death signals. Cell death in the core of the infarc-
tion and in the adult brain is usually considered a passive 
phenomenon, although events largely depend on the 
partial or complete disruption of crucial metabolic path-
ways. Cell death in the penumbra is currently considered 
an active process largely dependent on the activation of 
cell death programs leading to apoptosis. Yet cell death 
in the penumbra includes apoptosis, necrosis, interme-
diate and other forms of cell death. A rather simplistic 
view implies poor prospects regarding cell survival in the 
core of the infarction and therapeutic expectations in the 
control of cell death and cell survival in the penumbra. 
However, the capacity for neuroprotection depends on 
multiple factors, primarily the use of the appropriate 
agent, at the appropriate time and during the appropri-
ate interval. Understanding the mechanisms command-
ing cell death and survival area is as important as delim-
iting the therapeutic time window and the facility of a 
drug to effectively impact on specifi c targets. Moreover, 

 Published online: May 2, 2006 

 Prof. I. Ferrer 
 Institut de Neuropatologia, Servei Anatomia Patològica 
 IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona 
 carrer Feixa Llarga sn, ES–08907 Barcelona (Spain) 
 Tel. +34 93 403 5808, E-Mail 8082ifa@comb.es 

 © 2006 S. Karger AG, Basel 
 1015–9770/06/0218–0009$23.50/0 

 Accessible online at: 
 www.karger.com/ced 

http://dx.doi.org/10.1159%2F000091699


 Ferrer 
  
  

 Cerebrovasc Dis 2006;21(suppl 2):9–20 10

species are not necessarily valid in other species, includ-
ing humans, and that the benefi cial effects when the agent 
is administered alone are not applicable when the agent 
is given in combination with other products  [10] . Finally, 
it is worth stressing that the administration of certain el-
ements is limited to very reduced therapeutic windows in 
which the agent is active; no benefi t can be expected when 
the subject affected by a stroke is treated with even a very 
powerful agent at the wrong time. Together, these com-
ments will serve to remind us that neuroprotection in hu-
man stroke has to be based on the combination of precise 
knowledge of the chronology of pathogenic and patho-
logical events with the application of fuzzy logic related 
with individual variations. 

 Guidelines for the early management of patients with 
ischemic stroke have been published by the Stroke Coun-
cil of the American Stroke Association and the European 
Stroke Initiative  [11, 12] . Early diagnosis and treatment 
is a cardinal factor in patient outcome. Stroke units have 
been proved to reduce stroke mortality, clinical complica-
tions and neurological defi cits. Rapid re-canalization is 
the primary focus during the fi rst hours of ischemic stroke. 
Other measures include monitoring of the neurological 
status, adequate hydration and treatment of low blood 
pressure, prevention of venous thrombosis, treatment of 
hyperthermia, maintenance of normoglycemia, monitor-
ing heart rhythm, removal of Foley catheter as soon as 
possible, treatment of pulmonary and urinary infections, 
and skin care to avoid decubiti [13]. At present, throm-
bolysis with tissue plasminogen activator or related com-
pounds within 3 h of the onset is the most specifi c thera-
py effective in reducing mortality and disabilities associ-
ated with stroke  [14, 15] . Immediate antithrombotic 
therapy is no longer recommended for most patients be-
cause of possible hemorrhagic complications  [16, 17] . 

 Since metabolic function is lowered with hypother-
mia, reducing body temperature has been suggested as a 
putative treatment in cerebral ischemia  [18] . This has 
indeed been proven to be useful, although prevention of 
side effects such as hypotension, cardiac arrhythmia and 
pneumonia, in combination with precise control of tim-
ing, degree and duration of mild to moderate hypother-
mia, are needed to optimize the effi cacy of this procedure 
 [19, 20] . 

 This chapter is focused on key events during early 
 stages of ischemic stroke, and on pathogenic roles of dis-
tinctive molecules and metabolic pathways that compro-
mise cell survival and affect infarct progression. This in-
formation is needed to procure a rationale for neuropro-
tective measures in stroke patients. In this context, the 

present review is not a compendium but rather an ap-
proach to some salient aspects of neuroprotection in isch-
emic stroke. Major information is focused on focal cere-
bral ischemia, although comments on global ischemia are 
also introduced in some relevant aspects. 

 Focal Cerebral Ischemia 

 Focal permanent or transient cerebral artery occlusion 
produces massive cell death in the central core of the in-
farction. These effects depend on several factors includ-
ing duration of the occlusion, extent of the reperfusion 
and basal metabolic status, among others. Necrosis is 
characterized by rapid energy and metabolic failure, con-
sisting of reduced ATP, impairment of membrane ionic 
pumps with massive Ca 2+ , Na +  and water infl ux, under-
mining mitochondrial ATP-sensitive potassium chan-
nels, followed by membrane disruption and cell death. 
Proteases, calpains, endonucleases and other enzymes 
disrupt protein and nucleic acid assemblies. Enhanced 
poly(ADP-ribose)polymerase-1 (PARP-1) and poly(ADP-
ribosyl)ation after focal ischemia promote cell death by 
NAD +  and ATP depletion, whereas PARP gene disrup-
tion and drug-dependent PARP inhibition generate resis-
tance to cerebral ischemia  [21, 22] . 

 Necrosis is accompanied by glutamate release and ad-
ditional excitotoxic cell damage, and it is followed by ac-
tivation of various responses in neighboring cells, such as 
activation of phospholipases, cyclooxygenase-2 (COX-2), 
STATs, lipolysis, oxidative stress and increased nitric ox-
ide (NO) production. Glial cells, and leukocytes and 
monocytes, are sources of infl ammatory cytokines and 
chemokines which, in turn, activate complex metabolic 
pathways with variable, often opposing effects depending 
on the basal metabolic state, resulting in cell death or in 
favoring scavenging and reparative responses. These fi nd-
ings point to the likelihood that necrosis is a more com-
plex phenomenon than conventionally sanctioned. 

 Although the infarct core has produced little therapeu-
tic expectation, several studies have been focused on very 
early events following ischemia. Targeting mitochondrial 
ATP-sensitive potassium channels is being considered as 
a novel approach to neuroprotection  [23] . Drugs devel-
oped to selectively inhibit PARP-1 while preventing the 
function of PARP-2 look promising as putative neuropro-
tectors following ischemia  [24] . Last, but not least, the 
study of infl ammatory mediators has permitted the de-
lineation of possible therapies in central nervous system 
ischemia  [25, 26] . 
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 The Area around the Core of the Infarction: 
The Penumbra 

 The penumbra is defi ned as the rim of tissue that is 
hypoperfused around the ischemic core in which the 
blood fl ow is too low to maintain electrical activity but is 
suffi cient to preserve ion channels. In addition to low 
perfusion levels, cells in the penumbra are subject to del-
eterious factors produced by neighboring cells, including 
excitotoxicity, spreading depression propagating through 
the penumbral tissue that can induce additional energy 
demand contributing to cellular energy failure, oxidative 
stress, NO overproduction, infl ammatory cytokines, and 
adhesion molecule and metalloproteinase production, all 
of which facilitate the penetration of leukocytes. These 
chemical environmental signals act on membrane recep-
tors and then activate intracellular signaling pathways in-
ducing cellular responses. For instance, it is well recog-
nized that many cytokines trigger a cascade of events that 
can drive cells to death. Furthermore, direct cell-matrix 
and cell-cell interactions, which are nowadays also recog-
nized as remarkable communicating networks in brain 
tissue, might also contribute to the propagation of signals 
from the core to the neighboring penumbra. 

 Early responses to cellular ischemia in the vicinity of 
the ischemic core are reduced protein synthesis, and 
hsp70 mRNA induction and HSP70 heat shock protein 
expression  [27] . This represents a protective response, as 
mice overexpressing HSP-70 are protected against cere-
bral infarction  [28] . Together, these observations have 
permitted consideration of heat shock proteins in neuro-
protection  [29] . 

 Other early responses include c-fos mRNA induction 
and c-Fos protein expression, the effects of which in the 
damaged tissue are not clearly understood. 

 It is generally believed that cells in the penumbra die 
by an active process named programmed cell death or 
apoptosis. The term programmed cell death is here ap-
plied because it refers to the dependence on protein syn-
thesis and activation of cell death programs. The term 
apoptosis is used to indicate that some cells have early 
chromatin condensation and endonuclease activation, 
manifested as a ladder pattern on agarose gels, which cor-
responds to internucleosomal nuclear DNA break mul-
tiples of 180–200 base pairs. A large number of studies 
have been focused on apoptosis following focal ischemia 
 [30–34] . In some instances, apoptosis has been consid-
ered the prototypical form of cell death in the penumbra, 
in contrast with necrosis as the paradigm of cell death in 
the infarct core. Yet the penumbra is a very imprecise 

compartment in which cells may suffer necrosis or apo-
ptosis, as well as intermediate and other forms of cell 
death  [30, 33] . In a different setting, apoptosis is the 
 predominant form of cell death in most regions in the 
 hypoxic developing nervous system, including those 
 common lesions described as ischemic pontosubicular 
necrosis. 

 More importantly, the penumbra is a compartment in 
which cell outcome will depend on multiple factors that 
take place during a relatively dilated period of time after 
the ischemic insult. This aspect is crucial to operating 
with a selected battery of therapeutic agents to reduce in-
farct progression. 

 Programmed cell death may be initiated by external 
signals, by the activation of the mitochondrial pathway 
or by endoplasmic reticulum stress. The external pathway 
is mediated by the Fas receptor, a surface receptor that 
belongs to the tumor necrosis factor family, which binds 
to the Fas ligand (Fas-L). The Fas/Fas-L signaling system 
activates Fas-associated death domain (FADD) and cas-
pase 8 (cleavage of the inactive zymogen pro-caspase-8 to 
active caspase-8), which in turn activates caspase-3 (cleav-
age of pro-caspase-3 to the active 17 kDa product). The 
mitochondrial pathway is initiated by Bax translocation 
to the mitochondria membrane and competition with 
other members of the Bcl-2 family. This is followed by 
cytochrome c leakage to the cytosol, the binding of cyto-
chrome c to Apaf-1, dATP and pro-caspase-9, comprising 
the apoptosome, and subsequent activation of caspase-9. 
Active caspase-9 cleaves caspase-3 and other active cas-
pases. 

 External stimuli also activate the mitochondrial path-
way, as caspase-8 may impact on cytochrome c release 
through cleavage of pro-apoptotic Bid, another member 
of the Bcl-2 family. 

 The inhibitor of apoptosis (IAP) family includes X-
linked IAP (XIAP), which blocks the apoptosome ma-
chinery and inhibits apoptosis. However, XIAP is regu-
lated by Smac/DIABLO (second mitochondrial activator 
of caspases/direct IAP-binding protein with low pI) re-
leased from mitochondria during apoptosis, thus pre-
venting IAP inhibition of caspases. Interestingly, Smac/
DIABLO is inhibited by Bcl-2 and Bcl-xL, thus prevent-
ing inactivation of XIAP. 

 All these pathways are activated in the penumbra fol-
lowing cerebral ischemia  [33, 35–39] . Although most 
studies have been carried out in animal models, a similar 
scenario seems to occur in human stroke  [40]  ( fi g. 1 ). 

 Caspase inhibitors may block apoptosis in experimen-
tal models. However, this process is transient and cell 
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death progresses later. Therefore, direct inhibition of cas-
pases is not a primary target for neuroprotection, as cells 
at this stage are committed to die. More exciting prospects 
appear following manipulation of several upstream sig-
nals. Overproduction of Bcl-2 in transgenic mice is associ-
ated with reduction of the infarct size following focal ce-
rebral ischemia  [41] . Human Bcl-2 overexpression with 
herpes simplex virus vectors limits neuronal death in focal 
cerebral ischemia  [42] . Further evidence in vitro and in 
vivo has extended the properties of members of the Bcl-2 

family as very powerful anti-apoptotic agents and feasible 
protectors of mitochondria and apoptosis  [43–45] . 

 Finally, Bad is a pro-apoptotic member of the Bcl-2 
family which is normally phosphorylated and bound to 
the protein 14-3-3. Phosphorylation, and then inhibition 
of Bad, depends on several signals, including Ras/ERK, 
PI3K/Akt and PKA. Following apoptotic stimuli, Bad is 
dephosphorylated, and it translocates to the outer mito-
chondrial membrane, dimerizes with Bcl-xL and pro-
motes cytochrome c release  [46–48] . In contrast, Akt ac-
tivity is associated with cell survival following ischemia, 
thus appearing as a potential target for neuroprotective 
drugs  [49] . 

 In addition to cytochrome c and Smac/DIABLO, 
which are key factors in the caspase-dependent pathway 
of apoptosis, apoptosis inducing factor (AIF) is also ex-
truded from the mitochondria to the cytosol after apop-
totic stimuli. AIF translocates to the nucleus where it de-
termines peripheral chromatin condensation and large 
DNA strands. The mitochondrial caspase-independent 
pathway of apoptosis is also activated following cerebral 
ischemia  [33, 36, 50] . 

 Glutamate Release and Cellular Damage in 
Ischemia. Calcium Infl ux 

 Neuronal ischemia is followed by rapid calcium-de-
pendent and calcium-independent release of glutamate, 
extracellular glutamate accumulation and excitotoxic cell 
damage. The effl ux of glutamate induced by ischemia is 
reduced by tetrodotoxin and non-NMDA antagonists, 
whereas excitotoxic cell damage is mainly mediated by 
NMDA receptors  [51] . Several studies in experimental 
stroke have demonstrated the benefi ts of the glutamate 
blockade in the resolution of brain infarcts following mid-
dle cerebral artery occlusion. However, no evidence of 
signifi cant advantage or harm has been found in several 
clinical trials using drugs modulating excitatory amino 
acid action  [52] . This is not surprising as results from ex-
perimental focal ischemia in rats have demonstrated a 
therapeutic window of 3–4 h at most  [53] . Treatment in 
humans with drugs geared to reducing glutamate release 
or to blocking glutamate receptors administered within 
the fi rst 24 h is far from the ideal therapeutic window. 

 However, there is no reason for dismay in the face of 
these negative results. Rather, these observations further 
support the necessity to optimize the use of specifi c drugs 
at the appropriate time. Moreover, studies have shown 
metabotropic glutamate receptors as possible targets for 

  Fig. 1.  Border region of the infarct at 48 h after human ischemic 
stroke.  A ,  B  Method of in situ end-labeling of nuclear DNA frag-
mentation (TUNEL) showing positive cells without apoptotic mor-
phology.  C ,  D  Active, cleaved caspase-3 (17 kDa) immunohisto-
chemistry showing positive cells mingled with negative neurons. 
Paraffi n sections slightly counterstained with hematoxylin. Bars: 
 A  = 50  � m,  B–D  (bar in  D ) = 25  � m. 
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neuroprotective drugs. For example, mGlu2/3 receptor 
agonists inhibit glutamate release and promote the syn-
thesis and release of neurotrophic factors by astrocytes 
 [54] . Moreover, adenosine receptors modulate several 
neurotransmitter receptors, and adenosine 2A receptors 
have proved benefi cial in experimental stroke, probably 
counteracting the effects of excitatory amino acids  [55] . 

 Excessive elevation of intracellular calcium levels is 
deleterious for cells. However, calcium/calmodulin 
(CaM)-dependent protein kinase kinase (CaM-KK), an 
upstream activator for CaM kinase which is increased in 
the vicinity of the infarct area, has the capacity to phos-
phorylate cyclic AMP-responsive element-binding pro-
tein (CREB) and Akt, thus preventing apoptosis  [56, 57] . 
Consequently, activation of CaM-KK may be useful in 
preventing ischemic cell death  [57] . 

 Mitogen-Activated Protein Kinases and 
Phosphorylated Substrates following Ischemia 

 The family of mitogen-activated protein kinases 
(MAPKs) is composed of several members, including ex-
tracellular signal-regulated kinases (ERKs), stress-acti-
vated protein kinases (SAPKs), c-Jun N-terminal kinases 
(JNKs), and p38 kinases. All these members are activated 
by phosphorylation by specifi c upstream kinases which 
are regulated by trophic factors, membrane signals and 
stress. MAPKs, in turn, regulate, by phosphorylation at 
specifi c sites, several transcription factors including 
CREB, c-Myc, ATF-2, c-Jun and Elk-1 ( fi g. 2 ). In addi-
tion to cellular growth and differentiation, MAPKs 
are involved in cell death and cell survival. Some studies 
have shown decreased phosphorylation of MAPK/ERK, 
SAPK/JNK and p38 in the core of the infarction, but in-
creased phosphorylation in the penumbra at 4 h after 
ischemia. Phosphorylated CREB is markedly reduced in 
the infarct area as early as 1 h after middle cerebral artery 
occlusion, whereas c-Myc-P, CREB-P, Elk-1-P, ATF-2-P 
and c-Jun-P are increased in the penumbra at 4 h after 
ischemia. Interestingly, SAPK/JNK-P and c-Jun-P (which 
is phosphorylated at Ser 63  by SAPK/JNK-P) are mark-
edly increased in the infarct area 1 h after the occlusion. 
These data suggest that early activation of SAPK/JNK/c-
Jun together with decreased CREB-P is associated with 
cell death, whereas delayed activation of MAPKs and 
their substrates in the penumbra might be associated with 
cell death or with cell survival  [58] . 

 Previous studies have shown that CREB is associated 
with survival following ischemia  [59] . On the other hand, 

c-Jun has been associated with cell death, but also with 
neuronal survival and differentiation, as well as with neu-
ronal regeneration  [60] . Recently, a cell-permeable pep-
tide designed to inhibit SAPK/JNK signaling has proven 
successful following cerebral ischemia  [61] . 

  Fig. 2.  Phosphorylated mitogen-activated protein kinase (MAPK/
ERK-P) immunohistochemistry in human ischemic stroke at 24 h. 
 A  Cerebral cortex of the contralateral hemisphere;  B  core of the 
infarction;  C  penumbra area;  D  subcortical white matter of the con-
tralateral hemisphere;  E  subcortical white matter in the vicinity of 
the infarction. Increased numbers of MAPK/ERK-P-immunoreac-
tive cells are found in the cerebral cortex and subcortical white 
matter in the vicinity of the infarction. Paraffi n sections, slightly 
counterstained with hematoxylin. Bars:  A–C  (bar in  C ) = 50  � m; 
 D ,  E  (bar in  E ) = 25  � m. 
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 Oxidative Stress, Nitric Oxide, and Molecular 
Damage and Cell Death following Ischemia 

 Mitochondria produce hydrogen peroxide and super-
oxide anion radicals under normal conditions. These re-
active oxygen species (ROS) are eliminated by superoxide 
dismutases, catalase and glutathione peroxidase. In addi-
tion, other antioxidants such as endogenous glutathione 
and enzymatic antioxidants, and the dietary free-radical 
scavengers ascorbate and  � -tocopherol, are involved in 
this process. Increased intracellular ROS have deleterious 
effects on lipids, proteins and nucleic acids that lead to 
oxidative molecular damage, loss of function and cell 
death. Cerebral ischemia produces a dramatic increase in 
mitochondrial ROS which may bring about oxidative 
damage of lipids, proteins, RNA and DNA, and promote 
cell death  [62, 63] . 

 Several studies with transgenic and knockout mice 
have shown that overexpression of SOD1 (cytosolic, cop-
per/zinc superoxide dismutase) is associated with a 
marked reduction in infarct volume following perma-
nent focal ischemia  [64, 65] . SOD1 overexpression is also 
neuroprotective following global ischemia. In contrast, 
SOD1-defi cient mice are more vulnerable to focal and 
global cerebral ischemia. In the same line, transgenic 
mice overexpressing SOD2 (mitochondrial, manganese 
superoxide dismutase) are relatively protected following 
transient focal ischemia, whereas SOD2-null mice show 
increased infarct volume after focal cerebral ischemia 
 [66–69] . Finally, ECSOD (extracellular SOD isoform: 
SOD3) overexpression is associated with increased cell 
survival, whereas ECSOD ablation is associated with in-
creased cell death following global and focal cerebral isch-
emia, respectively  [70–72] . 

 Genetic manipulation of glutathione peroxidases 
(GSHPx) has provided stimulating results. Transgenic 
mice overexpressing human GSHPx-1 have a marked re-
duction in the volume of the infarct after transient focal 
ischemia, whereas GSHPx-1 –/–  mice suffer from increased 
infarct volume following ischemia and reperfusion  [73, 
74] . Interestingly, a basal GSHPx threshold is necessary 
for cell survival following ischemia, as crossed mice with 
SOD1 over-overproduction and GSPHPx-1 ablation 
have larger infarcts when compared with wild mice. 

 Among mitochondrial proteins damaged by ischemia 
that affect respiratory function and redox homeostasis are 
pyruvate dehydrogenase (PDH) and NADH-CoQ oxido-
reductase (complex I of the electron transport chain). It 
is feasible that PDH is a target of oxidative damage which 
results in increased oxidative stress and lactic acid pro-

duction  [75, 76] . Depression of NADH-CoQ oxidoreduc-
tase blocks the rate-limiting step of the electron transport 
chain. In addition, NADH and NADPH are released 
from the mitochondrial matrix to the cytosol following 
activation of the mitochondrial membrane permeability 
transition pore  [77] . However, P53 is also susceptible to 
redox disturbances and may activate the mitochondrial 
apoptotic pathway  [78] . 

 In addition to oxidative damage, cerebral ischemia in-
duces the expression and activation of nitric oxide syn-
thases (NOS) in neurons and glial cells. Generated NO 
and reactive peroxynitrites may promote cell death via 
apoptosis by decreasing mitochondria membrane poten-
tial, releasing cytochrome c from the mitochondria, acti-
vating caspase, and degrading caspase inhibitors  [79–83] . 
Nitration of proteins may result in further cellular dam-
age. Ischemia-induced NO overproduction is, in part, re-
lated with a glutamatergic-mediated increase in intracel-
lular calcium resulting in calmodulin-dependent up-regu-
lation of NOS  [84] . 

 During cerebral ischemia, the concentrations of free 
fatty acids, mainly arachidonic and docosahexaenoic acid 
(DHA), are markedly increased. Oxidation of arachidon-
ic acid may increase thromboxane and prostaglandin lev-
els via the cyclooxygenase pathway. Reaction of NO with 
superoxide causes the formation of peroxynitrite, lipid 
peroxidation and toxic lipid peroxidation products as hy-
droxynonenal that may stimulate apoptosis  [85] . 

 Since membrane lipids may be damaged by ischemia 
citicoline (CDP-choline) has been used as a stimulator of 
phosphatidylcholine synthesis in several paradigms. Cit-
icoline has been effective in reducing infarct size and cell 
death following middle cerebral occlusion in the rat  [86] . 
In addition, many other properties of CDP-choline ap-
pear to be contributory to the outcome of experimental 
stroke  [87] . Results of clinical trials are unconvincing, 
and further studies are needed in the selection of pa-
tients. 

 Together, these observations have prompted the de-
velopment of drugs to reduce oxidative stress and nitra-
tion molecular damage, as well as to increase antioxidant 
activity. These are compounds with SOD-like properties, 
catalase-like activity, and the capacity to oxidize NO and 
oxidized nitroxides, or drugs with the ability to eliminate 
peroxynitrite and peroxynitrite-derived products  [84] . 
An alternative approach has also been proposed, using 
spin traps to capture ROS. Modern spin trap NXY-059 
is particularly promising as it improves ischemic outcome 
in primates subjected to permanent focal cerebral isch-
emia  [88, 89] . 
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 Recent experimental studies have been directed to 
modulate the mitochondrial membrane permeability 
transition (MPT) pore. Thus, inhibition of MPT with cy-
closporine A, which interacts with cyclophilin D, and an-
tibodies to elements of the MPT pore, act as neuroprotec-
tors against ischemia  [90, 91] . 

 In addition to these oxidative target-directed com-
pounds, other substances also have antioxidant proper-
ties, including CDP-choline (citicoline), statins and doco-
sahexaenoic acid-derived mediators. Citicoline increases 
GSH levels and GSSG reductase activity, and attenuates 
glutathione oxidation ratio in transient forebrain isch-
emia and other experimental models  [92, 93] . Moreover, 
citicoline reduces oxidative stress in rat cerebral post-
ischemic reperfusion  [94] . HMG-CoA reductase inhibi-
tors (statins) up-regulate eNOS, inhibit iNOS and reduce 
infl ammatory cytokine responses. Statins ameliorate 
ischemic oxidative stress and reduce infarct size in ex-
perimental models  [95] . Statins offer promising results 
for the treatment of acute ischemic stroke  [96] . 

 Neuroprotectin D1 is a DHA-derived mediator that 
protects brain and retina against cell injury-induced oxi-
dative stress  [97] . In addition, NPD1 up-regulates BCl-2 
and BClxL, down-regulates Bax, and inhibits caspase-3 
activation and COX-2 expression. 

 Early Vascular Factors following Ischemia 

 Ischemia/reperfusion is accompanied by key events in 
microcirculation, including disruption of the blood-brain 
barrier, edema and swelling of perivascular astrocytes, 
abnormal potassium channel function, abnormal expres-
sion of water channel aquaporins, altered expression of 
proteases and metalloproteinases, and increased infl am-
matory mediators and infl ammation  [98, 99] . Statins, an-
giotensin modulators, erythropoietin, minocycline and 
thiazolidinediones are putative agents acting on key tar-
gets of vascular protection  [100] . 

 Endothelium-derived NO is a potent vasodilator and 
vascular protector produced by eNOS through oxidative 
conversion of  L -arginine to  L -citrulline. Inhibition of 
eNOS by  L -NAME decreases cerebral blood fl ow and in-
creases brain infarct size in animals lacking nNOS. Acti-
vation of eNOS by statins, corticosteroids, estrogen and 
 L -arginine further supports the use of these compounds 
as protectors against stroke  [101] . 

 However, blood vessels are also vulnerable to brain 
ischemia. Endothelial cells die by apoptosis, and 
the mechanisms commanding cell death in endothelial 

cells are probably similar to those found in neurons. 
SAPK/JNK and p38 kinase, and apoptosis signal-regu-
lating  kinase-1 (ASK-1), are activated in endothelial 
cells, and activation of these metabolic pathways is as-
sociated with activation of caspase-9 and caspase-3 
 [102–104] . 

 Astrocytes in Brain Ischemia 

 Neurons and astrocytes may respond differently to 
ischemia because astrocytes are the principal containers 
of glycogen in the brain, whereas neurons largely depend 
on oxygen and have little glycogen  [105] . However, there 
is increasing evidence that astrocytes are also vulnerable 
to cerebral ischemia  [105] . Several factors cause cell 
death in astrocytes in vitro, including ischemia, acidosis, 
oxidative stress and cytokines. Experimental models of 
ischemia in vivo have also shown Bax up-regulation, cas-
pase activation and nuclear condensation. Ischemia-in-
duced astrocytic death is blocked by caspase inhibitors 
 [106] . Further details of this process are obtained from 
distinct paradigms demonstrating abnormal mitochon-
drial function of astrocytes in a cell culture model of 
stroke  [107] . 

 In addition, astrocytic swelling is a major event in ce-
rebral ischemia. This circumstance leads to the release 
of excitatory amino acids via volume-activated anion 
channels (VRACs). Tamoxifen is a potent inhibitor of 
these channels, and it is neuroprotective in focal isch-
emia with a window of 3 h. Although it is not known 
whether the action of tamoxifen is due solely to VRAC 
inhibition, these results validate protection of astrocytes 
as an additional goal in ischemia neuroprotection 
 [108] . 

 Finally, glial cells in the vicinity of the infarct are a 
source of multiple factors including cytokines of the in-
terleukin family, chemokines, tumor necrosis factor- � , 
transforming growth factor- � , matrix metalloproteinases 
and plasminogen activator system, iNOS, heat shock pro-
teins, erythropoietin, antioxidants, and a variety of tro-
phic factors: glial cell line-derived neurotrophic factor, 
nerve growth factor, brain-derived neurotrophic factor, 
neurotrophins-3, -4, -5, ciliary neurotrophic factor and 
fi broblast growth factor. Some of these factors have del-
eterious effects, but many of them are also benefi cial and 
may contribute to tolerance and neuroprotection  [109, 
110] . 
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 Trophic Factors and Neuroprotection in 
Stroke 

 Trophic factors and their receptors are dramatically 
regulated following cerebral ischemic insults. Increased 
mRNA and protein expression levels are rapidly observed 
following stroke and persist for a long period  [111] . It 
seems clear that trophic factors are involved in cellular 
remodeling and regeneration following brain damage. In 
addition, there is strong evidence that many trophic fac-
tors may play crucial roles at early stages following brain 
ischemia, and thus may act as putative neuroprotective 
agents. 

 Pioneering studies with trophic factors in brain isch-
emia utilized intraventricular, intracerebral and intravas-
cular routes, or were based on grafts of transfected cell 
lines. These approaches are diffi cult when applied in the 
current clinical practice. Moreover, most trophic factors 
do not cross the blood-brain barrier, and large doses are 
accompanied by harmful peripheral side effects. Yet 
modern methods using targeted trophic factors bound to 
specifi c ligands or viral vectors carrying specifi c trophic 
factors are promising tools, at least in experimental mod-
els, when applied at the appropriate time windows. 

 As an example, vasoactive intestinal peptide (VIP) is 
a potent vasodilator in peripheral tissues and when ap-
plied directly to brain arteries. However, VIP cannot 
cross the blood-brain barrier. For this reason, a VIP chi-
meric analog bound to a murine monoclonal antibody 
against rat transferrin receptors (OX26-SA) has been in-
fused through the carotid artery in anesthetized rats. Ra-
diolabeled assays have shown good pharmacodynamics 
and a marked increase in the cerebral blood fl ow, thus 
suggesting that targeted VIP may be a useful tool in the 
treatment of stroke  [112] . 

 A similar approximation has been used with human 
recombinant basic fi broblast growth factor (bFGF) bound 
to OX26-SA. Intracarotid infusion reduces infarct size 
following middle cerebral occlusion in the rat. This effect 
is dose- and time-dependent, as no effects are found if the 
treatment is delayed beyond 2 h  [112] . These observa-
tions have renewed engagement on bFGF. It is worth 
stressing that bFGF had no longer been considered a suit-
able treatment in human ischemic stroke, in spite of its 
neuroprotective effects, because of the peripheral side ef-
fects related with the high doses required to cross the 
blood-brain barrier  [113, 114] . 

 Brain-derived neurotrophic factor (BDNF) has been 
proposed as a putative neuroprotective agent because of 
the increased expression of BDNF and TrkB, its specifi c 

receptor, in the rat brain following ischemia. BDNF ad-
ministration in the cerebrospinal fl uid reduced cell death 
following global ischemia in rats  [115] , whereas grafting 
of BDNF-producing fi broblasts diminished ischemic cell 
death in the hippocampus following transient forebrain 
ischemia in gerbils  [116] . A similar approach with grafted 
BDNF-transfected fi broblasts protected nerve cells from 
dying in the area of penumbra in a model of focal cerebral 
ischemia in rats  [117] . In order to obviate the blood-brain 
barrier, BDNF was conjugated to a blood-brain barrier 
drug targeting system. This procedure has been demon-
strated to be effective in reducing cell death following 
cerebral ischemia  [118, 119] . Interestingly, a recent study 
has demonstrated that the combination of hypothermia 
at 33   °   C and intravenous BDNF infusion reduces striatal 
glutamate and cell death more than in animals treated 
with hypothermia or BDNF alone  [120] . 

 Transforming growth factor (TGF)- �  and epidermal 
growth factor receptor (EGF-R) co-localize in the major-
ity of neurons and in maturing astrocytes. Since TGF- �  
is a membrane-anchored protein which may be cleaved, 
leading to the formation of a soluble form, in addition to 
distant effects due to the soluble form, local effects of 
TGF- �  may be produced by juxtacrine as well as by au-
tocrine stimulation  [121] . TGF- �  also has neuroprotec-
tive effects following intraventricular administration in 
ischemic rats  [122] , and this property is associated with 
the prevention of ERK phosphorylation  [123] . 

 Numerous studies have shown that TGF- �  expression 
is increased in the brain following cerebral ischemia. 
Moreover, TGF- �  is neuroprotective following middle 
cerebral artery occlusion and after ischemic insults in vi-
tro  [124] . This capacity is mediated by MAPK/ERK ac-
tivation, and it is associated with phosphorylation of Bad 
at Ser 112  thus inhibiting Bad and caspase-3 activation 
 [125–127] . In addition, TGF- �  induces translocation of 
nuclear factor- � B (NF � B) transcriptional activity in the 
presence of apoptotic stimuli, as well as increased phos-
phorylation of I ��  kinase with a subsequent degradation 
of I ��� . This action through NF � B is necessary for  
TGF- �  neuroprotection  [127] . 

 Glial cell line-derived neurotrophic factor (GDNF), a 
member of the TGF- �  superfamily, has a proven capac-
ity to reduce brain damage following ischemia  [128–130] . 
This effect is time-dependent, as no neuroprotective ef-
fect is observed if GDNF is given 3 h after transient mid-
dle cerebral occlusion  [131] . The neuroprotective effect 
is mediated by GDNF binding to the GFR � -1 receptor 
 [132] . Several mechanisms of neuroprotection have been 
proposed for GDNF, including reduction of NMDA-in-
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duced calcium infl ux, reduction of iNOS activity and NO 
production and release, and down-regulation of caspase-
dependent apoptotic pathways  [132–135] . 

 Bone morphogenic proteins (BMPs) are also members 
of the TGF- �  superfamily, most of them expressed in the 
nervous system. They bind to specifi c type I and type II 
serine-threonine kinase receptors. BMPs are important 
factors during the development of the nervous system, 
but the presence of the ligands and receptors in adults 
gives support to additional functions in the adult brain. 
In fact, several BMP mRNAs and proteins are up-regu-
lated following cerebral insults. BMP6 and BMP7 admin-
istration 24 h prior to middle cerebral artery occlusion 
results in reduced brain infarcts  [136, 137] . However, 
much more limited benefi ts are obtained when BMP is 
administered after ischemia  [138] . 

 Vascular endothelial growth factor (VEGF) binds to 
the receptor kinases VEGFR-1 (Flt-1) and VEGFR-2 
(KDR/Flk-1), and promotes angiogenesis, vascular per-
meability and endothelial proliferation. Several VEGF 
isoforms are produced as a result of alternative splicing 

of the VEGF gene. Neuropilin 1 and 2 bind semaphorins 
and VEGF, suggesting that, in addition to vascular ef-
fects, VEGF is implicated in neurogenesis  [139] . VEGF 
is up-regulated in the penumbra of the infarct between 6 
and 24 h, and precedes angiogenesis  [140, 141] . Intrave-
nous infusion of VEGF within 48 h after the onset of fo-
cal ischemia enhances angiogenesis in the penumbra and 
ameliorates neural recovery  [142, 143] . In addition, ex-
ogenous administration of VEGF directly administered 
or overexpressed by gene delivery reduces ischemic brain 
infarct and decreases cell death  [144–148] . Several mech-
anisms are involved, including modulation of the PI3K/
Akt/NF � B signaling pathway, inhibition of caspase-3 ac-
tivity, and reduction of apoptosis, as well as modulation 
of potassium channels  [149] . 

 Together, these observations concerning neurotro-
phins and other trophic factors support the concept that 
they are, with proper decoding of the restraints concomi-
tant to route of administration, dose, timing and sched-
ule, combination of factors and reduction of peripheral 
side effects, potent neuroprotective agents. 
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 After ischemic stroke, damage to cerebral blood ves-
sels occurs early and is progressive over time. The result 
of vascular damage is an increase in the endothelial cell 
permeability leading to edema formation and hemor-
rhagic transformation of the ischemic lesion which in 
turn is associated with a worse functional outcome. 

 Vascular endothelium is an indispensable organ in the 
regulation of the tone and vascular homeostasis. Anti-
oxidant, anti-infl ammatory, vasodilatory, antiaggregant, 
anticoagulant and profi brinolytic effects have all been de-
scribed among the functions of the endothelium. These 
effects disappear as a result of endothelial dysfunction 
secondary to vascular damage  [1] . Vascular protection 
has traditionally been approached through the enhance-
ment of endothelial function, the prolongation of endo-
thelial cell survival, and the suppression of the throm-
botic and anti-infl ammatory effects within the vascula-
ture  [2] . 

 Although any strategy reducing the incidence of the 
vascular event responsible for endothelial dysfunction 
could be considered to be ‘vascular protective’ (including 
antithrombotic and antihypertensive therapies), this 
term is only used for therapeutic agents with direct ben-
efi cial effects on the vascular endothelium. Vascular pro-
tection is defi ned as an increase in the endothelial func-
tion with the aim of preventing vascular smooth muscle 
cell proliferation, infl ammation, thrombosis, and apo-
ptosis. 

 Key Words 
 Vascular protection  �  Ischemic stroke  �  Stroke, 
treatment  �  Statin treatment  

 Abstract 
 Vascular damage occurring after cerebral ischemia may 
lead to a worse outcome in patients with ischemic stroke, 
as it facilitates edema formation and hemorrhagic trans-
formation. There are several phases in the development 
of vascular injury (acute, subacute and chronic) and dif-
ferent mediators act in each one. Therapeutic options to 
avoid vascular injury must be focused on acting in each 
phase. However, even though experimental studies have 
demonstrated the benefi t of therapeutic interventions 
both in the acute and chronic phases of cerebral isch-
emia, only the chronic phase offers a therapeutic  window 
suffi ciently wide enough to provide vascular protection 
in clinical practice. Several drugs including erythropoi-
etin and HMG-CoA reductase inhibitors (statins), antihy-
pertensive (angiotensin modulators), antibiotics (mino-
cycline) and antihyperglycemic drugs (thiazolidinediones) 
have been proved to provide vascular protection in pa-
tients with ischemic stroke. Anti-infl ammatory, antioxi-
dant, and antiapoptotic actions are responsible for the 
vascular protective effect related to these drugs. 
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 Cerebral ischemia results in a cascade of events that 
takes place at different times, a fact that allows us to dis-
tinguish between an acute phase of stroke (occurring 
within hours), a subacute phase (occurring within hours 
to days) and a chronic phase of evolution (occurring with-
in days to months). Targets of vascular protection after 
ischemic stroke differ depending on the time of evolution 
and must be identifi ed within each one of these phases 
 [3] .  

 Pathophysiology of Vascular Injury after 
Ischemic Stroke ( fi g. 1 ) 

 Cerebral blood fl ow reduction is followed by a series 
of processes that affect microvasculature provoking 
blood-brain barrier (BBB) disruption and vascular tone 
disturbance  [4] . Several factors including free oxygen rad-
icals, oxygen, nitric oxide (NO), endothelin-1 (ET-1), vas-
cular endothelial growth factor (VEGF) and angiopoi-
etin-1 play an important role in the maintenance of vas-
cular tone and structure regulation during the acute phase 
of stroke  [4, 5] . As a result of the reperfusion, a large 
amount of free oxygen radicals including hydrogen per-
oxide, hydroxyl radicals, and especially the superoxide 
anion are released  [6, 7] . Free oxygen radicals alter the 
vascular response to CO 2 , stimulate the release of endo-
thelium-dependent vasodilators such as acetylcholine, 

and increase platelet aggregability as well as endothelial 
and BBB permeability  [7] . BBB disruption results in al-
bumin and other high-molecular-weight protein extrava-
sation, which produces edema and an increase in the in-
tracranial pressure. In addition to its effects on BBB in-
tegrity and vascular tone, the superoxide anion reacts 
with NO forming the highly toxic peroxynitrite radical, 
which is responsible for delayed tissular damage, and is 
an important signal mechanism triggering infl ammation 
and apoptosis in the acute and chronic phases of ischemic 
stroke. Other molecules released during the acute phase 
of ischemia are also responsible for the increase in BBB 
permeability, such as ET-1  [8, 9] , VEGF, which also pro-
motes angiogenesis  [10] , and angiopoietin-1, which also 
mediates angiogenesis and participates in BBB stability, 
and whose levels decrease immediately after ischemia co-
inciding with the increase in BBB permeability  [11] . 

 The generation of free radicals and the increase in in-
tracellular calcium occurring in the acute phase of isch-
emia activates different infl ammatory genes in the sub-
acute phase of stroke. The result is the release of several 
infl ammatory mediators including interleukin (IL)-1 � , 
tumor necrosis factor  �  (TNF- � ), and transcription fac-
tors such as hypoxia-inducible factor-1, nuclear factor- � B 
(NF- � B), and interferon regulatory factor-1  [12–15] , 
which in turn stimulates the expression of adhesion pro-
teins including the intercellular adhesion molecule 1 
(ICAM-1), P-selectins and E-selectins, which are impor-
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  Fig. 1.  Pathophysiology of vascular injury after ischemic stroke. Mechanisms of vascular damage depend on the 
temporal evolution of cerebral ischemia. 
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tant mediators of endothelium vascular integrity. Adhe-
sion proteins interact with neutrophils and facilitate their 
migration through the vascular wall to the cerebral tissue. 
Infl ammatory molecules also induce the release of matrix 
metalloproteinases (MMP), a group of proteolytic en-
zymes related to the remodeling of the basal lamina and 
the disruption of the endothelium  [16, 17] . 

 In the chronic phase of stroke, the expression of genes 
participating in apoptosis and in the stimulation of an-
giogenic factors is induced in endothelial cells. Pro-
grammed cell death is triggered by the activation of dif-
ferent factors in cellular surface receptors such as TNF- � , 
superoxide and IL-1 � . In response to this stimulus, pro-
teolytic enzymes, caspases and other proteins such as B-
cell lymphoma-leukemia 2 (Bcl2)-associated C protein 
(Bax) and transformation-related protein 53 (Trp53), as 
well as antiapoptotic enzymes such as Bcl2 and inhibitor 
of apoptosis protein (Iap) are activated  [18–21] . 

 Therapeutic Targets for Vascular Protection in 
Brain Ischemia ( fi g. 2 ) 

 As we have seen, vascular protection therapeutic op-
tions must be considered in the context of the physiopa-
thology of vascular injury after ischemic stroke. In the 
acute phase, the superoxide anion is the predominant me-
diator. In the subacute phase, the most important factors 

are infl ammatory mediators and proteases. Finally, pro-
apoptotic gene expression is the most important mediator 
of vascular injury in the chronic phase.  

 Acute Phase of Stroke 
 Free oxygen radicals play an important role during the 

acute phase of stroke. Several studies have demonstrated 
that neutralizing free oxygen radicals by spin traps or 
scavenger enzymes such as superoxide dismutase or cata-
lase prevents abnormal vasoreactivity and the increase in 
the permeability of the BBB  [22, 23]  providing evidence 
that limiting oxidant stress in the acute phase of stroke is 
critical for improving outcome. 

 The administration of antioxidants such as  � -lipoic 
acid and  Ginkgo biloba  extract before the induction of 
ischemia also provides neuroprotection and reduces in-
farct volume  [24] . A recent study reported that in addi-
tion to its antithrombotic effect, aspirin also provides 
neuroprotection due to its antioxidant effect in cerebral 
tissue subjected to hypoxia  [25] . However, the effect of 
antioxidants on cerebrovascular function and vascular 
integrity and the appropriate therapeutic window in the 
acute phase of stroke still remain unclear. 

 Subacute Phase of Stroke 
 Infl ammatory mediators and proteases play an impor-

tant role within hours to days after stroke. The infl amma-
tory reaction triggered as a consequence of cerebral isch-
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emia makes it an attractive pharmacological option con-
sidering its rapid initiation and progression over many 
hours after stroke as well as its contribution to the evolu-
tion of tissue injury. The infl ammatory reaction second-
ary to brain ischemia provides fertile ground for the in-
vestigation into novel therapeutic agents for the treat-
ment of stroke. The inhibition of the mitogen-activated 
protein kinase (MAPK) cascade through the administra-
tion of cytokine suppressive anti-infl ammatory drugs, 
which block p38 MAPK and hence the production of 
IL-1 and TNF- � , would seem to be the most promising 
future therapeutic option  [26] . One of these drugs is chry-
sin, a natural and biologically active compound extracted 
from many plants, honey, and propolis, which has a pow-
erful anti-infl ammatory effect that induces p38-MAPK 
activation  [27]  although its clinical utility has not yet been 
demonstrated. 

 Chitosan, another anti-infl ammatory drug prepared 
by the chemical N-deacetylation of chitin, has been ob-
served to accelerate wound healing and the production of 
cytokines  [28] . The iron chelator desferrioxamine (DFX) 
is capable of inducing NF- � B activation and hypoxia-de-
pendent gene expression, probably by replacing or remov-
ing the central iron of the putative heme oxygen sensor 
 [29] . Chitosan inhibited the DFX-induced proinfl amma-
tory cytokine production (IL-6, IL-8, and TNF- � ) by 
the blockage of NF- � B activation in human mast line 
(HMC)-1 cells  [30] . 

 Different agonists of peroxisome proliferator-activat-
ed receptor (PPAR)- �  such as 15-dPGJ 2  may have a neu-
roprotective effect. This prostaglandin is related to good 
neurological outcome and smaller infarct volume in isch-
emic stroke  [31]  and can also act through PPAR- � -inde-
pendent mechanisms including the inhibition of NF- � B 
signaling  [32]  and some kinases involved in the MAPK 
cascade  [33] . 

 Chronic Phase of Stroke 
 Ongoing delayed neuronal death, in part mediated by 

apoptosis, contributes to the progression of cerebral in-
farction during the recovery period. The inhibition of 
apoptotic mechanisms may provide sustained neuropro-
tection  [34] . Different treatments have been tested to stop 
apoptosis in animal models of ischemic stroke. It has been 
proved that hyperbaric oxygen therapy limits infarct vol-
ume preserving more brain tissue and promoting neuro-
logical functional recovery  [35] . It has also been demon-
strated that chronic treatment with low doses of lithium 
provides neuroprotection in a transient model of focal 
cerebral ischemia by blocking apoptotic mechanisms 

 [36] . The administration of oral creatine results in a re-
markable reduction in ischemic brain infarction volume 
and neuroprotection by the reduction of postischemic 
caspase-3 activation and cytochrome c release  [37] . 

 Endothelial progenitor cells derived from bone mar-
row circulate in the peripheral blood and have been re-
lated to in neoangiogenesis after tissue ischemia  [38] . 
These cells are capable of proliferating and differentiating 
into endothelial cells and so are ideal candidates for vas-
cular regeneration  [39] . Neoangiogenesis has been ob-
served in perilesional tissue from endothelial progenitor 
cells in animal models of cerebral ischemia  [40]  and so 
the use of these cells should be considered as a potential 
therapeutic target in the future. 

 Drugs Providing Vascular Protection 

 There are several currently marketed safe therapeutic 
agents including statins, angiotensin modulators, eryth-
ropoietin, minocycline and thiazolidinediones which 
have been found to act against some key targets of vascu-
lar protection  [41] . 

 Statins 
 Statins, or 3-hydroxy-3-methylglutaryl-coenzyme A 

(HMG-CoA) reductase inhibitors, have been associated 
with a signifi cant decrease in the incidence of ischemic 
stroke in patients with a previous history of coronary ar-
tery disease, both with and without high serum levels of 
cholesterol. Several studies have found that statins may 
reduce the incidence of stroke by around 30%  [42–44] . 
They have also been found to slow down the development 
of atherosclerosis in both coronary and carotid arteries 
and to reduce the progression of carotid intima-media 
thickening  [45] . Over and above the undoubtedly impor-
tant effects of statins in stroke prevention, they may have 
further benefi cial effects including endothelial, anti-in-
fl ammatory, antioxidant-protective properties  [46] . 

 Statins improve the endothelial vascular function. 
Vascular endothelial injury is a major initiating factor of 
atherosclerosis. The endothelium has important antiath-
erogenic properties as endothelial cells synthesize several 
mediators that protect the vessel from atherosclerosis 
 [47] . NO is particularly important in this protective pro-
cess. Different nitric oxide synthase (NOS) forms play 
important but opposing roles in cerebral ischemia. The 
inducible form of NOS (iNOS) has been found to be an 
important mediator in the ischemia and reperfusion in-
fl ammatory response  [48] . Astrocytes elaborate iNOS in 
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response to of several mediators such as IL-1 � , TNF- �  
and IL-6. The expression of iNOS has also been demon-
strated to occur in neutrophils infi ltrating the ischemic 
brain and blood vessels within the ischemic territory in 
human ischemic stroke  [49] . Additionally, neuronal NOS 
(nNOS) may contribute to neuronal damage by promot-
ing glutamate-mediated neurotoxicity. In contrast, NO 
produced by endothelial NOS (eNOS) has a protective 
effect and orchestrates the paracrine homeostatic func-
tions of the endothelium, with leukocyte and platelet ad-
hesion inhibition, control of vascular tone, and the main-
tenance of the thromboresistant interface between the 
bloodstream and the vessel wall. NO produced by eNOS 
stimulates guanylyl cyclase activity, which results in sev-
eral potentially antiatherogenic and antithrombotic ac-
tions including vascular smooth muscle proliferation in-
hibition  [50] , and platelet adhesion  [51]  activation and 
aggregation inhibition  [52] . Statin treatment produces a 
benefi cial effect in cerebral ischemia due to brain eNOS 
modulation. In a murine model of ischemic stroke pro-
phylactic statin therapy has been found to increase cere-
bral blood fl ow, to reduce infarct volume by approximate-
ly 30% and improve neurological outcome in normocho-
lesterolemic animals  [53] . In this intriguing investigation, 
statin therapy directly upregulated eNOS activity in the 
brain without altering the expression of nNOS indepen-
dently of the change in cholesterol levels. Even though 
these effects have not been found in humans, these obser-
vations suggest that statins may protect the cerebral en-
dothelium and attenuate the ischemic burden. 

 In addition to biochemically remodeling the endothe-
lium, statins have been shown to inhibit a number of in-
fl ammatory processes known to be important during ce-
rebral ischemia and reperfusion. They have anti-infl am-
matory properties as they reduce the infl ammatory cell 
accumulation in atherosclerotic plaques  [54]  and so con-
tribute to plaque stability. The statins also help plaque 
stability by inhibiting MMP and tissue factor expression 
in plaques  [55] . Statin treatment reduces enhanced leu-
kocyte-endothelium interactions in hypercholesterolemic 
animals  [56]  and inhibits neutrophil adhesion to coro-
nary endothelium  [57] . In in vivo studies, both simvas-
tatin and lovastatin reduce monocyte CD11b expression 
and ex vivo CD11b-dependent monocyte adhesion to the 
endothelium in subjects with hypercholesterolemia  [58] . 
In addition to these potentially salutary effects, statin 
therapy may modulate central nervous system cytokine 
production. Statin treatment may represent a novel 
means of suppressing cytokine response that occurs dur-
ing ischemia and reperfusion by directly reducing the in 

vivo induction of infl ammatory mediators such as iNOS, 
IL-1 �  and TNF- �  in astrocytes and macrophages. 

 Finally, statins may be neuroprotective due to their 
potentially antioxidant effects. The generation of free 
radical generation results in neuronal damage by lipid 
peroxidation induction, protein oxidation and direct 
damage to nucleic acids. Several studies have found that 
statin therapy may reduce lipoprotein oxidation and 
ameliorate free radical injury. They also have favorable 
antioxidant effects including an increase in the lag time 
of copper-induced low density lipoprotein (LDL) oxida-
tion  [59]  and a reduction in leukocyte-induced LDL oxi-
dation  [60] . Hydroxyl metabolites of atorvastatin have 
been shown to inhibit oxidation in a concentration-de-
pendent manner in an in vitro model of cerebral ischemia 
 [61] , and in a study of hypercholesterolemic patients, 
treatment with simvastatin increased the  � -tocopherol/
total cholesterol ratio  [62] , thus possibly boosting mem-
brane-specifi c antioxidant defenses. 

 Angiotensin Modulators 
 Angiotensin II is the main product of the renin-angio-

tensin system and tends to be elevated in most of hyper-
tensive patients. Besides its vasoconstrictive action, it can 
contribute to atherogenesis by stimulating smooth mus-
cular cell growth  [63] . Angiotensin II binds to specifi c 
receptors of smooth muscular cells, inducing phospholi-
pase C activation, which increases calcium concentra-
tions and provokes muscular contraction. It also increas-
es protein synthesis and provokes smooth muscular cell 
hypertrophy  [64] . Angiotensin II has also been found to 
increase lipoxygenase activity, which results in increased 
infl ammation and LDL oxidation. Furthermore, angio-
tensin II increases the expression of proinfl ammatory cy-
tokines such as IL-6 and ICAM-1 by arterial wall smooth 
muscular cells  [65–67] . 

 Increased production of reactive oxygen species, espe-
cially the superoxide anion, contributes to functional and 
structural alterations. By stimulating the angiotensin II 
type 1 (AT1) receptor, angiotensin II contributes to the 
overexpression of cytosolic proteins involved in the acti-
vation of NAD(P)H oxidase, which is a major source of 
superoxide production  [68, 69] . The overexpression of 
these cytosolic proteins might lead to vascular hypertro-
phy and remodeling in hypertension  [68, 69] . 

 Besides its effect on blood pressure, angiotensin mod-
ulators have other effects. Recent animal model studies 
show that previous treatment with losartan, an angio-
tensin inhibitor, reduces infarct size after cerebral focal 
ischemia by the stimulation of cerebral angiogenesis 
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 [70] . Angiotensin inhibitors may offer benefi t with re-
spect to endothelial dysfunction and vascular remodel-
ing  [71] . It has been observed that the AT1 receptor an-
tagonists reduce overall oxidative stress in hypertensive 
patients independently of its effects on blood pressure 
 [72] . 

 Angiotensin modulators reduce mortality after cere-
bral ischemia, and a long-term benefi t in decreasing the 
risk of stroke. Angiotensin-converting enzyme inhibitor 
treatment decreases short-term mortality in older pa-
tients with acute ischemic stroke  [73] . It has been proved 
that antihypertensive treatment with perindopril reduces 
and prevents cardiovascular disease in a large range of 
patients with vascular diseases, whether or not they are 
hypertensive  [74] . Perindopril is a long-acting, once-dai-
ly lipophilic angiotensin-converting enzyme inhibitor 
with a high tissue angiotensin-converting enzyme affi ni-
ty, which decreases angiotensin II and potentiates brady-
kinin. 

 For this reason, angiotensin modulators are fi rst-line 
agents for the treatment of hypertension and cardiovas-
cular diseases  [75, 76] . The block of the renin-angiotensin 
system by using these agents has special advantages due 
to specifi c vascular and antiatherosclerotic effects that 
contribute to better vascular protection. 

 Erythropoietin 
 Erythropoietin is a glycoprotein that is produced main-

ly by interstitial fi broblasts in the kidneys of adults and 
in hepatocytes in the fetus. Released into the circulation, 
it makes its way to the bone marrow, where it regulates 
red cell production by preventing apoptosis of erythroid 
progenitor cells. Recently, erythropoietin has emerged as 
a multifunctional growth factor that plays a signifi cant 
role in the nervous system. Both erythropoietin and its 
receptor are expressed throughout the brain in glial cells 
 [77] , neurons  [78]  and endothelial cells. Hypoxia and 
ischemia have been recognized as important driving 
 forces of erythropoietin expression in the brain. Erythro-
poietin has potent neuroprotective properties  [79]  and 
appears to act in a dual way by directly protecting neurons 
from ischemic damage and by stimulating endothelial 
cells and thus supporting the angiogenic effect of VEGF 
in the nervous system. 

 Erythropoietin modulates a broad array of cellular 
processes that include progenitor stem cell development, 
cellular integrity, and angiogenesis, and inhibits the apo-
ptotic mechanisms of injury, including the preservation 
of cellular membrane asymmetry to prevent infl amma-
tion  [80] . 

 Minocycline 
 Minocycline is a semisynthetic second-generation tet-

racycline with demonstrated anti-infl ammatory  [81] , glu-
tamate antagonist  [82] , and antiapoptotic effects  [83] . 
Apart from its antimicrobial properties, minocycline has 
been found to have benefi cial effects on microglial activa-
tion, MMP, NO production, and apoptotic cell death 
 [84] . 

 Minocycline has neuroprotective effects in vivo against 
permanent focal cerebral ischemia and in vitro against 
glutamate-induced cell death. The inhibition of oxidative 
stress by minocycline may be partly responsible for these 
effects  [85] . Minocycline may also provide protection by 
interfering with MMP  [86] . In animal models of focal ce-
rebral ischemia, minocycline has been shown to reduce 
infarct size by more than 50%  [81] . However, the mino-
cycline doses used in these studies were almost 30 times 
the weight-based dose routinely administered to humans 
for anti-infective and anti-infl ammatory purposes. 

 Minocycline may represent a prototype of an anti-in-
fl ammatory compound that provides protection against 
ischemic stroke and has a clinically relevant therapeutic 
window, but these results must be confi rmed in clinical 
trials. 

 Thiazolidinediones 
 Thiazolidinediones are a new kind of antihyperglyce-

mic that improve insulin-mediated glucose uptake into 
skeletal muscle without increasing endogenous insulin se-
cretion  [87]  and have been demonstrated to be effective 
in the treatment of non-insulin-dependent diabetes mel-
litus with insulin resistance. They exert their primary ef-
fects by activating specifi c receptors, called peroxisome 
proliferator-activated receptor (PPAR). There are three 
types of such receptors: PPAR- � , PPAR- �  and PPAR- � . 
Thiazolidinediones activate PPAR- �  receptor, which is a 
ligand-dependent nuclear transcription factor that has 
been implicated in a broad range of cellular functions, 
including anti-infl ammatory effects  [88, 89] . 

 Besides their insulin and glucose metabolism effect, 
thiazolidinediones have another non-glucemic effects. As 
we have seen, thiazolidinediones are PPAR- �  nuclear re-
ceptor agonists, which are present in several tissues, in-
cluding adipose tissue, endothelial cells, macrophages, 
and smooth muscular cells, therefore thiazolidinediones 
administration improves most of metabolic syndrome 
compounds  [90] . Treatment with thiazolidinediones de-
creases free serum fatty acid, increases HDL cholesterol 
levels by 10–20%, convert small and heavy LDL choles-
terol particles into big and light, and modestly reduces 
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serum triglyceride levels if they are  1 200 mg/dl. These 
PPAR- �  receptor agonists improve endothelial dysfunc-
tion. They reduce adhesion molecule and growth factor 
production and limit smooth muscular cell and fi broblast 
proliferation. Besides these effects it has been demon-
strated that thiazolidinediones have an anti-infl amma-
tory effect since they reduce some molecular infl amma-
tory markers such as TNF- �  and C-reactive protein. It 
has also been demonstrated that thiazolidinediones have 
vasculoprotective effects in both acute and chronic vas-
cular injury through the inhibition of vascular smooth 
muscle cell proliferation  [91] . 

 Other Therapeutic Agents  
 Another drug that can be effective in vascular protec-

tion is clopidogrel. The exact mechanism of the benefi t of 

clopidogrel is still being elucidated but it is related to the 
inhibition of vascular infl ammation, endothelial dysfunc-
tion, and localized angiogenesis, and not just aggregation 
 [92] . It has been proved that this drug exerts anti-infl am-
matory effects in animal models. Clopidogrel administra-
tion reduces P-selectin expression and CD40 ligand and 
tissue factor expression and also protects endothelial 
NOS protein expression  [93] . Clopidogrel has also been 
shown to inhibit CD40 ligand expression in the platelets 
of healthy volunteers  [94] . 

 Citicoline can also exert a vascular neuroprotective ef-
fect since it has an antioxidant action by stimulating 
phospholipase A 2  and decreasing OH –  generation  [95] . 
Citicoline can also cooperate in reducing brain glutamate 
release after ischemia  [96] . 
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in a very experimental phase. Some hurdles will have to 
be overcome before these therapies can be introduced 
into human clinical stroke trials. 

 Copyright © 2006 S. Karger AG, Basel 

 Introduction 

 In the last decade, important investigative work has 
been undertaken with notable repercussions of the 
knowledge of pathophysiology, diagnosis and treatment 
of cerebrovascular disease  [1] . One of the most complex 
investigation areas but with more signifi cant advances 
in recent years is the study and identifi cation of genes, 
their protein products, their functions and their implica-
tions in the pathophysiology of cerebral ischemia  [2, 3] . 
Molecular biology techniques and more recently DNA 
microarray analyses have allowed the development of 
many experimental studies in vitro or in animal models 
of cerebral ischemia. However, there are limited works 
after stroke in humans. These studies have contributed 
interesting data in the understanding of genetic regula-
tion and protein expression following ischemic stroke 
 [2, 3] . 

 Cerebral ischemia is a powerful stimulus for gene reg-
ulation  [4–8] . It is responsible for activation of genes in-
volved as much in cell death as in cell recovery ( fi g. 1 ). 
Some genes are involved in excitotoxicity, cell depolar-
ization, post-ischemic infl ammatory alterations and 

 Key Words 
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  Abstract 
 Cerebral ischemia is one of the strongest stimuli for gene 
induction in the brain. Hundreds of genes have been 
found to be induced by brain ischemia. Many genes are 
involved in neurodestructive functions such as excito-
toxicity, infl ammatory response and neuronal apoptosis. 
However, cerebral ischemia is also a powerful reformat-
ting and reprogramming stimulus for the brain through 
neuroprotective gene expression. Several genes may 
participate in both cellular responses. Thus, isolation of 
candidate genes for neuroprotection strategies and in-
terpretation of expression changes have been proven 
diffi cult. Nevertheless, many studies are being carried 
out to improve the knowledge of the gene activation and 
protein expression following ischemic stroke, as well as 
in the development of new therapies that modify bio-
chemical, molecular and genetic changes underlying ce-
rebral ischemia. Owing to the complexity of the process 
involving numerous critical genes expressed differen-
tially in time, space and concentration, ongoing thera-
peutic efforts should be based on multiple interventions 
at different levels. By modifi cation of the acute gene ex-
pression induced by ischemia or the apoptotic gene pro-
gram, gene therapy is a promising treatment but is still 
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apoptosis resulting in fi nal tissue damage, while other 
genes exercise neuroprotective functions through neuro-
trophic and angiogenic factor expression  [4–8] . A time 
course of gene response with many molecular interactions 
during acute and delayed phases of ischemic brain injury 
has been demonstrated  [7, 8]  ( table 1 ). Therefore, it is a 
complex process to isolate target genes for a neuroprotec-
tion strategy which requires important efforts, especially 
when several genes may participate in both cellular re-
sponses. 

 Simultaneously, new treatments that modify biochem-
ical, molecular and genetic changes that take place during 
cerebral ischemia to minimize brain injury and to im-

prove thrombolytic treatment effectiveness have been in-
vestigated  [9] . These therapies have their application es-
pecially in the area of ischemic penumbra, in which inac-
tive but even viable neurons exist if cerebral blood fl ow 
is recovered  [10, 11] . Although there seem to exist sig-
nifi cant differences among the gene expression of animals 
and humans  [7] , and despite the fact that many drugs 
have been demonstrated to interfere with the biochemical 
changes associated to cerebral ischemia in experimental 
models but not clinical effi cacy in humans  [12] , the future 
denounces good perspectives in ischemic stroke treat-
ment through a better understanding of underlying patho-
genesis, identifi cation of therapeutic genes, development 
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  Fig. 1.  Gene activation and protein expres-
sion following ischemic stroke. Cerebral 
ischemia is a potent modulator of gene ex-
pression. Some genes are involved in cell 
death, but others are neuroprotective and 
important for recovery. iNOS = Inducible 
nitric oxide synthase; NO = nitric oxide; 
NF- � B = nuclear factor- � B; STAT1/3 = sig-
nal transducers and activators of transcrip-
tion; HIF-1 = hypoxia-inducible factor; 
PGE 2  = prostaglandin E 2 ; IRF-1 = insulin-
responsive factor-1; VEGF = vascular en-
dothelial cell growth factor; NGF = nerve 
growth factor; BDNF = brain- derived neu-
rotrophic factor; FGF-2 = fi broblast growth 
factor; PDGF = platelet-derived growth 
 factor; TGF- �  = transforming growth fac-
tor- � . 
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of appropriate experimental models to improve therapies 
and in the application of gene therapy beyond an experi-
mental phase. 

 Excitotoxicity 

 Immediately after an arterial occlusion, the affected 
cerebral area is hypoxic and hypoglycemic. Within a few 
minutes, ATP defi ciency originates from a failure of the 
Na +  and K +  pumps with a rapid decrease of intracellular 
K +  followed by a neuronal depolarization. This causes the 
opening of the Ca 2+  channels increasing intracellular cal-
cium concentration and leading to a large cellular mem-
brane depolarization  [4, 7] . Next, a rapid release of glu-
tamate takes place from the presynaptic nerve terminals 
and astrocytes  [13] . Glutamate stimulates N-methyl- D -
aspartate (NMDA) receptors and metabotropic recep-
tors. Excitotoxicity for stimulation of the NMDA recep-
tors causes an intense cellular depolarization with an in-
fl ux of Ca 2+  and Na + , and an effl ux of Cl –  and water 
resulting in edema and membrane failure that ends in the 
Ca 2+ -dependent ischemic cascade that will lead to neuro-
nal necrosis  [4, 7, 13] . Three gene products of the sodium-
calcium exchanger NCX family (NCX1, NCX2, NCX3) 
couple the movement of these ions across the cell mem-
brane. In an experimental study it has been demonstrated 
that NCX gene expression is regulated after ischemia in 
a differential manner, depending on the exchanger iso-
form and region involved in the insult. In the ischemic 

core all three NCX were downregulated, whereas in the 
peri-infarct area NCX2 was downregulated but NCX3 
was signifi cantly upregulated and in non-ischemic brain 
regions, both NCX1 and NCX3 were upregulated  [14] . 
These data may provide a better understanding of each 
NCX role to design appropriate pharmacological strate-
gies to reduce excitotoxicity. Besides glutamate, other 
neurotransmitters like glycine and  � -aminobutyric acid 
(GABA) also appear in the extracellular space during 
brain ischemia  [15] . Glycine acts as a coactivator of 
NMDA receptor and causes more neuronal damage. Syn-
thesis of GABA (inhibitor neurotransmitter) is increased 
during cerebral ischemia due to glutamate increment, in-
creased activity of the glutamate descarboxylase (GAD) 
that synthesizes GABA and inhibition of GABA-trans-
aminase (GABA-T) that removes GABA  [15, 16] . Incre-
ment of GABA activity during brain ischemia has been 
shown to be neuroprotective in experimental studies 
 [15] . 

 An increase of intracellular Ca 2+  mediates immediate 
early gene expression such as c-fos or c-jun and heat shock 
proteins (HSP) and induces enzymatic activation of 
 several intracellular metabolic pathways as cyclooxygen-
ase-2 (COX-2), phospholipase C/A 2 , nitric oxide synthase 
(NOS), among others  [7, 16]  ( fi g. 1 ). Cyclooxygenase ac-
tivation causes nitric oxide release, while phospholipase 
activates mitogen-activated protein (MAP) kinase and li-
polysis, increasing both the expression of lipid peroxida-
tion products  [7, 16] . During cerebral ischemia, forma-
tion of reactive oxygen species (ROS) can exceed the an-
tioxidative capacity of neurons and generate an oxidative 
stress. The main ROS in neurons are oxygen free radicals, 
such as superoxide anion (O 2  

– ), nitric oxide (NO) and hy-
droxyl radical ( – OH), among others. However, O 2  

–  is the 
one that generates oxidative stress in ischemic brain  [7, 
16] . Recently, the presence of ROS produced by an in-
creased expression of NOX4 (NADPH oxidase isoform) 
has been demonstrated in cortical neurons. NOX4 could 
exert a role in the angiogenesis induced by ischemia/hy-
poxia since it is overexpressed in newly formed capillaries 
 [17] . Ischemic brain also originates from a high produc-
tion of NO which it is synthesized from  L -arginine through 
NOS  [18] . The effect of NO increase can be neurotoxic 
or neuroprotective according to the NOS isoform starting 
from which is synthesized. Stimulation of the NMDA re-
ceptors is largely mediated by NO formation  [18] . 

 Multiple pharmacological interventions to reduce ex-
citotoxicity have been evaluated in clinical trials. Gluta-
mate release inhibitors, NMDA receptor antagonists, cal-
cium channel blockers or oxygen free radical antagonists 

Table 1. Gene category expression and regulation induced by cere-
bral ischemia

Gene category Regulation Time

Immediate early genes Upregulated 30 min
Transcription factors Upregulated 30 min
Heat shock proteins Upregulated 30 min–24 h
Infl ammation Upregulated 4–24 h
Cytoskeletal structure Upregulated 4–24 h
Metabolism Upregulated 4–24 h
Apoptosis Upregulated 8–24 h
Growth factors Upregulated 24 h–7 days
Protein kinases Up and down
Ion channel genes Downregulated 8–24 h
Neurotransmitter receptor genes Downregulated 8–24 h
Synaptic protein genes Downregulated 3–7 days

Time = Peak increase of overexpression or downexpression.
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have been assessed. Most of them have not obtained pos-
itive results  [12] . Potential reasons are delayed drug ad-
ministration (excitotoxicity begins within minutes) and a 
harmful effect on neuronal survival due to the blockade 
of normal synaptic transmission  [19] . In spite of this, new 
therapies are being investigated that act especially by 
blocking ion channels, stimulating HSP expression that 
has been shown to be neuroprotective, or modulating the 
expression of glutamate transporters. Recently, it has 
been demonstrated that treatment with the sodium chan-
nel blocker RS100642 during the fi rst 6 h of the middle 
cerebral artery occlusion (MCAO) was able to selectively 
reverse downregulation of the sodium channel gene 
Na v  1.1 to normalize electric brain activity and reduce 
infarct size  [20] . Also an inducer of HSP-70 expression, 
geranylgeranylacetone showed in an animal model of 
MCAO that it signifi cantly reduces infarct volume when 
administered very early  [21] . Finally,  � -lactam antibiot-
ics seem to offer neuroprotection by increasing glutamate 
transporter GLT1 (or EAAT2) expression. In short, cef-
triaxone has been demonstrated to be a potent stimulator 
of GLT1 expression in brain of animals, as well as its bio-
chemical and functional activity  [22] . 

 Infl ammatory Response 

 Intracellular Ca 2+ , oxygen free radicals, inducible NOS 
(iNOS), hypoxia and glutamate act by activating the in-
fl ammatory process in damaged neurons, astrocytes, mi-
croglia, endothelial cells, leukocytes and other immune 
cells in ischemic tissue. A rapid induction of transcription 
factors takes place a few hours after ischemic insult, re-
sulting in an increased expression of infl ammatory cyto-
kines and chemokines  [6–8] . 

 Nuclear factor- � B (NF- � B) activates tumor necrosis 
factor- �  (TNF- � ) and interleukin (IL)-1 �  starting the in-
fl ammatory response. Subsequently, these interleukins 
induce other cytokines such as IL-1 � , IL-6 and IL-8  [23–
25] . Interleukins play an important role in the develop-
ment of acute phase reactants and in the release of a group 
of molecules that maintain a more persistent infl amma-
tory response. Hypoxia inducible factor 1 (HIF-1) induc-
es vascular endothelial cell-derived growth factor (VEGF) 
that increases blood-brain barrier (BBB) leakage and sec-
ondary brain edema. Interferon regulatory factor-1 (IRF-
1) stimulates production of  � -interferon which stimulates 
macrophages  [7, 8] . Transcription factors STAT1 and 
STAT3 cause an overexpression of platelet-activating fac-
tor (PAF), monocyte chemoattractant protein-1 (MPC-1) 

and intercellular adhesion molecule (ICAM-1)  [25] . PGE 2  
produced by the cyclooxygenase pathway and lipolysis 
induces infl ammation through upregulation of TNF- �  
and IL-6  [7, 8]  ( fi g. 1 ). 

 On the other hand, infl ammatory cytokines induce ex-
pression of adhesion molecules such as ICAM-1, platelet 
endothelial cell adhesion molecule (PECAM-1) and en-
dothelial cell leukocyte adhesion molecule (ELAM-1) on 
endothelial cell surface  [23–25] . There is a peak increase 
in mRNA expression of infl ammation mediators 4–24 h 
post-injury, which is the critical time window of the mat-
uration of ischemic injury  [8] . These genes are involved 
in peripheral infl ammatory cell recruitment into the brain 
through migration and agglutination of neutrophils, mac-
rophages and monocytes to brain tissue. Later on, these 
cells are added and adhered to the arterial wall and con-
tribute to brain injury by microvascular obstruction and 
by producing neurotoxic mediators like ROS and NO  [6–
8] . Matrix metalloproteinases (MMP), in charge of extra-
cellular matrix remodeling, also intervene in tissue dam-
age following cerebral ischemia. MMP-2 (gelatinase A) 
and MMP-9 (gelatinase B) are proteolytic enzymes that 
produce BBB leakage and secondary brain edema, and 
facilitate hemorrhagic transformation of cerebral infarct 
 [26–28] . Cytokines IL-6 and TNF- �  stimulate MMP-9 
production  [7] . 

 Therapeutic strategies used to reduce the infl amma-
tory response can have a longer time window before they 
can be effective. However, infl ammation decrease can 
exert deleterious effects in terms of tissue repair, since it 
diminishes neurotrophic factor expression  [7, 8]  ( fi g. 1 ). 
NF- � B plays a key role in starting infl ammatory changes. 
A potential neuroprotection strategy is to inhibit the up-
regulation of a family of delayed cell death genes, for ex-
ample by inhibition of NF- � B activation with the protea-
some inhibitor MLN519. This has shown to effectively 
attenuate upregulation of several infl ammatory genes 
(IL-1, IL-6, TNF- � , ICAM-1), reduce neutrophil and 
macrophage infi ltration, and consequently decrease in-
farction with delayed administration up to 6 h after tran-
sient MCAO in rats  [29] . Another therapeutic alternative 
is based on the specifi c inhibition of the expression of ad-
hesion molecules or cytokines. Inhibition of ICAM-1 ex-
pression by antisense oligonucleotides and inhibition of 
TNF- � -converting enzyme by the selective antagonist 
DPH-067517 have demonstrated a neuroprotective ef-
fect by reduction of infarct size and neurological defi cits 
 [30, 31] . 
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 Apoptosis Induction 

 Mechanisms of the cellular death by apoptosis are not 
fully elucidated. Excitotoxicity and excessive production 
of ROS cause disruption of the internal mitochondrial 
membrane and activation of transcription factors includ-
ing NF- � B and the activating transcription factor-2 (ATF-
2)  [32–34] . ATF-2 induces expression of pro-apoptotic 
members of the Bcl-2 family (Bax, Bad and Bid) and their 
translocation towards the external mitochondrial mem-
brane forming channels that allow the cytochrome c re-
lease from the mitochondrial intermembrane space. Re-
lease of cytochrome c is the main reason for apoptosis 
associated to mitochondria  [32–34]  ( fi g. 1 ). Cytochrome 
c induces oligomerization of an activator factor of apo-
ptosis, the APAF-1 (apoptosis-activating factor-1) that 
binds later with pro-caspase-9. These cause activation of 
caspase-9 and caspase-3 that fi nally binds to ADP-ribose 
polymerase (PARP) and subsequently neuronal apopto-
sis begins  [32–34] . Increased expression of pro-caspases 
1, 2, 3, 6 and 8, and adhesion of caspase-3 were demon-
strated in ischemic penumbra neurons between 12 and 
24 h after MCAO in an experimental rat model  [34] . 

 Other components of the excitotoxic-infl ammatory 
cascade, such as hypoxia, intracellular Ca 2+ , overexpres-
sion of pro-infl ammatory cytokines and glutamate in-
crease, can promote expression of several transcription 
factors that fi nally lead to mitochondrial cytochrome c 
release through activation of pro-apoptotic members of 
the Bcl-2 family  [7] . Hypoxia activates HIF-1 and p53; 
increment of Ca 2+  activates calpain and p53  [35] ; the re-
lease of pro-infl ammatory cytokines such as TNF- �  and 
IL-1 stimulates the caspase pathway through TNF-R, 
FAS and FADD expression, or the MAP kinase pathway 
through c-Jun N-terminal kinase (JNK) and p38 MAP 
kinase expression  [36] , and fi nally, glutamate induces p38 
activation by means of the transcription factor ATF-2, 
growth arrest and DNA damage-inducible gene 153 and 
CHOP-19  [7] . Although not very well known, other path-
ways seem to exist where non-caspase components could 
be involved in regulation of neuronal apoptosis induced 
by ischemic stroke. However, the MAP kinase pathway 
operating through JNK and p38 seems to be a factor 
strongly associated to apoptosis  [7, 36] . Thus, JNK inhi-
bition has been demonstrated in an animal model that 
protects it from neuronal death. A new JNK inhibitor, 
SP600125, signifi cantly diminished activation of a nucle-
ar substrate (c-jun) and inactivated a non-nuclear sub-
strate (Bcl-2) induced by ischemic insult, resulting in a 
potential new and effective strategy to treat ischemic 

stroke  [37] . On the other hand, the protein transfer of  
Bcl-xl derived from HIV-1 was effectively delivered 
across the BBB and signifi cantly reduced infarct size and 
caspase activation in a mouse model of stroke  [38] . Cas-
pase-3 expression and associated neuronal apoptosis were 
also notably reduced in the penumbra region in the pres-
ence of nucleoside citicoline  [39] . 

 Neuroprotective Mechanisms: Cellular 
Survival, Revascularization and Tissue 
Reperfusion 

 Neurons, leukocytes and microglia synthesize and re-
lease several neurotrophic factors after acute ischemic 
stroke in an attempt to neutralize the detrimental effects 
of excitotoxicity and infl ammation ( fi g. 1 ). Nerve growth 
factor (NGF) and brain-derived neurotrophic factor 
(BDNF) activate a signal transduction pathway including 
phosphorylinositol 3-kinase (PI3K) and Akt, inhibitors 
of pro-apoptotic p53 and Bad  [40] . Neurotrophic factors 
NGF and BDNF also stimulate phospholipase C (PLC) 
and protein kinase C (PKC) pathways, which activate 
survival pathways that involve NF- � B and anti-apoptot-
ic members of the Bcl-2 family  [40] . Other growth factors 
such as basic fi broblast growth factor (FGF-2) and vascu-
lar endothelial cell growth factor (VEGF) activate the 
MAP kinase pathway (ERK1/2) through PLC inhibiting 
pro-apoptotic effects of JNK and p38 and stimulating 
anti-apoptotic proteins production such as Bcl-2, AMPc-
binding protein (CREB) and NF- � B  [41, 42] . 

 In the ischemic penumbra tissue there exists an in-
creased expression of growth factors as VEGF, FGF-2, 
platelet-derived growth factor (PDGF- � ) and transform-
ing growth factor- �  (TGF- � ) associated with an incre-
ment of angiogenesis  [43] . The revascularization process 
after MCAO has been described in an experimental rat 
model  [44] . Data suggest that newly formed vessels (mi-
crovessels) form regular connections in the fi rst week of 
cerebral ischemia, with a similar pattern to those of the 
normal brain  [44] . Macrophages, leukocytes and dam-
aged platelets secrete large quantities of angiogenic growth 
factors  [43, 45] . Overexpression of angiogenic factors 
such as VEGF or FGF-2 in endothelial cells takes place 
through activation of ERK1/2, p38 and JNK MAP ki-
nases in response to hypoxia. Cytokines TNF- �  and IL-1 
also induce mRNA transcription of these growth factors 
and stimulate angiopoietin-1 expression that can inter-
vene in cell survival and cell migration  [43] . Therefore, 
most angiogenic factors will regulate proliferation and 
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migration of endothelial cells and proliferation of smooth 
muscle cells, which also have an important role in the re-
vascularization process  [43, 45] . 

 VEGF is the angiogenic factor with more infl uence on 
new blood vessel growth after cerebral ischemia. Endog-
enous neuronal VEGF increases within hours in the isch-
emic brain and plays a neuroprotective role in the patho-
physiologic processes that follow stroke. Exogenous 
VEGF, directly administered or overexpressed by gene 
delivery into rat brains, reduces ischemic brain infarct 
and decreases hypoxic neuronal death. The main neuro-
protective mechanisms of VEGF include modulation of 
the PI3K-Akt-NF- � B signaling pathway and inhibition of 
caspase-3 activity resulting in reduction of ischemic neu-
ronal apoptosis; inhibition of potassium channel currents 
by an increase of tyrosine phosphorylation via activation 
of the PI3K pathway, and fi nally, enhancement of prolif-
eration and migration of neural progenitors in the sub-
ventricular zone and improvement of striatal neurogen-
esis and maturation of newborn neurons in striatum  [46, 
47] . 

 Therefore, selective upregulation of p38, MAP kinase 
ERK1/2 and JNK MAP kinases proteins, and VEGF, 
FGF-2, PDGF-B and TGF-B growth factors could have 
a critical role in the neuronal survival and revasculariza-
tion process after cerebral ischemia. Preclinical studies 
have demonstrated that gene transfection with viral vec-
tors of FGF-2 or hepatocyte growth factor reduces infarct 
size and improves neurological defi cit  [48–50] . Adminis-
tration of neurotrophic factors as neuregulins have also 
shown a neuroprotective effect in rat. Treatment with 
neuregulin-1 (NRG-1) diminished expression of most of 
genes (HSP-70, IL-1 �  and MCP-1) in at least 50% in com-
parison with a control group with reduction of neuronal 
death. In in vitro studies, NRG-1 suppressed expression 
of infl ammatory genes in activated macrophages  [51] . 

 Genetic Therapy 

 Gene transfer is a potential therapy of ischemic vascu-
lar disease. Viral (retro-, adeno- and herpesvirus) and 
non-viral delivery vehicles are currently being used in 
animal models and in gene therapy clinical trials  [52] . 
Although purifi cation of viral vectors may reduce the 
pathogenic properties or the host immune response, more 
progress is needed to ensure greater confi dence before 
their use in clinical practice. However, liposomes con-
taining the therapeutic DNA are non-pathogenic but the 
transfection effi ciencies are quite low  [52] . Another inter-

esting aspect is the correct way to transfer the therapeutic 
genes and vectors into the appropriate tissue (penumbra, 
blood vessel, endothelial cell, etc.). Gene therapy is pos-
sible in acute stroke by modulating the excitotoxic and 
apoptotic elements of neuron death and stimulating an-
giogenesis  [53, 54] . In animal models it has achieved a 
neuroprotective effect with viral vectors by modulating 
excitatory amino acids, reducing cytosolic calcium, re-
ducing infl ammation and increasing HSP, anti-apoptotic 
genes or angiogenic factors. Most animal studies have 
demonstrated effi cacy of gene transfer in reducing infarct 
size, but in these studies vectors were introduced prior to 
experimental ischemia  [53, 54] . Expression of genes in 
ischemic or reperfused tissue is blunted and delayed since 
transcriptional and translational processes are inhibited 
by ischemia. Thus, injection of a gene transfer vector 
must be in the penumbra area where transcriptional and 
translational processes are diminished but not inhibited 
 [55] . 

 Although gene therapy continues to progress, many 
obstacles still exist. It will be necessary to develop safer 
and more effective vectors, improve vector delivery, 
achieve very early transfection in acute ischemia and, fi -
nally, a much better understanding of which genes should 
be delivered in stroke gene therapy. 

 In summary, different physiopathological processes 
following acute ischemic stroke suggest that their treat-
ment could improve through modulation of gene tran-
scription and protein activation, especially in the isch-
emic penumbra around to the brain infarct. Owing to the 
complexity of the process and the fact that several genes 
encoding transcription factors may participate in both 
cellular responses (benefi cial and harmful), a therapeutic 
effort should be based on multiple therapies with action 
taken at different levels and times. An immediate reduc-
tion of excitotoxicity within a few minutes, and an infl am-
matory response within a few hours, a better control of 
tissue reperfusion around the ischemic area with concom-
itant administration of neurotrophic and angiogenic fac-
tors to maintain neuronal viability and stimulate angio-
genesis, and a bigger blockade of apoptotic cellular death, 
for example with viral transfection of anti-apoptotic 
genes or JNK or caspase inhibition, would allow to im-
prove neuronal survival and the patient’s outcome. 
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  Similia similibus curentur  (Hippocrates, 460–370 BC), 
 The dose makes the poison  (Paracelsus, 1493–1541 AD), 
and  Adaptation to perturbation is the basis for homeosta-
sis  (Cannon) are expressions of the idea that when ex-
posed to a suffi cient but sublethal alteration in the envi-
ronment, most living organisms acquire transient toler-
ance to otherwise lethal changes. This cellular response 
can be observed in a wide variety of species from bacteria 
to mammalian cells  [1] . In 1964, Janoff  [2]  introduced 
the terms ‘tolerance’ and ‘preconditioning’ for this phe-
nomenon, and the same year the phenomenon was ob-
served in relation to ischemia, when it was shown that 
short periods of global hypoxia can protect the entire 
mammalian organism and preserve brain energy metabo-
lism during longer periods of hypoxia  [3] , though most 
authors appear to assume that ischemic preconditioning 
or ischemic tolerance was discovered in the heart  [4, 5] . 

 The objective of ischemic preconditioning research is 
to identify the underlying endogenous protective cellular 
receptors and signaling cascades, with the long-term goal 
of allowing therapeutic augmentation of the endogenous 
protective mechanisms in cerebral ischemia and possibly 
inducing a protected state of the brain in conditions in 
which ischemia can be anticipated, such as during angio-
plasty procedures. Tolerance to ischemia in the brain can 
be induced by a number of different mechanisms. Many 
of these mechanisms are potentially damaging to the 
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  Abstract 
 Ischemic preconditioning involves a brief exposure to 
ischemia in order to develop a tolerance to injurious ef-
fects of prolonged ischemia. The molecular mechanisms 
of neuroprotection that lead to ischemic tolerance are 
not yet completely understood. However, it seems that 
two distinct phases are involved. Firstly, a cellular de-
fense function against ischemia may be developed by 
the mechanisms inherent to neurons such as posttrans-
lational modifi cation of proteins or expression of new 
proteins via a signal transduction system to the nucleus. 
Secondly, a stress response and synthesis of stress pro-
teins (heat shock proteins) may be activated. These 
mechanisms are mediated by chaperones. The objective 
of ischemic preconditioning research is to identify the 
underlying endogenous protective cellular receptors 
and signaling cascades, with the long-term goal of allow-
ing therapeutic augmentation of the endogenous protec-
tive mechanisms in cerebral ischemia and possibly 
 development of new neuroprotective strategies for isch-
emic stroke treatment. 
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brain but, when administered at a low level that is insuf-
fi cient to cause permanent damage, they can stimulate 
protective responses that reduce the damage caused by 
more severe ischemic events. 

 Models and Types of Ischemic Tolerance 

 Many animal models have been used to reproduce the 
various modes of ischemic tolerance  [6] . Natural causes 
of ischemia such as thrombosis or embolism can be sim-
ulated by occlusion of one of the major blood vessels 
supplying the brain. The fi rst animal model used for ce-
rebral ischemic tolerance was described by Kitagawa et 
al.  [7] . The preconditioning was produced in gerbils by 
occlusion of both common carotids for 2 min and 1 or 2 
days after a 5-min ischemia, with exhibition of drasti-
cally complete protection against neuronal death. Later, 
other models of focal ischemia with occlusion of the com-
mon carotid artery  [8]  or with occlusion of the middle 
cerebral artery were described  [9, 10] . A common meth-
od to precondition neural tissue is exposure to reduced 
atmospheric oxygen concentration  [11] . In some cases, 
reduced atmospheric pressure has been used in combina-
tion with reduced oxygen concentration  [12] . It has also 
been used in in vitro   models of ischemic precondition-
ing, in which cultures were deprived of oxygen-glucose 
for a short time, an insult that did not induce neuronal 
death  [13, 90] . 

 Another noxious stress can confer cellular tolerance to 
a subsequent ischemia, a phenomenon known as ‘cross-
tolerance’  [14] , for example, high atmospheric pressure 
and oxygen concentration have also been found to have 
protective effects  [15] , pathologic events such as infl am-
mation  [16] , epilepsy  [17]  and both hyperthermia and 
hypothermia  [18]  have shown ischemic tolerance. Many 
chemical agents have been used for preconditioning, of-
ten by interfering in the action of major proteins involved 
in neuronal damage. Examples include inhibitors of suc-
cinic dehydrogenase  [19] , glutamate receptor agonists 
 [20] , lipopolysaccharide  [21] , and hormone analogs  [22] . 
Finally, tolerance to ischemic insults can also be pro-
duced by cortical spreading depression  [23] , sleep depri-
vation  [24]  cerebellar stimulation  [25]  and dietary restric-
tion  [26] . 

 The tolerance phenomenon has also been studied in 
other organs. In the heart, it has been shown that brief 
ischemia induces a marked increase in myocardial resis-
tance to a later ischemic insult that would be lethal oth-
erwise  [27] . Murry et al.  [5]  found that four periods of 

4-min coronary occlusion, each separated by 5 min of re-
perfusion, led to a reduction in infarct size produced by 
a subsequent 40-min occlusion of the coronary artery. 

 Ischemic tolerance comes in at least two temporal pro-
fi les. The early, or rapid, phase is established within min-
utes and may last for several hours  [18, 28, 29] . Protection 
has been observed when an ischemic insult is adminis-
tered as little as 30 min following preconditioning  [30] . 
It is thought that changes in cell metabolism (posttrans-
lational modifi cation) may account for the immediate re-
sponse. The activation of existing proteins and upregula-
tion of normal processes such as the oxygen extraction 
fraction are probably involved as well. 

 The late, or delayed, phase of protection requires hours 
and days to develop  [7]  and provides lasting protection, 
and usually involves de novo protein synthesis  [31, 32]  
and gene expression  [33] . The effect of ischemic precon-
ditioning on genomic response to cerebral ischemia 
showed a pronounced downregulation of genes expressed 
during the ischemia, resulted in transcriptional changes 
involved in suppression of metabolic pathways and im-
mune responses, reduction of ion-channel activity, and 
decreased blood coagulation  [34]  ( fi g. 1 ). 

 To induce tolerance by means of ischemic episodes, 
we need to take into account three parameters: the dura-
tion, the interval, and the number of episodes. First, the 
preconditioning treatment must be severe enough to ini-
tiate a response, but not so severe as to cause permanent 
damage. In a study of ischemia in gerbils, for example, it 
was found that at least 2 min of ischemia was required in 
order to induce protection against a more severe insult 2 
days later  [35] . Second, the subsequent insult must be 
planned to occur at a time point at which tolerance has 
been established. In the experiment of Chen et al.  [36] , 
protection was not observed until 2 days after precondi-
tioning, and had disappeared by 7 days after precondi-
tioning. Third, in the experiment of Kitagawa et al.  [7] , 
double 2-min periods of preconditioning ischemia, which 
were induced with a 1-day interval, produced much more 
protection of CA1 neurons on 5 min of forebrain isch-
emia than a single 2-min period of ischemia. 

 In the brain, the time course of ischemic tolerance ap-
parently follows the delayed pattern. The latency period 
for ischemic tolerance is usually longer than 1 day, and 
the protection of brain tissue is induced only when the 
preconditioning ischemia is performed at least 1 day be-
fore the test ischemic challenge  [32] . Once induced, the 
condition of ischemic tolerance is believed to last for a 
few days and to wane gradually until it disappears a few 
weeks after acquisition  [37] . 
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 The Mechanism of Ischemic Tolerance 

 As Kirino  [14]  has shown in his review paper, acquisi-
tion of tolerance against various stresses requires at least 
two intracellular components: the stress sensor that can 
detect various stressful conditions and convert the infor-
mation into intracellular signals, and the effector of toler-
ance induction. The author describes how various stress 
signals are captured by a small number of sensors, with 
the signals gradually converged to a stereotyped fi nal 
common pathway, and he assumes that the mechanism 
of ischemic tolerance in the brain may be quite similar to 
that of other organs or other type of cells. 

 All potential mechanisms focused on ischemic toler-
ance may be divided in two categories: (1) A cellular de-
fense function against ischemia which can involve mech-
anisms of posttranslational modifi cation of proteins or 
expression of new proteins via a signal transduction sys-
tem to the nucleus, which can activate cascades of events 
directed towards the formation of survival factors or 
apoptosis inhibitors. (2) A cellular stress response and 
synthesis of stress proteins may lead to an increased ca-
pacity for health maintenance inside the cell (chaper-
ones), for example helping the cell to arrange unnecessary 
denatured proteins  [14]  ( fi g. 2 ). 

  Fig. 1.  Types of ischemic tolerance. The 
protection induced by ischemic precondi-
tioning may be early/brief or delayed/per-
manent. Each involves different mecha-
nisms. 

  Fig. 2.  Ischemic tolerance mechanisms. 
Cellular defense against ischemia can in-
volve mechanisms of posttranslational 
modifi cation of proteins or expression of 
new proteins. A cellular stress response may 
lead to greater health maintenance capacity 
inside the cell. 
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 Cellular Defense Mechanisms 

 ATP-Dependent K +  Receptors 
 As in cardiac preconditioning, adenosine plays a role 

in neuronal preconditioning and in immediate ischemic 
tolerance  [38, 39] . One of the initial events of ischemic 
tolerance is the opening of ATP-dependent K +  channels 
via activation of adenosine A1 receptors  [40] . This hy-
pothesis is supported by the fact that impeding consump-
tion of adenosine facilitates tolerance  [41]  whilst using 
antagonists to A1 receptors inhibits tolerance  [42, 43] . 
Alteration of the K +  channels sensitive to ATP hyperpo-
larizes the neuronal membrane, so protecting from a prej-
udicial depolarization  [44] . 

 Ionotropic Glutamate Receptors 
 Stimulation of NMDA receptors causes opening of 

ionic channels in the cellular membrane which mainly 
sets off entry of intracellular calcium and sodium and the 
exit of potassium to the extracellular medium, all of which 
originate from neuronal depolarization. There are fi ve 
receptor subtypes (NR1, NR2A, NR2B, NR2C, NR2D). 
In experimental models it has been demonstrated that 
ischemic preconditioning is capable of inducing a fall in 
the expression of NR2A and NR2B receptors, and to a 
lesser extent of NR1 receptors, at the neocortex level, but 
not at the level of the hippocampus  [45] . Consequently, 
following massive release of glutamate secondary to the 
lethal ischemic event, the neurons experience greater dif-
fi culty in allowing entry of intracellular Ca 2+  which in 
turn sets off cellular damage. 

 AMPA glutamate receptors activate the opening of an 
ionotropic channel which mainly permits the entry of in-
tracellular sodium and the exit of potassium to the extra-
cellular medium. This channel is formed of four subunits 
that leave a pore between them through which both ions 
circulate. Depending on the electrical charge originating 
from the amino acids that form the pore, passage of the 
ion calcium is also permitted. One of the subunits, GluR2, 
has been well studied; the DNA that codifi es this subunit 
always does so with the same sequence of amino acids, 
but in certain circumstances on being translated to 
RNAm, one of the codons changes a glutamine for argi-
nine. When this new subunit is synthesized with the 
change of glutamine (GluR2 Q) for arginine (GluR2 R), 
this causes the receptor to be impermeable to the passage 
of calcium. Experimental studies have demonstrated how 
following preconditioning in neurons of the CA1 region 
of the hippocampus, the proportion of AMPA channels 
with their channel impermeable to calcium (GluR2 R) 

falls by up to 20%. This change in the intracellular current 
of calcium may be implicated in the neuroprotective ef-
fect, although the mechanism is as yet unknown  [46] . 

 Immediate Early Genes 
 Following an episode of global or focal ischemia, there 

is an almost immediate increase in the expressivity of 
certain genes that are known as immediate early genes 
(IEG). Although we do not yet completely understand the 
signifi cance of the expressivity of these genes in response 
to cerebral ischemia, we do know that they can act both 
in benefi t of and in detriment to cellular activity  [47] . 

 There are many stimuli that induce the expression of 
RNAm proceeding from IEG. First, IEGs were impli-
cated in the regulation of the cellular cycle, but subse-
quently many IEGs were identifi ed with multiple func-
tions. 

 In normal conditions, IEGs display low expressivity, 
but with physiological stimuli IEG expressivity is raised 
modestly in regions that are functionally related to the 
stimulus. For example, dehydration results in a selective 
increase in the expressivity of the c-fos gene in the para-
ventricular nucleus (ADH producer)  [48] . In contrast, in 
pathological conditions such as cerebral ischemia, there 
is an increase in the expressivity in extensive areas of the 
central nervous system. This rise in expressivity is seen 
both in zones directly affected by the ischemia and in 
zones outside of this  [49] . 

 A stimulus such as the release of glutamate induces an 
intracellular increase in calcium or activation of second 
messengers such as protein kinase, and in particular pro-
tein kinase A (AMPc-dependent) and C (calcium-depen-
dent). These kinases phosphorylate a series of proteins 
that act directly on the DNA (DNA-binding proteins) 
such as SRE (serum response element) and Ca/CRE (cal-
cium/cAMP response element). These DNA-binding pro-
teins join to certain points of the genome regulating the 
transcription of the respective genes  [47] . 

 The prototype of IEG is the c-fos gene, which codifi es 
a protein of 380 amino acids known as the Fos protein. 
The c-fos gene was one of the fi rst to be discovered, se-
quenced from an oncogene found in a sarcoma of viral 
origin. The Fos protein has some structural characteris-
tics of interest, having a region formed by basic amino 
acids that constitute a point of union to the DNA. Near 
to this region, there is a zone that has remains of leucine 
every seven amino acids, known as the leucine zipper. 
Owing to the spatial structure of the protein in an  � -helix, 
the leucine remains stay aligned to one side. These leucine 
zippers act as points of union with other proteins, form-
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ing dimers. These dimers join to specifi c regions of the 
DNA, known as AP-1 areas, which are implicated in the 
regulation of expression of other genes (the neurotrophin 
gene, proenkephalin, glial fi brillary acid protein, neuro-
peptide Y, vasoactive intestinal peptide, or tyrosine hy-
droxylase). 

 Cerebral ischemia is a powerful stimulant for the syn-
thesis of IEG. In models of global ischemia in rats, by 
means of in situ hybridization, we can observe an increase 
in ARNm of the c-fos gene in the dentate cells of the cer-
ebellum, in the CA1 and CA3 regions of the hippocam-
pus, in the neocortex and in the Purkinje cells of the cer-
ebellum  [50] . By means of preconditioning, the rise in 
expressivity is limited to the ischemic zone. 

 Ischemic preconditioning induces a rise in the expres-
sion of the c-JUN protein but not other proteins regu-
lated by IEGs  [51] . The expression of c-Fos has been im-
plicated in protection of the contralateral hippocampus 
following unilateral ischemic preconditioning  [52] . 

 Role of Nitric Oxide 
 In a newborn rat model, hypoxic preconditioning ren-

dered the animals resistant to hypoxic ischemia. Acquisi-
tion of tolerance in this model depended on nitric oxide 
(NO) production by endothelial nitric oxide synthase 
(NOS)  [53] . In the rat slice model, neuronal NOS (nNOS)-
mediated NO was involved in anoxic preconditioning 
 [54] . NO production depended on NMDA receptor activa-
tion  [55] , which activated nNOS. Increased NO can acti-
vate the Raf/Mek/Erk cascade and can induce new protein 
synthesis  [56] . In cell cultivation models, a major loss of 
neuroprotection can be observed if an antagonist of NMDA 
receptors is added during preconditioning  [55, 57] . Apply-
ing an NOS inhibitor such as nitro- L -arginine during pre-
conditioning episodes results in blocking of up to 70% of 
the neuroprotector effect, and supplying an excess of sub-
strate for formation of NOS,  L -arginine, results in restored 
protection. Recently, prenatal hypoxia models show as the 
ischemic tolerance may be iNOS-dependent  [58, 59] . 

 p21Ras Protein 
 Lander et al.  [60]  have demonstrated in their work that 

p21ras is a target for NO. It has recently been demon-
strated that NO could induce activation of p21ras follow-
ing stimulation of cortical neuron cultures with NMDA 
 [61] . After submitting a cellular culture to 5 min of OGD 
preconditioning, powerful activation has been observed 
of the Ras via NMDA receptors, via NO, but indepen-
dently of CMPc. With inhibition of Ras during precon-
ditioning, whether pharmacologically or by means of Ras 

mutants, the tolerance phenomenon is entirely lost. When 
an active form of Ras is added (by means of a viral vec-
tor) this is suffi cient to induce tolerance  [57] . The Ras 
protein induces cellular survival by activation of a cas-
cade of phosphoinositide 3-kinase (PI3K)/Akt or Raf/Erk 
 [62–64] . The (PI3K)/Akt route is related to anti-apo-
ptotic signals  [65, 66] . 

 Phosphorylation Protein 
 Ischemia activates protein phosphorylation. This en-

hanced phosphorylation is blocked by preconditioning 
ischemia. Since the cascade of phosphorylation may op-
erate as an amplifi er of neuronal injury, preconditioning 
could cancel this detrimental cascade and normalize in-
tracellular signal transduction  [45] . 

 Apoptosis-Regulating Genes 
 In gerbil models of focal ischemia, it has been demon-

strated that the anti-apoptotic Bcl-2 gene is widely ex-
pressed by the neurons of the zone of ischemic penumbra 
at around the fourth day  [67] . If in preconditioning cul-
tured neurons in vitro we add cycloheximide (which is a 
powerful inductor of Bcl-2), we can see that tolerance is 
not produced. Other models of preconditioning have 
demonstrated diminution of expression of p53 (pro-apo-
ptotic gene) and consequently their target genes p21 
(WAF1/Cip1) and PAG608/Wig-1  [68] , suggesting that 
the repression of pro-apoptotic genes may also contribute 
to neuroprotection. 

 Neurotrophic Factors 
 In models of ischemia in cellular cultures, it has been 

demonstrated that neurotrophic factors produce protec-
tive effects  [69] . The effect on mature cells subject to isch-
emia is still not well understood. Brief episodes of ischemia 
induce production of NGF (nerve growth factor) in some 
interneurons of the hippocampus and in the granular cells. 
The relative resistance of these interneurons of the hippo-
campus to ischemia suggests that these cells can continu-
ously produce NGF following ischemia  [70] . BDNF 
 (brain-derived neurotrophic factor) has been implicated in 
a neuroprotective effect in neonatal hypoxia  [71]  and in 
preconditioning for spreading depression  [72, 73] . 

 Role of Erythropoietin 
 Erythropoietin (EPO) is induced after cerebral isch-

emia as well as after hypoxic preconditioning in vivo  [74] . 
Astrocytes are the main cellular source of the glycoprotein 
hormone EPO in the brain and low oxygen tension stim-
ulates EPO-mRNA expression in astrocytes via hypoxia-
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inducible factor-1 (HIF-1)  [75] . In an in vitro model of 
ischemic preconditioning, EPO was shown to act as a 
paracrine mediator of neuroprotection  [76] . Experimen-
tal data suggest a central role for JAK2, PI3K pathways, 
and nuclear factor- � B (NF- � B) signaling as mediators of 
paracrine EPO-induced neuroprotection  [77] . 

 Infl ammatory Cytokines 
 Infl ammatory cytokines, particularly tumor necrosis 

factor- �  (TNF- � ), interleukin (IL)-1 � , and IL-6, have 
been implicated in the mechanism of ischemic tolerance 
 [78–80] . IL-1 receptor antagonist can block tolerance in-
duced by brief priming ischemia  [32] . A transitory occlu-
sion of 10 min from MCA can induce the expression of 
ARNm of TNF- �   [81] . The use of TNF- �  as precondi-
tioning has been demonstrated both in animal models 
 [82]  and in cultured neurons  [83] . Both the intracellular 
route of ceramide  [84, 85]  and activation of nuclear fac-
tor NF- � B  [86]  have been related to the neuroprotective 
effect of TNF- � . 

 TNF- �  is shed in its soluble form by a membrane-
 anchored zinc protease, identifi ed as a disintegrin and 
metalloproteinase (ADAM) called TNF- �  convertase 
(TACE/ADAM17). We have demonstrated, using in vitro 
models, that TACE is upregulated after ischemic brain 
damage and that the increase in TACE expression con-
tributes to a rise in TNF- �  and a subsequent neuroprotec-
tive effect after excitotoxic stimuli  [87, 88] . Recently, we 
have shown that a TACE upregulation occurs after isch-
emia preconditioning and that this event plays a major 
role in TNF- �  shedding. In turn the TNF- �  released plays 
a neuroprotective role in ischemic tolerance  [89] . Fur-
thermore upregulation of glutamate uptake (glutamate 
transporter EAAT3) has been suggested as a mechanism 
involved in this neuroprotective effect  [90] . 

 Recently, the toll-like receptors (TLR) have been im-
plicated in the infl ammatory mechanism of ischemic tol-
erance. The rapid form of tolerance is achieved by direct 
interference with membrane fl uidity, causing disruption 
of lipid rafts leading to inhibition of TLR/cytokine signal-
ing pathways. In the delayed form of tolerance, the pre-
conditioning stimulus fi rst triggers the TLR/cytokine in-
fl ammatory pathways, leading not only to infl ammation 
but also to simultaneous upregulation of feedback inhib-
itors of infl ammation  [91] . 

 Nuclear Factors 
 The NF- � B is a fi nal pathway for different signals, cy-

tokines, neurotrophic factors, neurotransmitters, oxida-
tive stress and intracellular elevation of Ca 2+ . NF- � B in-

duces the expression of neuroprotector genes such as 
 MnSOD and Bcl-2. Expression of NF- � B can be activated 
by three types of preconditioning – ischemia, epilepsy and 
polyunsaturated fatty acids  [92] . Pretreatment with NF-
 � B inhibitor blocked NF- � B activity eventually cancelled 
the neuroprotective effect of preconditioning  [14] . 

 Cellular Response to Stress; Stress Proteins 

 When the cell is exposed to a hostile environment via 
stress receptors, it sends signals to the cellular nucleus 
where transcription of the stress proteins (HSP or chap-
erones) will be induced. The expression of these proteins 
contributes to the induction of tolerance. These charac-
teristics are common to a large number of cells. The re-
sponse to stress is essential for cellular survival, as the 
cells are not able to survive with a sharp accumulation of 
denaturalized or aggregated proteins. These protein ag-
gregates do not accumulate in healthy cells as they are 
continually degraded by intracellular ‘cleaning’ mecha-
nisms. These mechanisms are mainly chaperones, which 
impede folding of the proteins on themselves, and pro-
teolytic enzymes. Approximately one third of newly syn-
thesized proteins in a cell are degraded a few minutes 
following their synthesis  [93] . When these cellular clean-
ing systems fail, apoptosis ensues. This pathogenic mech-
anism has been implicated in the physiopathology of 
 Alzheimer’s disease, Parkinson’s disease, Huntington’s 
chorea  [94]  and cerebral ischemia  [95] . 

 When ischemic tolerance is induced by preceding isch-
emia, HSP70 increases in hippocampal CA1 pyramidal 
cells in gerbils  [37, 96, 97]  and rats  [98, 99] . In animal 
models of ischemic tolerance, there was a very good cor-
relation found between production of HSP70 and the de-
gree of tolerance  [100] , and blocking the function of 
HSP70 leads to loss of tolerance  [101] . Injecting MK801, 
an antagonist of NMDA channels, also resulted in inter-
rupted production of HSP70  [102] . Other stress proteins 
have also been shown to rise following ischemic precon-
ditioning, including for example HSP27  [103]  and 
HSP110/105  [104] . Neither ubiquitin nor HSP70 appear 
until 5 min from ischemia in the gerbil model. However, 
where the gerbil has previously undergone ischemic pre-
conditioning, they appear in 2 min  [105, 106] . A recent 
proteomic analysis of adult ischemic preconditioning rat 
brain showed increased expression of HSP70, HSP27, 
HSP90, guanylyl cyclase, muskelin, platelet-activating 
factor receptor and  � -actin at 24 h after preconditioning 
 [107] . 
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 Clinic Expression of Ischemic Tolerance 

 The phenomenon of cerebral ischemic tolerance has 
not only been described at the molecular level and in 
animal experimental models; there is also some clinical 
evidence of its presence. In 1999, our group presented a 
study that demonstrated how the presence of a transient 
ischemic attack prior to fatal stroke can induce ischemic 
tolerance  [108] . In 26 patients with previous ipsilateral 
TIA 72 h to ischemic stroke, the Canadian Stroke Scale 
on admission, 48 h, 7 days and 3 months were signifi -
cantly higher than that recorded in the group without 
TIA. Furthermore, more neurological deterioration and 
higher infarct volume was found in the group without 
previous TIA. Weih et al.  [109]  conducted a retrospective 
case-control study in 148 stroke patients (with and with-
out antecedent TIA) and showed that TIA before stroke 
was an independent predictor of mild stroke (Canadian 
Neurological Scale score  6 6.5). Similar results were ob-
served in more recent retrospective analyses  [110–112] . 
Wegener et al.  [113]  demonstrated that initial diffusion 
lesions tended to be smaller and fi nal infarct volumes 
were signifi cantly reduced in patients with a previous 
TIA. Our group has recently published that ischemic tol-
erance is associated with increased levels of TNF- �  in the 
presence of reduced concentrations of IL-6 in plasma 
 [114] . These clinical fi ndings are in tune with experimen-
tal models of ischemic tolerance ( fi g. 3 ). Nevertheless, 
further research is still necessary to determine the human 
mechanism of ischemic tolerance. 

 Ischemic Tolerance as a Therapeutical Target 

 Induction of ischemic tolerance has been suggested as 
a promising clinical strategy to prepare the brain for situ-
ations of possible ischemia, such as cardiac or brain sur-
gery and in high-risk stroke patients. Dirnagl et al.  [18]  see 
even greater potential of the ischemic tolerance paradigm 
as an elegant experimental probe into the mechanisms of 
endogenous brain neuroprotection. Ischemic stroke out-
come is conditioned by the balance of endogenous neuro-
protective mechanisms and events that lead to cell death. 
The aim should be to stimulate the brain’s own protective 
mechanism and this can be achieved by administering an 
exogenous tolerance effector. Blondeau et al.  [17]  induced 
ischemic tolerance injecting linolenic acid (neuroprotec-
tion induced by HSP70 expression) to rats and suggested 
the potential therapeutical value of polyunsaturated fatty 
acids in neuronal protection. Ischemic tolerance can be 
induced by clinically approved drugs such as desferrox-
amine, EPO  [115] , isofl urane  [116]  and K ATP  openers 
 [117] . It is possible that these drugs could be effectively 
applied as potential neuroprotective agents. 

 Conclusion 

 Research on ischemic tolerance is potentially useful in 
identifying targets of acute therapy for cerebral ischemia. 
A clearer understanding of preconditioning could lead to 
better prevention and treatment of ischemic brain dam-
age. 

  Fig. 3.  Clinical human evidence of the ben-
efi t of ischemic tolerance. Taken from a 
prospective study including 339 patients 
who suffered a hemispheric ischemic stroke 
 ! 24 h onset. 45 patients had a previous 
 ipsilateral TIA  ̂  72 h before stroke, 54 
patients a previous contralateral TIA or 
 6 72 h and 240 patients had no previous 
TIA. 
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 Estrogen as a Neuroprotectant in Ischemic 
Stroke 

 Observational studies suggest that estrogen exposure 
may decrease the risk and delay the onset of ischemic 
stroke and ischemic heart disease. Actually, the incidence 
of atherosclerotic diseases and specifi cally of cerebral in-
farction is low among premenopausal women if com-
pared with men of the same age, but then increases after 
menopause and the differences with men become less 
marked  [1–3] . This is not only attributed to older age or 
changes on risk factors in favor of a proatherogenic profi le 
in postmenopausal women  [4] , but also to the loss of an 
antiatherogenic role of estrogens. Estrogens also have 
proven neuroprotective actions that underlie their ability 
to ameliorate brain damage in neurodegenerative pro-
cesses such as Parkinson’s disease and Alzheimer’s de-
mentia  [5]  as well as after brain ischemia, as demonstrat-
ed in experimental and clinical studies  [6–10] . The exact 
mechanisms responsible for these vaso- and neuroprotec-
tive effects are not completely understood, but they may 
depend both on activation of specifi c estrogen receptors 
and on receptor-independent actions  [11] . 

 In this paper we will review the recent knowledge 
about the mechanisms for estrogen antiatherogenic ef-
fects and neuroprotection and the existing evidence for 
possible therapeutical applications of these effects for 
prevention and treatment of ischemic stroke. 
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  Abstract 
 Estrogens have proven vasoprotective properties against 
atherosclerosis that depend on the direct effect on vas-
cular smooth muscle and endothelium and on systemic 
actions that imply serum lipids, coagulation and fi brino-
lytic cascades, vasoactive proteins and antioxidant sys-
tems. They also have neuroprotective effects against 
 cerebral ischemia that include antioxidant and anti-in-
fl ammatory effects, modulation of protein synthesis, in-
hibition of apoptosis and trophic effects and preserva-
tion of microvascular blood fl ow in the ischemic area. 
Estrogenic actions depend on activation of specifi c es-
trogen receptors that modulate gene expression and 
produce long-term effects on vascular endothelial and 
smooth muscle cells, neurons and glia, on interaction 
with plasma membrane sites that produce rapid non-ge-
nomic actions and also on receptor-independent mecha-
nisms. This paper reviews what it is known about the 
mechanisms underlying the vaso- and neuroprotective 
effects of estrogens. Experimental and clinical evidences 
of such protective effects are also discussed. Therapeuti-
cal implications for stroke prevention and treatment de-
rived from the available evidence are considered. 
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 Estrogenic Activity and Estrogen Receptors 
 Estrogen’s activity is mediated through diverse signal-

ing processes. There are two known types of intracellular 
estrogen receptors (ER): ER �  and ER � . These two recep-
tors are transcription factors that modulate expression of 
estrogen target genes  [12] . The hormone-receptor com-
plex binds to specifi c DNA sequences on gene promoters 
sensitive to estrogens and also interacts with proteins of 
the transcriptional apparatus that may act as coactivators 
or corepressors of transcription, so modifying protein 
synthesis  [11, 13] . Estrogens also interact with ER-like 
proteins at the plasma membranes that activate down-
stream pathways modulating rapid non-genomic actions 
 [14, 15] . It has been demonstrated that estrogens interact 
with membrane receptors for neurotrophins and neu-
rotransmitters and, as a consequence, they can modulate 
neurotrophin-dependent transduction pathways and 
neurotransmission  [11] . They also have other receptor-
independent actions such as antioxidant and anti-infl am-
matory effects  [5, 11, 13] . ER are widely distributed and 
have been found not only in reproductive organs but also 
in vascular endothelial and smooth muscle cells, myocar-
dial cells, lungs, liver, and brain, both in neurons and glia 
from female animals, but from males as well  [13, 16] . The 
exact role of each ER and the other signaling pathways 
for estrogen activity in vaso- and neuroprotection is not 
completely understood and is under investigation. 

 ER can also be activated by synthetic estrogens and by 
synthetic analogues structurally modifi ed to eliminate the 
feminizing actions with preservation of other effects that 
may increase the potential for neuroprotection  [17] . 

 Mechanisms Underlying the Vasoprotective and 
Antiatherogenic Effects of Estrogens 
 Antiatherogenic properties of estrogens depend on the 

direct effects on vascular smooth muscle and endotheli-
um and also on systemic effects that imply serum lipids 
and lipoproteins, coagulation and fi brinolytic cascades, 
vasoactive proteins (as nitric oxide (NO) and prostaglan-
dins) and antioxidant systems. The effect of estrogens on 
serum lipid concentration results from ER-mediated 
modulation of the hepatic expression of apoprotein genes 
 [13] . It has been demonstrated that estrogen therapy in 
postmenopausal women reduces total serum cholesterol 
and LDL cholesterol concentrations while it increases 
HDL cholesterol  [18] , resulting in a more favorable pro-
fi le of serum lipids similar to that observed in women 
during their reproductive life  [19] . Furthermore, estro-
gens can inhibit oxidation of LDL cholesterol  [20]  and 
consequently its atherogenicity. 

 Hepatic expression of genes for several coagulation 
and fi brinolytic proteins is also regulated by estrogens 
through ER. Estrogenic activity provides protection 
against thrombotic phenomena as a consequence of the 
reduction of plasma concentration of fi brinogen and oth-
er coagulation proteins  [21]  and also increases the poten-
tial for thrombolysis due to reduction of plasminogen ac-
tivator inhibitor type I concentration  [22] . 

 As has been mentioned, endothelial and vascular 
smooth muscle cells show both ER �  and ER �  and bind 
estrogens with high affi nity. There is experimental evi-
dence that both types of receptors provide protection 
against vascular injury  [23, 24] . Activation of these ER 
induces long-term vasodilatory effects that depend on ac-
tivation of genes encoding for enzymes such as prostacy-
clin synthase and nitric oxide synthase (NOS)  [25] . It also 
increases local expression of endothelial growth factor 
that may respond to the re-endothelialization after vas-
cular injury  [26] . Through ER activation, estrogens also 
inhibit apoptosis of endothelial cells  [27] , migration and 
proliferation of smooth muscle cells  [28]  and expression 
of adhesion molecules  [29] . These actions together with 
the vasodilatory effects of prostacyclin and NO may be 
responsible for the antiatherogenic role of estrogens. But 
there are other rapid and direct effects of estrogens on 
vascular cells that are not ER-mediated and consequent-
ly not dependent on changes in gene expression. At phys-
iologic concentrations, estrogens stimulate the opening of 
calcium-activated potassium channels of vascular smooth 
muscle cells through a NO and cGMP-dependent path-
way, thus conditioning relaxation of smooth muscle and 
vasodilatation  [30] . 

 Clinical Evidence about the Effi cacy of Estrogens in 
Stroke Prevention 
 The evidence about the vasoprotective effects of estro-

gens together with observational data from epidemiolog-
ical studies led to the hypothesis that, after the meno-
pause, the risk of atherothrombotic stroke and ischemic 
heart disease (IHD) would increase due, at least in part, 
to deprivation of estrogenic activity. As a consequence, 
hormone replacement therapy (HRT) was implemented 
in postmenopausal women in the hope of restoring pro-
tection against atherosclerosis  [31, 32] . Some studies 
demonstrate slowing of progression  [33–35]  or even re-
gression  [36]  of carotid atheroma among women treated 
with HRT, but others do not confi rm these fi ndings  [37, 
38] . Observational studies have reported reduction of risk 
of ischemic stroke  [39] , while others have not found any 
effect  [40, 41]  or even shown an increased risk associated 
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with combined therapy with estrogens and progestagens 
or high doses of estrogens alone  [42] . Randomized pla-
cebo-controlled clinical trials have failed to demonstrate 
any protective effect of HRT. The Heart and Estrogen-
Progestin Replacement Study (HERS) shows that com-
bined estrogen/progestagen long-term therapy does not 
infl uence the incidence of IHD or ischemic stroke in post-
menopausal women with prior IHD, and during the fi rst 
year of treatment the incidence of events increased among 
treated women  [43, 44] . The Women’s Health Initiative 
(WHI) trial concludes that combined HRT increases the 
absolute risk of ischemic stroke and IHD in previous 
healthy postmenopausal women  [45]  and the same con-
clusion arises from a meta-analysis of studies of HRT for 
primary prevention of stroke and IHD  [46] . Secondary 
prevention of stroke is not infl uenced by estrogen replace-
ment therapy in postmenopausal women as shown in the 
Women’s Estrogen for Stroke Trial (WEST)  [47] . A more 
recent meta-analysis concludes that HRT increases the 
risk of ischemic stroke both in healthy postmenopausal 
women and in women with prior stroke  [48] . These re-
sults discourage the use of HRT for stroke or IHD preven-
tion after menopause, but contradict previous epidemio-
logical and research data that strongly suggest benefi cial 
effects of estrogens on vascular disease and do not answer 
the question about the effect, whether protective or not, 
of endogenous estrogens on the risk of stroke. HRT con-
sists of a different combination of synthetic estrogens and 
progestagens or estrogens alone at non-physiological 
 doses and at a non-physiological time during a woman’s 
life. We might consider that the effects of exogenous hor-
mones after menopause on atherogenesis and stroke risk 
could be different from those of endogenous estrogens 
during ovarian activity. The lack of benefi cial effects of 
HRT shown in randomized trials could be explained also 
by the fact that none of them distinguish between etio-
logical subtypes of ischemic stroke and the particular risk 
for each one associated with HRT  [43, 45–48] . If estro-
gens protect against atherosclerosis, they would prevent 
atherothrombotic stroke and possibly lacunar infarction 
but not cardioembolic stroke. Including strokes of car-
diac origin in the analysis might mask a possible protec-
tive effect against atherosclerosis and atherothrombotic 
stroke. We have recently found in a multicentric obser-
vational paired case-control study that longer exposure to 
endogenous estrogens is a protective factor against non-
cardioembolic ischemic stroke, as earlier onset of men-
arche ( ! 13 years) and longer duration of ovarian activity 
( 1 34 years) are inversely associated with the risk of hav-
ing a stroke among postmenopausal women  [49]  (fi nal 

results not yet published). This data would support the 
hypothesis that endogenous estrogens may prevent isch-
emic stroke due to atherothrombosis or small vessel dis-
ease and may help to identify those women at higher risk 
after cessation of ovarian activity who would benefi t from 
more intense prevention programs. 

 Mechanisms of Estrogen-Mediated Neuroprotection 
against Brain Ischemia 
 As already mentioned, there is experimental evidence 

that estradiol and other estrogens or estrogen-like com-
pounds enhance viability and favor recovery of neuronal 
cells in animal models of global and focal cerebral isch-
emia in males and females  [6–9, 17] . Mechanisms under-
lying this protection are not completely understood. Both 
types of ER are implicated, as well as the interaction with 
membrane-binding sites and ER-independent pathways 
 [5, 11, 13, 50] . As a result of these actions, estrogens are 
responsible for trophic effects, protein synthesis modula-
tion, regulation of mechanisms of cell death, and anti-in-
fl ammatory and antioxidant effects. 

 Estrogens modulate expression of genes implicated in 
the control of cell death and more specifi cally in regula-
tion of apoptosis. For example, estradiol enhances tran-
scription of antiapoptotic genes of the Bcl-2 family pro-
teins, such as Bcl-x, via activation of the transcription 
factor CREB (cyclic AMP response element-binding pro-
tein)  [51] , while it inhibits transcription of proapoptotic 
BAD  [52–54]  and blocks mitochondrial release of cyto-
chrome c to the cytosol, thus inhibiting the mitochon-
drial pathway for apoptosis  [55] . Even more, estrogens 
determine activation of the serine/threonine kinase Akt 
that is a downstream effector of the phosphoinositide-3 
kinase. When Akt is activated it phosphorylates, and as 
a consequence inhibits various mediators of apoptosis 
such as BAD and caspase-9  [51, 56] . Finally, there is ex-
perimental evidence that estradiol reduces caspase-3 ac-
tivation and DNA fragmentation in experimental models 
of global and focal cerebral ischemia  [57, 58]  and that it 
can inhibit expression of calpain, a calcium-dependent 
protease activated after ischemia that is implicated in di-
rect caspase-3 activation  [59] . All these effects lead to 
inhibition of apoptosis. 

 It has been demonstrated that estrogens interact with 
neurotrophins in the nervous system and such interac-
tions have been involved in the mechanisms of estrogen-
mediated neuroprotection. Estrogens enhance expression 
of brain-derived neurotrophic factor and neural growth 
factor  [60] , and regulate expression of neurotrophin re-
ceptors  [57] . Genes encoding for ER and neurotrophin 
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receptors are colocalized in various neuronal populations 
and this observation led to the hypothesis that estrogens 
and growth factors may cooperate in regulation of spe-
cifi c expression of genes involved in cell survival or in 
restoration mechanisms  [11] . 

 The anti-infl ammatory effect of estrogens has been 
documented in various studies. Estradiol down-regulates 
expression of infl ammatory factors and reduces infl am-
matory cells migration into the central nervous system 
and leukocyte adhesion after brain ischemia and reper-
fusion  [61] . This is associated with an attenuation of  
TNF- �  expression  [62]  and modulation of synthesis of 
matrix metalloprotease-9 and receptor for fraction C3 of 
complement  [63] . Anti-infl ammatory effects also depend 
on inhibition of microglial activation and phagocytic ac-
tivity by blockade of the inducible isoenzyme of the NOS 
(iNOS) and of nuclear factor- � B activation  [64, 65] . Some 
of these actions appear to be related to activation of ER 
in microglial cells. Leukocyte adhesion into microvessels 
is enhanced after brain ischemia in ovariectomized fe-
male rats compared with intact rats with normal estrogen 
concentration  [66] . 

 Other neuroprotective effects depend on activation of 
constitutive NOS both in endothelium (eNOS) and in 
neurons (nNOS) via an ER � -mediated and calcium-de-
pendent non-genomic mechanism  [67, 68] . Increased 
synthesis of NO in endothelium improves intraischemic 
cerebral perfusion  [69] , but although there is increasing 
evidence demonstrating the involvement of NO in estro-
gen-mediated neuroprotection, its exact mechanisms of 
action should be further investigated. 

 Neuroprotective effects of estrogens are also related to 
modulation of neurotransmission and neuronal excitabil-
ity via interaction with neurotransmitter receptors. Estro-
gens appear to inhibit glutamate NMDA receptor func-
tion, thus attenuating intracellular calcium increase after 
glutamate release. Maintenance of intracellular calcium 
homeostasis seems to contribute to neuroprotection pro-
vided by estrogens after cerebral ischemia  [70] . 

 Steroids also have an antioxidant activity although it 
is observed with supraphysiologic concentrations of the 
hormone, so this effect may not represent a signifi cant 
mechanism of neuroprotection provided by estrogens in 
vivo  [11] . 

 Evidence about the Protective Effect of Estrogens 
against Acute Cerebral Ischemia 
 Estrogens have been shown to protect brain from ce-

rebral ischemia as treatment improves histological, phys-
iological and behavioral outcomes in animal models of 

stroke after transient or permanent middle cerebral artery 
occlusion, in models of global ischemia and in models of 
subarachnoid hemorrhage  [16] . Benefi cial effects have 
been demonstrated in animals of both sexes and in young 
and senescent rodents. Most of the experiments investi-
gate the neuroprotective effect of chronic estrogen expo-
sure. The conclusions of these works indicate that the 
therapeutic range for estrogen therapy is narrow and that 
any benefi t disappears when plasma concentration of es-
trogen is beyond the physiological range  [16] . When stud-
ied as treatment during the acute phase, no protection is 
seen if administered at low physiological levels soon after 
ischemia  [71] , but neuroprotective effects of estradiol are 
clearly demonstrated if initiated at the time or just before 
the ischemic event  [9, 72] . When higher doses are used, 
the window of opportunity for acute estrogen treatment 
is widened up to 6 h after ischemia  [73, 74] . Synthetic 
analogues of estrogens with chemical modifi cations that 
eliminate the feminizing effects can reduce infarct size in 
rats subjected to focal cerebral ischemia  [17] . 

 To our knowledge, up until now, no clinical trials have 
investigated the therapeutical effects of estrogens as being 
neuroprotective during the acute phase of ischemic 
stroke. 

 In conclusion, endogenous estrogens might protect 
against atherothrombosis and subsequently against ath-
erothrombotic or lacunar stroke. Those women with 
shorter exposure to ovarian estrogens (later age at men-
arche and shorter duration of ovarian activity) could be 
at higher risk of stroke after menopause, thus prevention 
therapies would be implemented among these women. 
Estrogens also have neuroprotective effects against isch-
emic brain damage, and it is these effects that should be 
further investigated and verifi ed in the clinical setting. 
Synthetic analogues of estrogens with no feminizing ef-
fects might be investigated in clinical trials of acute isch-
emic stroke. 
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previously performed by the damaged areas. Neurogen-
esis and angiogenesis are other possible mechanisms of 
recovery after stroke. An understanding of the mecha-
nisms underlying functional recovery may shed light on 
strategies for neurorepair, an alternative with a wide 
therapeutic window when compared with neuroprotec-
tive strategies. 

 Copyright © 2006 S. Karger AG, Basel 

 Mechanisms of Functional Recovery 

 Several mechanisms have been proposed to underlie 
functional recovery found after stroke.  

 Restitution of Penumbral Zones 
 First, the  restitution of penumbral zones  implies that 

the affected tissue has just enough energy to survive for a 
short period of time but not enough to function. Since 
penumbral neurons are still capable of re-functioning, 
they are believed to get involved in the acute phase in 
order to limit the infarcted area. Indeed, the penumbra 
constitutes the main target for medical intervention ap-
plied shortly after ischemic onset; although there is a great 
variability regarding the duration of the time period in 

 Key Words 
 Stroke, neurorepair vs. neuroprotection  �  Brain 
plasticity  �  Stroke, recovery  �  Neurogenesis  �  Cerebral 
ischemia

  Abstract 
 Stroke is the second to third leading cause of death and 
the main cause of severe, long-term disability in adults. 
However, treatment is almost reduced to fi brinolysis, a 
therapy useful in a low percentage of patients. Given that 
the immediate treatment for stroke is often unfeasible in 
the clinical setting, the need for new therapy strategies 
is imperative. After stroke, the remaining impairment in 
functions essential for routine activities, such as move-
ment programming and execution, sensorimotor inte-
gration, language and other cognitive functions have a 
deep and life-long impact on the quality of life. An inter-
esting point is that a slow but consistent recovery can be 
observed in the clinical practice over a period of weeks 
and months. Whereas the recovery in the fi rst few days 
likely results from edema resolution and/or from reper-
fusion of the ischemic penumbra, a large part of the re-
covery afterwards is due mainly to brain plasticity, by 
which some regions of the brain assume the functions 

 Published online: May 2, 2006 

 Dra. María Angeles Moro
Departamento de Farmacología, Facultad de Medicina
Universidad Complutense de Madrid
ES–28040 Madrid (Spain)
Tel. +34 91 394 1478, Fax +34 91 394 1463, E-Mail neurona@med.ucm.es 

 © 2006 S. Karger AG, Basel
1015–9770/06/0218–0054$23.50/0 

 Accessible online at:
www.karger.com/ced 

http://dx.doi.org/10.1159%2F000091704


 Neurorepair vs. Neuroprotection in Stroke  Cerebrovasc Dis 2006;21(suppl 2):54–63 55

which the penumbral neurons remain viable, due to fac-
tors such as the location and the extent of the lesion, the 
ischemic penumbra can be regarded as salvageable if re-
perfusion occurs in time  [1] . Theoretically, reperfusion 
may be a plausible explanation for spontaneous recovery 
during the fi rst days after the stroke onset. At this time, 
neuroprotective strategies could be useful to enhance the 
spontaneous recovery. 

 Brain Plasticity 
 An important mechanism that can contribute to recov-

ery after stroke is the  brain plasticity  caused by anatomical 
and functional reorganization of the central nervous sys-
tem (CNS). In this context, plasticity, initially described 
as the ability of neuronal cortical connections to be 
strengthened and remodeled by our experience  [2] , could 
now be defi ned as the events that regulate the capacity of 
the CNS to change in response to injury or to physiologi-
cal demands [reviewed in  3, 4] . This plastic changes also 
take place following a brain injury such as stroke. Indeed, 
plastic changes after stroke may involve different mecha-
nisms, such as (a) redundancy of brain circuitry with par-
allel pathways performing similar functions such that an 
alternative pathway may take over when another has been 
damaged, (b) unmasking of functionally silent pathways, 
and (c) sprouting of fi bers from the surviving neurons with 
formation of new synapses  [5–9] . 

 Plasticity may appear at the level of  map plasticity , af-
fecting sensory and/or motor cortical representation, or 
as a neuronal or  synaptic plasticity , at the neuronal level 
 [10] . The temporal profi le of changes very likely refl ects 
different mechanisms: short-term changes are probably 
due to functional enforcement in existing neural circuits 
due to unmasking of silent synapses, through modulation 
of GABAergic inhibition, whereas long-term changes in-
volve other processes apart from unmasking of underly-
ing synapses such as axonal regeneration and sprouting 
with changes in shape, number, size and type of synapses 
 [5–7] . When damage to a system is partial, recovery in-
side this system may occur; however, after a complete 
damage, the only alternative is the recruitment of a func-
tionally related system  [11] . 

 At the level of  map plasticity , a large piece of evidence 
demonstrates that cortical representation of body parts is 
being continuously modulated in response to activity, be-
havior and skill acquisition  [12, 13] . Indeed, CNS func-
tional anatomy appears to be organized so that damage 
may be, at least partially, functionally compensated [re-
viewed in  3, 14] . Acute lesions such as stroke are known 
to result in reactive depressions of brain areas remote but 

anatomically connected to the infarcted zones, due to an 
interrupted functional input from the injured region, a 
phenomenon defi ned as  diaschisis  [reviewed in  6] . In this 
context, a possible mechanism of recovery after stroke is 
the resolution of diaschisis. Indeed, there is evidence in-
dicating that cortical injury immediately after stroke re-
sults in hypometabolism and inhibition of regions remote 
from the infarcted area. This down-regulated neural ac-
tivity is considered to be due to excitotoxicity from glu-
tamate through NMDA receptors. Additionally, a de-
crease in afferent input received from the area of infarc-
tion may contribute to the suppression. Recovery is 
thought to take place as a result of the gradual reversal of 
this functional suppression of viable neuronal tissue  [15, 
16] . Resolution of diaschisis is likely to be important in 
adaptations occurring in the corresponding cortical maps 
not only of the involved but also of the non-involved 
hemisphere  [17, 18] . Moreover, it seems that diaschisis 
is not restricted to the hemispheres, but involves the spi-
nal cord and the cerebellum as well  [19–23] . Studies of 
brain metabolism after cortical injury confi rm that reso-
lution of diaschisis is likely to be involved in these pro-
cesses of cerebral recovery  [20, 23–25] . 

 At the level of  neuronal plasticity , unmasking silent 
synapses may result when cortical areas, which are prob-
ably kept ‘masked’ by active tonic GABAergic inhibition, 
allow for a rapid change of the neuronal network by re-
moving or modifying this synaptic inhibition  [8, 26–28] . 
Fast functional reinforcement or weakening of synapses 
could also result from processes related to long-term po-
tentiation (LTP) and long-term depression (LTD)  [28–
32] , which have been described to induce changes in the 
morphology of dendritic spines, an increase in the num-
ber of perforated synapses and an increase in the number 
of new spines. LTP is accompanied by an enhanced local 
excitability of pyramidal neuron dendrites  [33] . After 
brain ischemia, both LTP and an increase in the number 
of spines are induced, suggesting that they are intercon-
nected  [6] . Neuronal sprouting and synaptogenesis are 
probably a main determinant in long-term CNS plastic-
ity  [34] . Dendritic spines are the primary post-synaptic 
targets of excitatory glutamatergic synapses in the mature 
brain and have been proposed as primary sites of synap-
tic plasticity, a mechanism which may underlie cortical 
map reorganizations  [35–38] . Dendrites and dendritic 
spines are subjected to constant remodeling  [39]  under 
the possible infl uence of the release of local neurotrans-
mitter and neurotrophic factors, the synthesis of synaptic 
proteins, such as growth-associated proteins and synap-
tophysin proteins  [40, 41] , as well as a modifi ed brain 
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gene expression  [42–45] . In addition, training may cause 
plastic changes, e.g. synaptogenesis in enriched environ-
ments  [46] . 

 Neurogenesis 
 The discovery of adult  neurogenesis  has been consid-

ered as a possible new component of recovery that could 
change or create new treatments for stroke  [47] . In 1962, 
Joseph Altman  [48]  was the fi rst to fi nd new neurons pro-
duced in adulthood, suggesting 1 year later that in mam-
mals, neurogenesis continued post-natally  [49] . In 1977, 
Kaplan and Hinds  [50]  confi rmed this hypothesis by elec-
tron microscopy, and they found new neurons in the den-
tate gyrus (DG) and olfactory bulb of adult rats. In recent 
years it has been demonstrated that neurogenesis exists 
in the adult nervous system  [51–53] , and that it can be 
increased after brain injuries such as seizures or stroke 
 [54, 55] . 

 The regulation of neurogenesis is beginning to be un-
derstood: it appears to be infl uenced by factors such as 
aging, environmental stimulation, exercise, genetic back-
ground, stress and afferent inputs to the dentate granule 
cell layer  [56, 57]  and also by pathological factors such as 
cerebral ischemia  [58, 59] , where newborn neurons can 
replace neurons that have died after an insult and thus 
contribute to function recovery  [60] . 

 In 1998, Liu et al.  [61]  were the fi rst to fi nd an in-
creased birth of dentate progenitor cells after global isch-
emia in adult rodent. These authors, using immunohisto-
chemistry to detect the incorporation of 5-bromodeoxy-
uridine, found increased cellular proliferation in the 
subgranular zone (SGZ) of the DG 1–2 weeks after glob-
al ischemia. 

  Regions Implicated in Neurogenesis.  Neurogenesis 
produces a generation of neurons from neural stem cells 
(NSCs) and occurs in two specifi c regions of the adult 
brain of many animals: the SGZ of the hippocampal DG 
and the forebrain subventricular zone (SVZ) of the lat-
eral ventricle ( fi g. 1 )  [62–64] . 

 NSCs are present during embryonic and post-natal de-
velopment and persist during adult life. NSCs are cells 
that have the ability to (1) regenerate exact copies of 
themselves, (2) produce exponential cell growth and divi-
sion, (3) give rise to all of the mature neurons and glia, 
and (4) possess neuronal and glial lineage commitment, 
migration, and progressive cellular maturation in re-
sponse to a variety of injury signals (including ischemia). 
It has been reported that stem cells can also be isolated 
from spinal cord  [65] , diencephalon  [65]  and other brain 
regions  [66] . 

 In the SGZ, stem and progenitor cells are located at 
the border between the dentate hilus and the inner mar-
gins of the upper and the lower blades of the dentate gran-
ule cell layer  [67] . In normal hippocampal DG, the new-
born cells migrate into the granule cell layer where the 
majority of the cells generate new granule cells ( fi g. 1 ). 
The NSCs in hippocampus are present in the brain of ro-
dents  [68] , primates  [69] , and man  [52] . The neurogenesis 
in the SVZ lines the lateral ventricles and gives rise to new 
interneurons that reach the olfactory bulb via the rostral 
migratory stream. Once in the bulb they integrate into the 
granule and glomerular layers, where they differentiate 
into local interneurons ( fi g. 1 )  [56] . It has been described 
that cerebral ischemia increases neurogenesis in the SGZ 
of adult DG  [70]  and in the SVZ  [71] . 

 Recent evidence indicates that the forebrain SVZ of 
humans does not show neurogenesis, suggesting that in 
the human brain, neurogenesis may happen only in the 
hippocampal DG  [72] . In other brain zones, like cortex, 
the existence of neurogenesis remains controversial  [73] . 
Although some authors have found a small proportion of 
proliferation after a photothrombotic lesion  [74]  and af-
ter middle cerebral artery occlusion (MCAO)  [75, 76] , 
others studies did not detect neurogenesis in the injured 
cortex following MCAO  [59, 77] . 

  Regulation of Neurogenesis.  The process of neurogen-
esis consists of three main steps with different mecha-
nisms of regulation:   (1) In the fi rst step,  precursor prolif-
eration , there are growth factors involved such as basic 
fi broblast growth factor (bFGF)  [78] , epidermal growth 
factor (EGF)  [79] , and brain-derived neurotrophic factor 
(BDNF)  [80, 81] ; other molecules involved include neu-
rotransmitters  [70, 82] , hormones  [82, 83] , stem cell fac-
tor  [84] , erythropoietin (EPO)  [85] , caspase inhibitors 
 [86]  and anti-infl ammatory drugs  [86] . (2) In the second 
step,  migration , there are chemotropic factors, such as 
integrin subunits, ephrins and reelin  [87–90] . (3) And fi -
nally, in the molecular regulation of precursor  differentia-
tion, integration and survival , several studies suggest that 
astrocytes cues act in these steps  [91–93] . 

 Under pathological circumstances, other regulatory 
events may be involved. The proliferation of the progen-
itor cells in the injured brain can be enhanced by external 
stimulators like environmental enrichment  [94] , activa-
tion of cAMP-response-element-binding protein  [95]  and 
inducible nitric oxide synthase induction  [96] . 

 The molecular mechanisms that regulate  ischemia-
induced neurogenesis  are only partly understood. It is 
known that neurogenesis after stroke is mediated by 
molecules such as growth factors, EPO and glutamater-
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  Fig. 1.  Neurogenesis.  A  Neural stem cells 
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(SGZ) of the dentate gyrus.  B  Proliferation 
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D  Differentiation of new striatal neurons or 
new granule cells. Modifi ed from Kokaia 
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gic mechanisms. In the case of  growth factors , ischemia 
increases the expression of several growth factors: EGF, 
bFGF, BDNF and vascular endothelial growth factor 
(VEGF)  [97–99] . These growth factors are known to in-
duce neurogenesis after cerebral ischemia. For example, 
external infusion of bFGF and EGF into the lateral ven-
tricle of the rat forebrain increases neurogenesis after 
global ischemia  [60] . In the case of BDNF, only in the 
SVZ area, viral vector-mediated delivery of BDNF to 
the striatum leads to an increased number of new stria-
tal neurons formed in this zone after stroke  [80] , but 
BDNF does not infl uence either basal or ischemia-in-
duced proliferation of NSCs in the DG  [100] . And also, 
administration of VEGF promotes neurogenesis in the 
SVZ in the ischemic penumbra region following stroke 
 [101] . 

 Another factor that probably modulates neurogenesis 
following ischemia is EPO. Intraventricular infusion of 
EPO leads to increased neurogenesis of olfactory bulb 
neurons from SVZ  [85] . 

  Glutamatergic  mechanisms are also involved in the 
regulation of SGZ neurogenesis after global  [82, 102]  and 
focal ischemia  [70] . In this context, when there is block-
ade of both NMDA and AMPA receptor at the time of 
global ischemia, the increase of neurogenesis is prevent-
ed. In focal ischemia, this blockade is prevented only with 
the NMDA receptor. 

 In spite of the new generation of neurons, it has been 
demonstrated that more than 80% of the new neurons die 
during the fi rst weeks after stroke, resulting in a replace-
ment of only 0.2% of the cells lost as a result of ischemia 
in rats  [77] . Therefore, in order to improve the function-
al recovery, it is important not only to study the prolif-
eration of precursors but also their survival rate. 

 In addition, it is important to know whether the new 
neurons formed after stroke are functional or not. In this 
context, evidence for functional neuronal replacement in 
the ischemically damaged brain has been reported from 
a model of global forebrain ischemia  [60] , in which new 
generated CA1 neurons after administration of growth 
factors form functional synapses and are integrated into 
the existing brain circuitry. 

  Neurogenesis and Angiogenesis.  It is known that adult 
hippocampal neurogenesis is closely associated with an-
giogenesis from endothelial cell precursors, because ad-
equate blood supply is necessary for survival and devel-
opment of the news neurons  [103] . Angiogenesis usually 
occurs in the human brain after stroke, but may have to 
be further stimulated to increase the number of surviving 
new neurons. VEGF has an important role in the vascular 

response to cerebral ischemia, because ischemia stimu-
lates its expression  [104]  and VEGF promotes the forma-
tion of new cerebral blood vessels  [105] . It is known that 
administration of VEGF promotes both neurogenesis in 
the SVZ and angiogenesis in the ischemic penumbra re-
gion following stroke  [101] . The neurogenic effect of 
VEGF could occur through the establishment of a vascu-
lar niche that favors the proliferation and differentiation 
 [103] , or by the release of BDNF from endothelial cells 
 [106] . Moreover, VEGF may exert a direct mitogenic ef-
fect on neuronal precursor  [97] . 

 Therapeutical Strategies 

 Stroke is a leading cause of death and long-lasting dis-
ability with a high socioeconomic burden; among 30-day 
survivors of fi rst-ever stroke, about half survive 5 years; 
of survivors, one third remain disabled, and 1 in 7 are in 
permanent institutional care  [107] . Taking into account 
that hemiparesis is the most common cause of disability 
after stroke  [108] , it seems essential to develop effective 
therapies to improve the motor recovery of these patients. 
In the absence of effective pharmacological therapies,  re-
habilitation  is the most common treatment to improve 
life quality after stroke [reviewed in  109] . Most advances 
in this context are related to therapies combining ele-
ments of intensity and task specifi city, such as constraint-
induced movement therapy and body-weight-supported 
treadmill training [reviewed in  6, 109] . 

 Even with optimized strategies of rehabilitation, other 
manipulations may be needed to increase its benefi ts. Ac-
tivity-dependent plasticity and skill learning involve the 
major neurotransmitters. Interestingly, after stroke, neu-
rotransmitters such as dopamine, acetylcholine, sero-
tonin and noradrenaline may be interrupted or down-
regulated in their projections from brainstem to cortex, a 
mechanism that may contribute to diaschisis, described 
above. These ‘low-aminergic’ patients may then benefi t 
from drugs affecting the noradrenergic system. In this 
context, drugs that increase the availability of noradrena-
line such as  amphetamine   [109–113] , and  methylpheni-
date   [114] , and dopaminergic drugs such as  levodopa  
 [115]  have shown some effi cacy in stroke-rehabilitation 
trials when combined with physical or language therapy 
[reviewed in  109] . Drugs that act on these neurotransmit-
ter receptors improve task-specifi c signaling  [116] . Selec-
tive  serotonin reuptake inhibitors  have also shown modest 
effi cacy in some studies  [117, 118] . On the other hand, 
 activation of NMDA receptors , by driving LTP, may op-
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timize activity-dependent learning after stroke  [119] . 
 Acetylcholinesterase inhibitors  may also be helpful  [120, 
121] . 

 Other treatments which have shown effi cacy on den-
dritic plasticity stimulation in animal models are  growth 
factors , such as NGF or BDNF  [122–124] . On the other 
hand, one important factor restricting brain plasticity af-
ter brain lesions is that myelin in the CNS contains pro-
teins that inhibit axonal outgrowth  [125, 126] .  Myelin 
inhibitors  share a common receptor, Nogo-A, and its 
blockage promotes CNS repair and functional recovery 
 [127] . Some promising results with antibodies against 
this receptor have been reported after brain ischemic le-
sions  [128–130] . 

  Inosine , a naturally occurring metabolite, has likewise 
been reported to induce axonal rewiring and promote be-
havioral outcome after focal brain ischemia  [131] . On the 
other hand, some authors have demonstrated that some 
effi cacy of  botulinum toxin-A  for the treatment of spastic-
ity after stroke  [132] . 

 We have recently investigated the effects of a chronic 
treatment with  CDP-choline , a safe and well-tolerated 
drug which is known to stabilize membranes, on func-
tional outcome and neuromorphological changes after 
stroke. The treatment with CDP-choline, initiated 24 h 
after the MCAO and maintained during 28 days, im-
proved forelimb function in both the staircase test and 
the elevated body swing test, corresponding to sensorim-
otor integration and asymmetrical motor function, re-
spectively  [133] . Given the limitations of the previous 
approaches regarding restricted bioavailability or adverse 
effects, these results have the advantage of the fact that 
CDP-choline is a drug commercially available as a treat-
ment of stroke and which it is safe and well tolerated 
 [134] . 

  Cell Therapy.  The aim of cell therapy is to restore brain 
function by replacing dead neurons with new neurons 
through transplantation or stimulation of neurogenesis 
from endogenous stem/precursor cells. In theory, neurons 
and other cells useful for brain repair in stroke could de-
rive from stem cells of different sources, such as embry-
onic stem cells from the blastocyst, NSCs from the em-
bryonic or adult brain, or stem cells from other tissues, 
e.g. bone marrow  [135, 136] . In animals, the transplants 
of different stem cells have been reported to partly reverse 
some behavioral defi cits  [137–144] . 

 Some results that suggest that neuronal replacement 
induces symptomatic improvement in patients after 
stroke but the results are not convincing. In the only clin-
ical trial reported so far, 12 patients with stroke affecting 

the basal ganglia received implants of neurons generated 
from the human teratocarcinoma cell line NTera-2 into 
the infarcted area  [145] . This study revealed an increase 
in the European Stroke Scales score suggesting that neu-
ronal cell transplantation could be a therapeutic option 
for stroke patients with a motor defi cit. In a follow-up 
study the improvements in some affected individuals cor-
related with increased metabolic activity at the graft site 
 [146] . This fi nding could be interpreted as graft function 
but might as well refl ect infl ammation or increased activ-
ity in host neurons [reviewed in  135, 136] . 

 Perhaps the most favorable strategy is to combine 
transplantation of NSCs close to the damaged area with 
stimulation of neurogenesis from endogenous NSCs; also, 
to afford the NSCs a platform so that they can reform ap-
propriate brain structure and connections  [135, 136] . A 
study in neonatal mice  [147]  shows that if NSCs are seed-
ed on synthetic extracellular matrix and implanted into 
the ischemia-damaged area, then new parenchyma com-
posed of neurons and glia is formed and becomes vascu-
larized. From a clinical perspective, the development of 
therapies for brain diseases based on neuronal self-repair 
is still at a very early stage. We need to understand how 
to control proliferation and differentiation of endogenous 
of NSCs into specifi c cell types, induce their integration 
into existing neural networks, and optimize the function-
al recovery in animal models closely resembling the hu-
man disease. 

 Conclusion 

 Considering the limitations of the potential for inter-
vention after a stroke, the development of strategies to 
enhance plasticity and improve long-term outcome seems 
fundamental. The elucidation of the mechanisms regulat-
ing long-term recovery of post-stroke neurological sequel-
ae may help to prompt new therapeutic strategies for this 
pathology. 
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were evaluated in clinical trials and until recently none 
demonstrated a positive outcome on prespecifi ed out-
come measures  [1] . There have been many potential rea-
sons to explain the lack of success observed previously 
with neuroprotection in acute ischemic stroke ( table 1 ). 
Many lessons have been learned from these prior neuro-
protection trials that should help future trials to have a 
better chance for achieving a successful outcome. One of 
the most important lessons from prior neuroprotection 
trials is that the time from stroke onset to initiating ther-
apy should not be too long. It is clearly apparent from the 
combined analysis of the rt-PA clinical trials that this 
drug’s benefi t is substantially greater the earlier after 
stroke onset it is initiated  [2] . The observation that ear-
lier initiation of rt-PA therapy is associated with a great-
er propensity for improved outcome is directly related to 
the concept of the ischemic penumbra and its evolution. 
Both thrombolytic and neuroprotective therapeutic ap-
proaches to acute stroke therapy are predicated on the 
concept that these therapies are designed to save a portion 
of the ischemic penumbra from evolving into infarction 
and that smaller infarcts on average should be associated 
with an improved clinical outcome as measured on vari-
ous outcome scales  [3] . Therefore, targeting these thera-
pies at patients with evidence of a persistent ischemic 
penumbra should improve the likelihood that they will 
have demonstrable clinical effi cacy both in treatment tri-
als and ultimately in clinical practice. The recently re-
ported results of the SAINT-1 trial also support this con-
cept that early initiation of therapy should enhance the 

 Key Words 
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  Abstract 
 The development of acute stroke therapies has yielded 
only limited success and many failures in multiple clini-
cal trials. The target of acute stroke therapy is that por-
tion of the ischemic region that is still potentially sal-
vageable, i.e. the ischemic penumbra. Neuroprotective 
drugs have the potential to prevent a portion of the isch-
emic penumbra from evolving into infracted tissue and 
designing trials that target neuroprotective drugs at pa-
tients with persistent penumbra should enhance the like-
lihood of a positive outcome. Currently, diffusion and 
perfusion MRI has the potential to approximate the loca-
tion and persistence of the ischemic penumbra and can 
be used in clinical trials to select appropriate patients for 
inclusion and to evaluate a meaningful treatment effect. 
Perfusion CT may also have similar capabilities. Use of 
these imaging modalities in clinical trials and ultimately 
in clinical practice will likely help in the development and 
utilization of novel neuroprotective drugs. 
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 The development and approval for neuroprotective 
drugs for acute ischemic stroke has proven to be a diffi cult 
task. There have been many neuroprotective drugs that 
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probability for detecting a benefi cial outcome  [4] . In this 
trial, the free radical scavenger, NXY-059 was compared 
to vehicle in a large, phase III clinical trial. The time to 
initiation of therapy was carefully controlled in the trial 
and the mean time to the start of therapy was less than 
4 h. The primary endpoint of the trial was a shift in the 
Rankin Score towards a more favorable outcome not a 
responder analysis as in prior neuroprotection trials. This 
primary outcome measure demonstrated a statistically 
signifi cant improvement with NXY-059, but improve-
ment in another prespecifi ed outcome measure, the mean 
NIH Stroke Scale Score, did not show any obvious differ-
ence among the two treatment groups. The results of the 
SAINT-1 trial are encouraging, but the results of a second 
trial will need to be evaluated before regulatory approval 
can be obtained. Subscribing to the concept that the isch-
emic penumbra is indeed the target of neuroprotection 
raises several important questions concerning the design 
and implementation of future neuroprotective drug de-
velopment. These questions include: (1) How is the isch-
emic penumbra defi ned and how does it evolve into in-
farcted tissue? (2) Can the ischemic penumbra be identi-
fi ed in routine clinical practice and does it matter? 
(3) How can neuroprotective drug trials incorporate pen-
umbral imaging and will this expedite the drug develop-
ment process and drug approval? 

 The concept of the ischemic penumbra in acute isch-
emic stroke is more than 20 years old and has been ex-
tensively studied in both animal stroke models and stroke 
patients  [5] . It is familiar to most investigators who work 
in the stroke fi eld, so the concept will only briefl y be re-
viewed. The initial defi nition of the ischemic penumbra 
by Astrup et al.  [6]  was that portion of the ischemic zone 
with absent electrical activity but with preserved ion ho-
meostasis and transmembrane electrical potentials. Sev-
eral revised defi nitions of the ischemic penumbra ap-
peared over time that focused on thresholds of cerebral 
blood fl ow (CBF) decline, energy metabolism and pro-
tein synthesis ( table 2 ). From the clinical perspective, a 
relatively simple and straightforward defi nition of the 
ischemic penumbra initially proposed by Hakim  [7]  is 
that portion of the ischemic region destined for infarc-
tion that is currently potentially salvageable with appro-
priate intervention. This defi nition provides a frame-
work for approaching the important concepts of evolu-
tion of penumbra into infarcted tissue, the time window 
over which this evolution occurs (i.e. the therapeutic 
time window) and the use of imaging modalities to iden-
tify at least an approximation of this vital ischemic re-
gion. 

 In focal brain ischemia the existence and evolution of 
the ischemic penumbra primarily relates to varying de-
grees of CBF reduction within the ischemic zone  [5] . That 
portion of the ischemic zone with little or no residual 
CBF, the ischemic core, evolves rapidly and should not 
be considered a target for acute therapy. The penumbral 
region has a moderate reduction of CBF and evolves over 
a period of time into irreversible injury, i.e. infarction, 
unless therapy is initiated. Within the penumbral region 
many mechanisms have been identifi ed that could con-
tribute to this evolution towards infarction, i.e. the isch-
emic cascade  [8] . The components of the ischemic cas-

Table 1. Potential reasons to explain why neuroprotection trials 
have failed

1 An appropriate time window was not used based upon 
 preclinical data

2 Adequate drug levels were not achieved because of toxicity
3 The mechanism of drug action was not considered in trial 

design, i.e. drugs with no effect on white matter injury 
 included patients with lacunar stroke (most drugs in 
 pre clinical studies showed effi cacy on gray matter lesions)

4 Outcome assessment of a therapeutic response was not 
 adjusted for baseline severity

5 The outcome assessment was not adapted to the mechanism 
of drug action or too great a treatment effect was expected

6 The trial included too many patients with too mild or severe 
neurological defi cits

7 Most trials did not utilize imaging methods which could 
demonstrate the presence of ischemic penumbra

8 Many clinical trials were initiated on the basis of insuffi cient 
preclinical data

9 Insuffi cient statistical power
10 Protocol violations

Table 2. Defi nitions of the ischemic penumbra

1 An ischemic zone with absent electrical activity and preserved 
ion homeostasis and transmembrane potentials

2 An ischemic zone with reduced cerebral blood fl ow and 
 preserved high-energy metabolism

3 An ischemic region with impaired protein synthesis and 
 preserved ATP levels

4 The ischemic region with abnormal perfusion on MRI that is 
normal on diffusion imaging

5 The ischemic region with abnormal CBF and normal CBV on 
perfusion CT

6 The ischemic region with an increased oxygen extraction 
 fraction and reduced CBF on positron emission tomography

7 A potentially salvageable ischemic region with timely initia-
tion of therapy
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cade have expanded substantially over the past decade as 
knowledge about the basic science of ischemic cell injury 
has provided additional insights. Trying to impede com-
ponents of the ischemic cascade forms the basis of neu-
roprotective therapy. The basic concept is that the resid-
ual CBF in the penumbral region, although modest, can 
deliver adequate amounts of drugs designed to block one 
or more components of the ischemic cascade and that 
such a blockade will prevent a substantial portion of the 
penumbra from evolving into infarction. In animal stud-
ies this hypothesis appears to be valid because many neu-
roprotective agents have substantially reduced infarct 
volumes when initiated up to several hours after the onset 
of experimental stroke  [9] . Blockade of only one aspect of 
the ischemic cascade is likely a suboptimal approach to 
neuroprotection because of the multiplicity of mecha-
nisms that can promote ischemic cell death. Therefore, 
neuroprotective drugs that impact upon multiple compo-
nents of the ischemic cascade or drug combinations are 
likely to have better therapeutic effi cacy. Obviously, com-
bining neuroprotection with a reperfusion strategy should 
maximize therapeutic benefi ts. 

 Any approach to the treatment of acute focal brain 
ischemia should be targeted at patients with the greatest 
amounts of persistent ischemic penumbra because this 
tissue is the target of acute stroke therapy regardless of 
what means are employed to salvage it. Over time, the 
proportion of ischemic tissue that remains in the penum-
bral region diminishes. This shrinkage of the penumbra 
over time forms the basis of the therapeutic time window 
for treating acute ischemic stroke. The combined analysis 
of the rt-PA trials provides clear support for this concept 
 [2] . In patients treated with rt-PA intravenously who were 
selected by clinical criteria and CT exclusion of hemor-
rhage but not penumbral imaging, improved outcome at 
90 days was much better in patients treated earlier in the 
3-hour window. Another way to approach the identifi ca-
tion of patients most likely to benefi t from acute stroke 
therapy is to use imaging to identify an approximation of 
the ischemic penumbra  [10] . With very early initiation of 
therapy within 3 h after stroke onset, the vast majority of 
stroke patients have been shown to have a penumbra on 
imaging, so it is not surprising that intravenous rt-PA was 
shown to be benefi cial during this time period. However, 
over time the percentage of stroke patients with a reason-
able proportion of the ischemic zone that remains in the 
penumbra decreases  [11] . Therefore, the most obvious 
way to extend the therapeutic time window for any acute 
stroke therapy would be to identify patients with a per-
sistent ischemic penumbra by using advanced brain im-

aging and to include only these patients in a clinical trial. 
Extending the therapeutic time window beyond 3 h for 
potent reperfusion and neuroprotective therapy is depen-
dent upon identifying and treating patients who can still 
respond to the therapy. 

 Using imaging to approximate the ischemic penumbra 
is an important next step in extending the therapeutic 
time window and for likely providing acute stroke thera-
py to those patients most likely to respond. Currently, 
diffusion/perfusion MRI and perfusion CT are the imag-
ing modalities available that can be utilized to provide an 
approximation of the ischemic penumbra. Abnormalities 
detected as regions of hyperintensity on diffusion-weight-
ed MRI (DWI) identify ischemic regions where high-en-
ergy metabolism has failed and loss of ion homeostasis 
has occurred  [12] . Early after stroke onset these abnormal 
regions on DWI may in part be reversible and both ani-
mal and human examples of the reversibility of DWI ab-
normalities with early reperfusion have appeared  [13, 
14] . With perfusion MRI (PWI) disturbances of CBF in 
the microvasculature can be identifi ed. PWI is currently 
performed in clinical practice with the bolus contrast 
technique and this methodology can only provide quali-
tative measurements of CBF and not absolute values  [15] . 
The deconvolution approach to PWI measurements pro-
vides added precision but even with this addition to cor-
rect for infl ow delays absolute CBF cannot be measured. 
The best approach for defi ning abnormalities on bolus 
contrast PWI remains contentious, but most investiga-
tors develop perfusion maps based upon mean transit 
time delays or time to peak delays as compared to the 
normal hemisphere  [16] . Currently, the most widely ac-
cepted method for approximating the ischemic penum-
bra is to look for a mismatch in the regions of DWI and 
PWI abnormality with the region of PWI abnormality 
without a DWI abnormality assumed to represent the 
penumbral region. Identifying such a mismatch on screen 
is relatively easy and reliable ( fi g. 1 )  [10] . This approach 
is now widely used in centers that perform acute stroke 
MRI. The DWI/PWI mismatch only approximates the 
ischemic penumbra because as mentioned early after 
stroke onset not all of the DWI abnormality is irreversibly 
damaged and a portion of the PWI abnormality has only 
a modest CBF reduction, representing oligemic tissue 
 [17] . Further refi nements of DWI and PWI imaging will 
likely occur that will provide more quantitative estimates 
of individual pixel characteristics, leading to probability 
maps as to whether individual pixels have a low or high 
chance of recovery if therapy is initiated shortly after im-
aging is performed  [18] . 



 Ischemic Penumbra: New Opportunity for 
Neuroprotection 

 Cerebrovasc Dis 2006;21(suppl 2):64–70 67

 The other imaging modality that is showing promise 
for penumbral imaging is perfusion CT. Wintermark et 
al.  [19]  have shown perfusion CT can identify ischemic 
regions with reduced CBF and also identify regions where 
cerebral blood volume has collapsed and autoregulation 
has been lost as an indicator of irreversible injury. Re-
gions with a CBF abnormality that do not show CBV col-
lapse are presumed to approximate the ischemic penum-
bra ( fi g. 2 ). The CBF/CBV mismatch on perfusion CT 
correlates well with regions of DWI/PWI mismatch when 
both studies are obtained in a close temporal window 
 [20] . The validation of the thresholds required to iden-
tify the abnormal CBF and CBV regions remains to be 
proven. Other problems with perfusion CT include the 
need to inject iodinated contrast to obtain the images and 
the relatively restricted tissue volume that can be imaged 
currently. DWI/PWI MRI can essentially image the whole 
brain and is not restricted to several slices as perfusion 
CT currently is. Another problem with perfusion CT as 

compared to DWI/PWI is the tracking of presumed in-
farct volumes over time. An approach to assess the effect 
of neuroprotective treatment has been to compare pre-
treatment ischemic lesion volume on DWI pretreatment 
with the ultimate infarct at a delayed time point on T2-
weighted imaging to determine if the therapy impedes the 
natural growth of ischemic lesion volumes over time  [21] . 
With perfusion CT this will be more diffi cult but also po-
tentially possible when various technical hurdles have 
been surmounted. Ultimately, it may be that DWI/PWI 
is more useful in proof of concept clinical trials and per-
fusion CT is more useful in large clinical outcome piv-
otal clinical trials and routine practice. It is likely that the 
two imaging approaches for identifying the ischemic pen-
umbra will both have substantial and complementary 
utility. 

 Preliminary case series provide supportive evidence 
that penumbral imaging with both MRI and CT can im-
pact the time window for the identifi cation of patients 

  Fig. 1.  The patient has evidence of a large diffusion/perfusion mismatch and an occluded proximal middle cere-
bral artery on an MRI battery obtained prior to intravenous rt-PA. 24 h later the perfusion abnormality has large-
ly resolved and there is little diffusion abnormality. Courtesy of Dr. Italo Linfante, Worcester, Mass., USA. 
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who will benefi t from intravenous Rt-PA. Several groups 
have shown that patients with a DWI/PWI mismatch 
treated with intravenous Rt-PA beyond 3 h after stroke 
onset had a favorable outcome rate that was similar to 
patients treated within 3 h after stroke onset who were 
not imaged to confi rm the presence of an ischemic pen-
umbra  [22, 23] . The identifi cation of stroke patients with 
a DWI/PWI mismatch beyond 3 h after stroke onset is 
now being performed in several ongoing trials to hope-
fully validate the hypothesis that penumbral imaging can 
indeed identify patients more likely to respond to intra-
venous thrombolysis at delayed time points. Perfusion 
CT identifi cation of the ischemic penumbra has also been 
used to identify patients who are candidates for intra-ar-
terial. Thrombolysis beyond 3 h and these patients had a 
reasonable response to treatment  [24] . 

 The use of imaging to identify an approximation of the 
ischemic penumbra will provide new opportunities for 
the evaluation and development of neuroprotective ther-
apies. Patients for inclusion in clinical trials can be iden-
tifi ed based upon the existence of a DWI/PWI mismatch 
on MRI or a CBF/CBV mismatch on perfusion CT. This 

approach will allow for the inclusion of stroke patients up 
to 9 h or longer after onset because several groups have 
reported that a substantial mismatch is present during 
this time period in a reasonable percentage of patients. 
Currently, MRI has the advantage over CT that the full 
breadth of ischemic lesion evolution can be assessed over 
time and the effects of treatment on this evolution deter-
mined. The use of imaging in neuroprotective drug de-
velopment has a short but informative history. In several 
other drug development programs an MRI substudy was 
included in the main development program to determine 
if either of these neuroprotective agents affected ischemic 
lesion evolution  [25] . No such effect was observed on 
MRI and no effect on clinical outcome occurred either. 
Two trials with citicoline utilized an MRI endpoint. In a 
small preliminary study, a trend towards a reduction in 
lesion size growth was seen in the active treatment group 
and a second larger study a signifi cant effect on lesion 
evolution was detected  [21, 26] . None of these studies 
required a DWI/PWI mismatch for inclusion. In the 
thrombolysis fi eld, an important MRI-based study pro-
vides important lessons for future neuroprotection trials. 
The Desmoteplase in Acute Stroke (DIAS) study enrolled 
patients with a DWI/PWI mismatch of 20% or more and 
included patients up to 9 h from stroke onset  [27] . The 
effects of desmoteplase on reperfusion effi cacy several 
hours after treatment, as determined by PWI and mag-
netic resonance angiography, was the primary approach 
to evaluating treatment effects in a dose-escalation study. 
Late, 90-day effects on T2-determined infarct size and 
clinical outcome were also assessed. The study with a 
small number of patients per treatment group showed 
signifi cant effects on early reperfusion with an apparent 
increase of effi cacy observed with higher weight-adjusted 
dosing. The safety profi le was quite favorable and a trend 
towards benefi cial effects on late ischemic lesion size and 
clinical outcome was observed. A second similar study 
demonstrated similar although less robust effects  [28] . 
Combining the results from the two desmoteplase studies 
provides substantial evidence for enhanced reperfusion 
early and evidence for later clinical and ischemic size re-
duction benefi ts. These studies are important because 
they demonstrate that patients can be identifi ed up to
9 h after stroke onset who can potentially benefi t from an 
intravenous thrombolytic therapy and that a biologically 
relevant treatment effect, i.e. reperfusion effi cacy can be 
determined with a very modest sample size. 

 For the future development of neuroprotective drugs, 
imaging identifi cation of the ischemic penumbra will 
likely assume an increasingly important role. A phase IIB 

  Fig. 2.  This perfusion CT shows a large region with reduced CBF 
without a collapse of CBV (green region) and a relatively small re-
gion with both reduced CBF and CBV collapse (red region). Dr. 
Julien Bogousslavsky, Lausanne, Switzerland, supplied the fi gure. 
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study with a novel neuroprotective drug should be de-
signed as a proof of concept study to confi rm a biologi-
cally relevant treatment effect. Patients can be included 
in the trial up to 9 h after stroke onset who have evidence 
of a reasonably sized DWI/PWI mismatch on a baseline 
MRI study and appropriate clinical inclusion criteria, as 
exemplifi ed by the DIAS trial. Therapy should then be 
initiated as rapidly as possible. Follow-up imaging should 
be performed at 30 days or more after the index stroke 
for evaluation of a potential treatment effect on ischemic 
lesion evolution. An approach that has been used to as-
sess treatment effi cacy with MRI has been to measure the 
mean increase in ischemic lesion size from baseline, pre-
treatment lesion size on DWI to delayed ischemic lesion 
size on T2 imaging  [21] . Another novel approach that will 
likely require a smaller sample size is to defi ne a treatment 
success as those patients demonstrating no increase or 
shrinkage in ischemic lesion size when comparing the 
baseline lesion volume to that on the delayed imaging. 
With this so-called ‘responder analysis’ approach, a two-
stage design to the data analysis can be used. If no differ-
ence is observed after a modest number of treated and 
placebo patients are compared, then the study can be ter-
minated for futility. Conversely, if this initial analysis 
demonstrates that the treated group has a modestly in-
creased number of responders, the trial should then con-
tinue to complete enrollment of the prespecifi ed number 
of patients to potentially demonstrate a statistically sig-
nifi cant difference in responders. A positive imaging-
based trial in phase IIB that shows an effect of the neuro-
protective agent on ischemic lesion evolution provides 
evidence of a biologically relevant treatment effect and 
should strongly support further assessment in a clinical 

outcome phase III trial. If a neuroprotective drug shows 
no effect on the evolution of ischemic lesions with either 
of these assessment approaches in phase IIB, then the de-
velopment program should be discontinued because such 
a drug is unlikely to have a clinically meaningful treat-
ment effect. The phase III trial if initiated should include 
penumbral imaging with MRI or CT to maximize enroll-
ment of patients most likely to respond to the therapy, 
especially if a prolonged time window to treatment is de-
sired. In the United States, it is likely that a neuroprotec-
tive drug demonstrating a positive treatment effect in one 
phase IIB imaging endpoint trial and one phase III clini-
cal endpoint trial would be suffi cient for registration fi ling 
 [29] . 

 The future of neuroprotection appears much brighter 
today than it did several years ago. The SAINT-1 trial 
demonstrated that a neuroprotective drug with a robust 
preclinical assessment package and initiated early after 
stroke onset can shift the modifi ed Rankin Scale in a fa-
vorable and apparently clinically meaningful direction. 
This approach of a shift in the Rankin Scale should pro-
vide a more sensitive measure of treatment effects in fu-
ture phase III neuroprotection trials. Penumbral imaging 
will enhance phase IIB and phase III clinical trials by 
identifying stroke patients more likely to respond to treat-
ment and should also help to extend the time window for 
successful therapy. As mentioned, in phase IIB trials an 
imaging-based primary outcome should be employed to 
provide evidence of a drug’s effects on ischemic lesion 
evolution. The combination of imaging-based phase IIB 
and phase III development of neuroprotective drugs 
should streamline and enhance the process. 
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whether the enhancement of cytoprotective mecha-
nisms, and/or the block of cytotoxic mechanisms con-
fi rming the existence of penumbra at different times of 
ischemic evolution, are effective neuroprotective strate-
gies. 
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 Cerebral ischemia is a dynamic process that can result 
in progressive cell death with a subsequent increase of 
infarct volume in the hours immediately following stroke 
onset. The increase of infarct volume is the result of the 
recruitment of the ischemic penumbra, a region of brain 
tissue where blood fl ow is so reduced as to result in hy-
poxia of a severity that results in the cessation of physi-
ological function but not so complete as to cause irrevers-
ible failure of energy metabolism and cellular necrosis  [1] . 
This ischemic region at risk of infarction but potentially 
salvageable is a therapeutic target in the acute stroke clin-
ical setting as it can be saved by using reperfusion and/or 
effective neuroprotective therapies  [2] . 

 The duration of the penumbra in humans varies sub-
stantially from person to person depending on a variety 
of factors such as the time from onset of ischemia, the 
location of vessel occlusion, the effi cacy of collateral cir-
culation, and the location of the ischemic lesion (e.g. the 
different susceptibility to ischemia of gray and white mat-
ter). This varying duration of ischemic penumbra means 

 Key Words 
 Ischemic stroke  �  Neuroprotection  �  Penumbra  � 
Energy metabolism

  Abstract 
 Ischemic penumbra defi nes the existence of tissue at risk 
of infarction and which is, hence, potentially salvageable 
and the target for current stroke reperfusion and neuro-
protective therapies. Penumbral tissue evolves toward 
irreversibly damaged tissue at different rates in individ-
ual stroke patients yielding different therapeutic win-
dows depending on the individual duration of risk of in-
farction of this tissue. An accurate identifi cation of the 
penumbra is then necessary in order to individualize the 
window of opportunity for therapeutic interventions. Im-
aging techniques, although helpful, may not give the 
most accurate information as to the existence of penum-
bra given that the threshold for identifi cation of penum-
bra varies depending on the technique used. A better 
identifi cation of the true penumbral tissue might be 
based on the cascade of molecular events that are re-
sponsible for the evolution of the penumbra toward in-
farcted tissue. Multiple penumbras can be defi ned in 
 molecular terms taking into account which vessel is 
 occluded, the time of evolution of the ischemia, the de-
gree of the ischemia, and the sensitivity to ischemia of 
the different cells. Future studies are necessary to clarify 
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that the window for therapeutic intervention is different 
for each patient and may often be longer than the cur-
rently accepted 3-hour window for the administration of 
reperfusion therapies  [3] . 

 Whereas reperfusion therapies with recombinant tis-
sue plasminogen activator (rt-PA) have been shown to be 
effective in the ischemic acute stroke phase in humans  [4, 
5] , most of the neuroprotective drugs have been found to 
be effective only in experimental models of cerebral isch-
emia  [6] . However, clinical trials testing neuroprotective 
drugs have often been limited by inappropriately long 
time windows, insuffi cient statistical power, insensitive 
outcome measures, inclusion of protocol violators, failure 
to target specifi c stroke subtypes, and failure to target the 
ischemic penumbra  [7] . In fact, as neuroprotection is by 
defi nition an intervention aimed at limiting the infarct 
volume by avoiding the death of vulnerable cells within 
the penumbra  [8] , the identifi cation of such tissue, to-
gether with the knowledge of the molecular mechanisms 
related to the penumbra recruitment toward the irrevers-
ibly damaged tissue that neuroprotection seeks to pre-
vent, are mandatory for a neuroprotective drug to be ef-
fective. 

 Different neuroimaging techniques, including posi-
tron emission tomography, diffusion/perfusion magnetic 
resonance imaging and computed tomography perfusion, 
are currently used to visualize the penumbra. However, 
the areas identifi ed as penumbra by these imaging tech-
niques do not completely coincide with one another  [9–
11]  so other tools are necessary in order to accurately 

identify the tissue at risk of infarction. A better identifi -
cation of the true penumbral tissue might rely on the cas-
cade of molecular events started after vascular occlusion 
that have been the objective of extensive research in re-
cent years  [12] . 

 Depending on the duration of the vascular occlusion, 
the location of the ischemia and the time of reperfusion, 
different cell-specifi c molecular penumbras may exist 
and so, a variety of ischemic penumbras can be described 
in molecular terms  [12, 13] . The different molecular 
mechanisms related to the progression of penumbra to 
irreversibly damaged tissue, as well as the molecular and 
genetic response that occurs in areas not irreversibly dam-
aged, are reviewed in the present article. 

 From Ischemic Penumbra to Irreversible Injury 

 The cascade of molecular mechanisms started as a re-
sult of cerebral ischemia that might contribute to the evo-
lution of the penumbra to irreversibly damaged tissue is 
multiple and of increasing complexity ( fi g. 1 ). The two 
major contributory mechanisms to the evolution of the 
ischemic penumbra are the status of local cerebral blood 
blow (CBF) and the cellular consequences of this CBF 
decrease  [2] . The decrease in the CBF leads to a marked 
reduction in ATP with Na + /K +  pump failure and an in-
crease in extracellular glutamate which activates gluta-
mate-mediated channels (NMDA and AMPA) and re-
sults in an intracellular increase of calcium. Both excito-
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  Fig. 1.  Molecular mechanisms related to the 
evolution of the penumbra to irreversible 
damaged tissue. 
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toxicity and calcium are known to be major contributors 
to the evolution of the ischemic lesion  [14] . The intracel-
lular calcium participates in free radical formation 
through the activation of nitric oxide synthase that pro-
motes nitric oxide formation and the subsequent synthe-
sis of the highly toxic peroxynitrite radical. The inhibition 
of neuronal nitric oxide synthase reduces infarct size in 
experimental models of cerebral ischemia  [15] . 

 The spread of glutamate from the ischemic core to the 
peripheral lesion is an additional mechanism that may 
induce irreversible injury in the penumbra. In fact, glu-
tamate has been shown to be a mediator in the occurrence 
of periinfarct depolarizations which originate at the in-
farcted core and propagate towards the periphery of the 
lesion causing an increase in the infarcted volume  [16] . 
In experimental studies, a correlation between the num-
ber of periinfarct depolarizations and infarct volume has 
been found  [17, 18]  and the pharmacological suppression 
of periinfarct depolarizations by glutamate and glycine 

antagonists reduces infarct volume  [19, 20] . Moreover, in 
a clinical setting, a high correlation has been demonstrat-
ed between glutamate levels and infarction volume  [21] , 
and early neurological deterioration  [22, 23]  in patients 
with acute ischemic stroke. A strong association has also 
been found between glutamate levels on admission and 
diffusion-weighted imaging lesion growth in patients with 
acute hemispheric infarction  [24]  ( fi g. 2 ). These periin-
farct depolarizations result in ischemic enlargement pre-
sumably by the increased energetic demand within an 
already energetically compromised tissue due to the low 
CBF in the penumbral zone. 

 Later, oxygen free radicals and infl ammation partici-
pate in the evolution of the ischemic lesion as mediators 
of the reperfusion injury. Infl ammatory molecules such 
as tumor necrosis factor- �  (TNF- � ) and interleukin (IL)-
6 promote the expression of adhesion molecules such as 
the intercellular molecule adhesion-1 and the vascular 
cellular adhesion molecule, facilitating leukocyte adher-
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ence and migration from capillaries into the brain with 
subsequent microvessel occlusion and a progressive re-
duction in blood fl ow that might result in cell death and 
an increase in the infarct volume  [25–27] . In fact, the ad-
ministration of antiadhesion molecules has been shown 
to reduce infarct volume in experimental models of tran-
sient focal cerebral ischemia  [28] . 

 Apoptosis, or programmed cell death, has also been 
suggested as being a contributor to the evolution of the 
penumbra to necrotic tissue. As protein synthesis is re-
quired for apoptosis to occur, it is likely that this mecha-
nism only contributes to the progression of the ischemic 
lesion in areas of modest ischemia or after reperfusion 
 [2] . In fact, in experimental models of cerebral ischemia, 
apoptosis only appeared to contribute to delayed isch-
emic damage after 30 min of transient ischemia whereas 
no effect was observed after 90 min  [29, 30] . 

 Molecular Markers of Ischemic Penumbra 

 The energy failure secondary to the decrease in CBF 
originates from metabolic disturbances with changes in 
the oxygen levels, glucose metabolism and depletion of 
energy metabolites including ATP, phosphocreatine, lac-
tate and  n -acetyl aspartate (NAA), among others. The 
concentration of these metabolites, which can be estimat-
ed using magnetic resonance spectroscopy, differs be-
tween the ischemic core and the penumbral tissue where 
the metabolite concentration decrease is less severe  [31]  
so the use of this imaging technique might be helpful to 
characterize the ischemic penumbra in individual pa-
tients. In fact, a differential elevation of intracellular lac-
tate in striatum and cortex has been found during 1 h of 
transient middle cerebral artery occlusion (MCAO) and 
after 1 h of reperfusion in rats, although a recurrent lac-
tate elevation was observed when the imaging was re-
peated at 24 and 72 h after reperfusion, probably as a 
result of delayed ischemic injury. NAA levels were not 
found to be a useful marker of penumbra in the acute 
phase of ischemia because NAA depletion was not de-
tected until at least 2 h after the onset of ischemia  [32] . 
In an experimental monkey transient MCAO model, ex-
tracellular glucose levels were demonstrated to be limited 
by the regional CBF whereas lactate concentration was 
more associated with the cerebral metabolic rate of oxy-
gen. Although near-zero levels of glucose during MCAO 
probably indicates near-complete stop of CBF, lactate 
concentration was found to be a better marker of irrevers-
ible ischemia than glucose concentration, so in situations 

with elevated lactate levels, glucose concentration might 
be helpful to differentiate between penumbra and severe 
ischemic tissue  [33] . 

 Glutamate levels are persistently lower in the zone of 
ischemic penumbra than in the core. The reduction in 
glutamate concentration in the penumbral zone might be 
the result of upregulation of the proteins that are respon-
sible for its transport from the intersynaptic space to the 
astrocytes  [34] . This mechanism may be promoted by a 
change in the phosphorylation of the presynaptic proteins 
in the zone of penumbra, which results in a failure in the 
presynaptic release of glutamate  [35] . A maintained ac-
tivity of the GABAergic system, probably counteracting 
the glutamate-induced excitotoxicity, has also been dem-
onstrated in the cortical penumbra  [36] . 

 The reduction in protein synthesis is one of the earliest 
and most sensitive metabolic consequences of cerebral 
ischemia  [37] . This effect, which appears with CBF re-
duction of only 50% and so is not the result of energy 
failure as ATP levels do not decrease until the CBF falls 
to 20%  [38] , may be reversible in the penumbral tissue 
but not in the ischemic core. CBF reduction seems to in-
terfere with ribosomal protein synthesis by inactivating 
the initiation factor 2 (elF2), the guanine nucleotide ex-
change factor (elF-2-GTP complex factor), and the eu-
karyotic elongation factor (eEF-2) whose phosphoryla-
tion is inhibited by the increased glutamate levels second-
ary to the ischemia  [35, 39] . 

 Synthesis of protein continues in those cells that sur-
vive the ischemic process. In fact, stress proteins such as 
heat shock protein 70 (HSP70) are upregulated as a result 
of protein denaturation secondary to ischemia  [40] . The 
increase in HSP70 represents an endogenous protective 
mechanism by attempting protein renaturation that oc-
curs in the penumbra but not in irreversibly injured cells 
because HSP70 mRNA is not expressed when ATP is de-
creased  [41] . This protective effect against cerebral isch-
emia has been demonstrated in transgenic mice overex-
pressing HSP70  [42] . The neuronal expression of HSP70 
can be interpreted as a molecularly defi ned penumbra of 
protein denaturation because HSP70-stained neurons ex-
tend beyond the zone of neuronal cell death  [43] . Other 
heat shock proteins such as HSP27,  �  � -crystallin ( � -BC) 
and heme oxygenase-1 (HO-1) are also induced after 
brain ischemia  [44–46] , presumably as a response to 
spreading depression. Whereas HSP27 and  � -BC are ex-
pressed mainly in astrocytes of the penumbral area  [44, 
45] , HO-1 is induced in vessels in the core of an infarct 
as well as in microglia, scattered neurons, and astrocytes 
at the edges of the infarction  [46] . After transient focal 
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cerebral ischemia in rodents,  � -BC transcript and protein 
were transiently upregulated in pyramidal neurons with-
in few hours after reperfusion, and this was followed by 
a gradual and sustained induction in reactive astrocytes 
localized in the penumbra for several days, suggesting 
that  � -BC induction may play an important role in the 
postischemic brain injury  [45] . The expression of HSP72 
mRNA has been found to be induced only in the penum-
bral cortex but not in the necrotic core or normal brain 
3 h after MCAO in mice  [47] . A correlation has been 
found between the region of HSP expression after perma-
nent MCAO in experimental models of cerebral ischemia 
and the penumbral area defi ned as a region of cerebral 
protein synthesis suppression associated with the preser-
vation of ATP levels  [48] . 

 Other proteins such as neuregulin-1 are also expressed 
in the ischemic penumbra. This protein blocks apoptosis, 
preventing infi ltration of macrophages and of microglia 
cells, as well as astrocyte activation, and interferes with 
the synthesis of some proinfl ammatory cytokines. Ad-
ministration of neuregulin-1 has been found to reduce 
infarct volume between 40 and 98% in an experimental 
model of focal ischemia  [49] . 

 Spreading depression seems also to be responsible for 
the expression of other molecules released as a result of 
the ischemic insult and whose expression is not limited 
just to the necrotic core. Cyclooxygenase-2 (COX-2) 
which metabolizes arachidonic acid to prostaglandins is 
expressed throughout the whole hemisphere after focal 
cerebral ischemia. In fact, COX-2 expression has been 
shown to be induced far beyond the region of ischemia in 
rodents  [50]  and in stroke patients  [51] . It has been found 
that COX-2 inhibitors decrease infarct volume in some 
experimental studies, an effect that seems to be related to 
inducible nitric oxide synthase-mediated injury  [52] . In-
terleukins including IL-1 and IL-6, as well as growth fac-
tors such as basic fi broblast growth factor and brain-de-
rived neurotrophic factor are also diffusely induced in the 
brain after ischemia, probably as a result of the spreading 
depression mechanism  [13] . Spreading-like depolariza-
tions have been shown to be blocked by the administra-
tion of NMDA receptor antagonists. However, in condi-
tions of moderate energy depletion, as it happens in the 
ischemic penumbra, NMDA receptor antagonists’ inhibi-
tion may not be suffi cient to block these depolarizations, 
an effect that seems to be related with the increased ex-
tracellular K +  concentrations in the penumbral tissue 
 [53] . 

 TNF- �  is induced in the core and in the region adja-
cent to the infarction in neurons, astrocytes, and endo-

thelial cells. TNF- �  has often been thought to mediate 
injury and apoptotic cell death, although more recent 
studies suggest that it can also be protective  [54, 55] . 
Stimulation of TNF- �  receptors leads to the activation of 
the nuclear factor- � B (NF- � B). NF- � B and TNF- �  might 
promote cell injury or cell protection depending upon the 
cells and the circumstances of their induction  [13]  
( fi g. 3 ). 

 Hypoxia inducible factor-1 (HIF-1) is a transcription 
factor expressed in response to hypoxia but not to inhib-
itors of mitochondrial respiration, which suggests that 
HIF-1 is activated by a molecular oxygen sensor  [56] . 
Both HIF-1t and HIF-1 mRNA are present in the normal 
brain but only HIF-1 mRNA is induced in the cingulated 
cortex adjacent to an infarct area after suture-induced 
MCAO in rats  [57] . Given that CBF is decreased in this 
region of HIF-1 expression outside the infarcted zone, it 
has been suggested that this region of HIF-1 expression 
after a stroke might be interpreted as the region of chron-
ic hypoxia around the region of infarction  [13] . HIF-1a 
and HSP70 expression is induced in the same penumbral 
areas, although HIF-1 is also expressed in more periph-
eral areas with presumably less severe hypoxia but persis-
tent CBF reduction, such as in the cingulated cortex 
where HSP70 is rarely induced  [57] . The role of HIF-1 
after acute cerebral ischemia is not clear, as both harmful 
and protective effects have been described depending on 
the model, timing, and mode of the HIF induction in the 
brain  [13] . 

 The chemokine stromal-derived factor-1 (SDF-1), also 
known as CXCL12, and its receptor, CXCR4, have been 
involved in the recruitment of bone marrow-derived cells 
to sites of ischemic injury in a mice stroke model. SDF-1 
is mainly upregulated and expressed for up to 30 days 
after MCAO in the penumbral area and at later time 
points in the ischemic core when new blood vessels are 
appearing. In fact, SDF-1 expression was mainly associ-
ated with reactive perivascular astrocytes, which suggest 
that SDF-1 may play a role in enhancing plasticity and 
recovery after ischemic injury  [58] . 

 Other proteins such as prostacyclin synthase (PGIS) 
are also mainly expressed in the ipsilateral penumbral 
area. This enzyme regulates the synthesis of prostacyclin 
(PGI 2 ) which is a potent vasodilator and an inhibitor of 
platelet aggregation and leukocyte activation. The over-
expression of PGIS by adenoviral gene transfer at 72 h 
before transient ischemia has been demonstrated to re-
duce infarct volume in an experimental rat focal cerebral 
ischemia-reperfusion model  [59] . 



 Castellanos   /Sobrino   /Castillo   

 

 Cerebrovasc Dis 2006;21(suppl 2):71–79 76

 Genetics of Molecular Penumbra 

 DNA microarray studies have in recent years identi-
fi ed a large number of genes that are either up- or down-
regulated after temporary MCAO in rats  [60] . As a gen-
eral pattern, DNA repair proteins decrease in cells ex-
pected to die in the core and are induced in cells 
immediately adjacent to the core that appear to survive 
the ischemia. Among them, the expression of early im-
mediate genes (EIG) such as c-fos and c-jun throughout 
regions of the nonischemic ipsilateral hemisphere has 
been shown to be induced as a result of MCAO in exper-
imental models of cerebral ischemia  [61] . In fact, it has 
been found that c-fos mRNA expression occurs in the 
penumbra and the normal cortex but not in the ischemic 
core  [47] . 

 Spreading depression seems to be related to the expres-
sion of EIG in the penumbral tissue as the administration 

of NMDA antagonists inhibits this response  [62] . More-
over, spreading depression secondary to cortical potas-
sium chloride application also stimulates the expression 
of EIG throughout the entire hemisphere  [63] . Other 
genes, including junB, Zac1 and pituitary adenylate cy-
clase-activating polypeptide (PACAP), nerve growth fac-
tor-induced (NGFI) A, B, and C, egr, Rheb, Arc and oth-
er EIGs, are also induced after focal cerebral ischemia, 
probably as a result of spreading depression or repeated 
ischemic depolarizations  [13] . The expression of Bcl-2 
and Bcl-xl, the anti-apoptotic genes, tends to be induced 
in cells that are immediately adjacent to an infarct and 
probably survive the ischemia. Moreover, Bcl-2 can be 
induced in the entire MCA territory with less severe de-
grees of ischemia  [64] . 

 The role of EIG and other genes whose expression is 
induced by ischemia has not been clearly elucidated, al-
though they may play a role in enhancing plasticity and 
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  Fig. 3.  TNF- �  and NF- � B may condition cell protection ( A ) or cell injury ( B ) depending on the type of the stim-
ulated receptor and the coexistence of other factors, such as the presence of raised concentrations of IL-6. 



 Molecular Identifi cation of Ischemic 
Penumbra 

 Cerebrovasc Dis 2006;21(suppl 2):71–79 77

behavioral recovery after ischemic damage  [13]  even in 
the contralateral hemisphere. In fact, the expression of 
some genes including c-fos and Arc has also been found 
to occur in the contralateral hemisphere after MCAO 
 [13] . 

  Figure 4  summarizes the genomic and proteomic ex-
pression in the ischemic penumbra. 

 Conclusions 

 As the target for therapeutic intervention after stroke 
is the penumbra, this potentially salvageable at-risk tissue 
must be present in order for therapeutic interventions to 
be effective. Although neuroimaging techniques might be 
useful for the visualization of ischemic penumbra, the 
cascade of molecular mechanisms at which the neuropro-
tective strategies are directed does not take place at the 
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same time in all patients and so it is reasonable to suppose 
that the length of the therapeutic window for the same 
neuroprotective drug will vary from one patient to an-
other. Multiple penumbras can be defi ned in molecular 
terms and multiple therapeutic windows might exist, de-
termined by the molecular events taking place at the mo-
ment the treatment has to be given. The enhancement of 
cytoprotective mechanisms and/or the blocking of cyto-
toxic mechanisms taking place within this tissue at risk 
of infarction should be considered as therapeutic molecu-
lar targets. Further studies are necessary in order to fi nd 
out whether these molecular targets can be used to im-
prove the neuronal tolerance to ischemia in the penum-
bral tissue, an effect that would also help to extend the 
reperfusion therapeutic window. 

  Fig. 4.  Genomic and proteomic expressions in ischemic penumbra. PACAP = Pituitary adenylate cyclase-activat-
ing polypeptide; NGFI = nerve growth factor-induced; NAA =  n -acetyl aspartate. 
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 Between 25 and 35% of patients who suffer an isch-
emic stroke experience further neurological deterioration 
in the following 48–72 h  [1–17] . The concept of progress-
ing stroke has seen many different interpretations since 
Millikan and Siekert  [18]  fi rst described it in 1955 with 
no temporal defi nition having been accepted as standard 
and without even agreement as to how it should be called 
 [19] . 

 The relevance of progressing stroke lies not only in the 
high prevalence of early neurological deterioration (END) 
but also in its association with worse outcome  [4, 5, 7, 10, 
12, 15, 20] . The fact that until now no treatment has been 
developed that is capable of preventing END or of reduc-
ing its impact when it occurs makes it essential that we 
further investigate the underlying mechanisms in the 
hope of being able to learn how to predict its occurrence 
accurately and so open the way to better handling of these 
cases. To do this, clinical trials with neuroprotective 
agents should widen their scope to include END as a sur-
rogate endpoint. 

 In spite of the variations in the defi nition of progress-
ing stroke, it seems clear that the time interval between 
stroke onset and the occurrence of progressing stroke al-
lows us to identify two distinctive patterns, early and late 
neurological deterioration, which have different patho-
physiological mechanisms and hence potentially require 
different therapeutic handling. Acute-phase reactants 

 Key Words 
 Progressing stroke  �  Early neurological deterioration  �  
Glutamate  �  Excitotoxicity  �  Acute ischemic stroke

  Abstract 
 The prevention and treatment of progressing stroke 
should be one of the main therapeutic targets of neuro-
protective therapies. Despite the high prevalence of pro-
gressing stroke in acute stroke (25–35%) and its impor-
tance as a predictor of poor outcome, no treatment 
capable of preventing early neurological deterioration 
(END) or of reducing its impact has yet been developed. 
It is essential that our understanding of END’s underly-
ing mechanisms be improved as it is currently not pos-
sible to predict its occurrence accurately. Published stud-
ies to date have been unable to identify a clinical profi le 
which reliably predicts those patients likely to suffer neu-
rological deterioration in the very early acute phase of 
ischemic stroke. In the following pages, we will discuss 
the present situation with regard to neurological worsen-
ing in general, paying special attention to END given the 
prognostic and therapeutic implications of this common 
condition. Factors associated with neurological deterio-
ration and the potential mechanisms, particularly exci-
totoxic theory, are discussed. 
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and hemodynamic, infl ammatory and molecular intrace-
rebral mechanisms are involved in END while in late 
neurological deterioration systemic factors such as infec-
tious diseases, metabolic disorders, bronchoaspiration, 
etc., seem more relevant. In this review we will focus on 
END as the potential target of neuroprotective thera-
pies. 

 END unfortunately is also a term without an agreed 
defi nition. About 50% of all clinical deterioration occurs 
in the fi rst 24 h after stroke onset outcome  [4, 6, 7, 9] . 
Somewhat arbitrarily, the most frequently used intervals 
to defi ne END have been either 48 or 72 h after onset – 
temporal windows in which patients should be managed 
in acute stroke units and where experimental treatments 
may have a signifi cant role in the handling. 

 An additional diffi culty in the identifi cation of END 
is that there is a lack of consensus as to when neurological 
worsening should be defi ned as progressive. The fact that 
the Canadian Stroke Scale (CSS) and NIH Stroke Scale 
(NIHSS) have been the two most widely used scales in 
published studies and that they have been shown to have 
a high predictive value of worse outcome, a reasonable 
defi nition might be to consider progression as a decrease 
of  6 1 point in the CSS and/or a decrease of  6 4 points 
in the NIHSS. 

 This prevalence of END and the defi nition given above 
have been found to be valid not only for cortical and sub-
cortical brain infarction but also for lacunar brain infarc-
tion  [15, 16] . 

 Although no defi nitive stroke scale has been agreed 
upon, the CSS and the NIHSS are both extremely useful 
scales. The CSS is a simple and validated stroke scale 
for END that may be used by paramedics, nursing 
staff and doctors in the emergency department. On the 
other hand, the NIHSS has the advantage of greater 
completeness and is widely used by neurologists both in 
stroke units and stroke trials and should perhaps be 
taken as the standard scale until further refi nement is 
achieved. 

 Predictors of Progressing Stroke 

 Since Britton and Roden’s  [4]  fi rst report in 1985 on 
patient outcome in non-selected hospitalized stroke pa-
tients, none of those clinical factors identifi ed as being 
associated with deterioration have managed to predict 
END accurately and those variables which have been 
identifi ed as predictors in some studies are often found 
not to coincide with the variables of others ( table 1 ). 

 As our knowledge of the mechanisms involved in 
stroke progression has advanced, promising results in 
both the experimental and clinical understanding of bio-
chemical markers involved in END have been achieved. 
This knowledge may well result in the development of 
new therapeutic strategies in the handling of acute isch-
emic stroke. 

 Biochemical markers of END may prove to be a prom-
ising tool for use in clinical trials and in daily clinical 
practice if confi rmation of the results described in this 
review is obtained. Furthermore, since END anticipates 
poor outcome in a high proportion of patients, it warrants 
use as an early surrogate endpoint in therapeutic trials 
( fi g. 1 ). 

 Main Predictors of END 

 It is not clear whether identifi ed systemic factors such 
as hyperthermia, high or low blood pressure, and high 
serum glucose levels are causes of END or are merely fac-
tors associated with the serious disease that they are suf-
fering from. 

 Blood Pressure 
 The role of blood pressure (BP) is controversial as high 

BP  [10]  and low BP  [6]  as well as a relevant drop in BP 
 [13]  have been found to be related to progressing stroke 
in some studies whereas other studies have failed to iden-
tify BP as a predictor of END  [6, 8] . As suggested by Cas-
tillo et al.  [13] , these opposite fi ndings may be partially 
explained by a U-shaped relationship between BP levels 
and outcome measures, being the fall in BP during the 
fi rst day after admission are detrimental for patients with 
acute ischemic stroke. In analyzing results of the ECASS-
I study, Dávalos et al.  [8]  found that whilst 37.5% of pa-
tients experienced deterioration within the fi rst 24 h after 
inclusion, neither SBP or DBP at entry, nor changes in 
SBP within the fi rst 24 h, were associated with END. 
These results suggest that high SBP does not contribute 
to END in patients in whom signifi cant changes in BP 
during the acute phase are avoided. These results suggest 
that other factors must be involved in END. 

 Glycemia and Poor Collateral Blood Flow 
 Although some studies have identifi ed hyperglycemia 

as a predictor of neurological worsening  [7, 10] , when ad-
justed in the ECASS-I study for the concomitant history 
of diabetes, initial serum glucose levels were not found to 
be a predictor of progressing stroke but rather the diabe-
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Table 1. Predictors of END at admission

Study (fi rst author) Time from 
stroke onset to 
admission, h

Defi nition
of END, h

Independent predictors of END

Britton, 1985 [4] No predictors were found

Dávalos, 1990 [10]  <8 <48 High blood pressure
High blood glucose level
Carotid territory involvement

Dávalos, 1997 [8]  <8 <24 Fibrinogen
High body temperature

Dávalos, 1999 [14]  <6 <24 Focal hypo- and hyperdensity of MCA on baseline CT
Longer delay until treatment (rtPA)
History of coronary heart disease
History of diabetes

Jorgensen, 1994 [6] – <36 History of diabetes
Lower blood pressure
Stroke severity at admission (predict LND 636 h)

Toni, 1995 [7]  <5 <48 High blood glucose level
Early focal hypodensity on CT with cortical and subcortical locations
Carotid siphon occlusion on angiography

Toni, 1998 [11] Abnormal TCD (asymmetry plus no-fl ow)

Castillo, 1997 [22] <24 <48 Plasma glutamate >200 �mol/l
CSF glutamate >8.2 �mol/l

Yamamoto, 1998 [12] – – Stroke subtype
Age <65 years
Hypertension
Lesion outside the superfi cial anterior circulation
No transient ischemic attack
Reduced level of consciousness

Nakamura, 1999 [20] <24 <48 Diabetes mellitus
Severity of motor defi cit on admission

Castillo, 2000 [21] <24 <48 Nitric oxide metabolite concentrations >5.0 �mol/ml in CSF

Dávalos, 2000 [23] <24 <48 Plasma and CSF ferritin concentrations

Serena, 2001 [15] <24 <48 Plasma glutamate >200 �mol/l
GABA concentration <240 nmol/l
Blood glucose levels at 24 and 48 h after admission
Basal ganglia topography of lacunar infarction

Castellanos, 2002 [16] <24 <48 TNF-� >14 pg/ml
ICAM-1 >208 pg/ml
History of hypertension

Leira, 2002 [17] <24 <48 Headache at stroke onset

Vila, 2003 [49] <24 <48 IL-6 >21.5 pg/ml in plasma
IL-6 >6.3 pg/ml in CSF
Temperature at admission
Serum glucose at admission
Admission CSS score
Early infarct signs on brain CT scan

Álvarez, 2004 [31] <24 <72 History of arterial hypertension
Cerebrovascular reactivity (CO2 inhalation) impairment within the fi rst 24 h

Castillo, 2004 [13] <24 <48 Fall in SBP >20 mm Hg during the fi rst day
Both high and low SBP or DBP within fi rst 24 h of stroke onset

Blanco, 2005 [50] <24 <48 Neuroprotective effect of increased plasma 15-dPGJ2 (PPAR-� agonists)
in atherothrombotic stroke
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tes itself  [14] . Diabetic microangiopathy leading to chron-
ic impairment of cerebral autoregulation and insuffi cient 
cerebral perfusion pressure might partly explain this fi nd-
ing. Moreover, diabetic microangiopathy could be re-
sponsible for an inadequate collateral blood supply after 
arterial occlusion which aggravates cellular damage due 
to the enhancement of brain edema and free radical dam-
age  [24, 25] . This mechanism involving poor collateral 
blood supply is also supported by the fact that coronary 
artery disease, which is a marker of severe extra- or intra-
cranial atherosclerotic disease  [26] , was a predictor of 
END in this study ( table 1 ). 

 Hyperthermia 
 Hyperthermia aggravates neuronal damage and has 

been described as an independent predictor of END  [8, 
40, 49] . This factor probably aggravates cerebral injury 
in the penumbral area through intracerebral mechanisms 
such as excitotoxicity, which is probably the main cause 
of neurological worsening. This hypothesis is supported 
by the results of Castillo et al.  [22]  showing that the ap-
parent effect of body temperature on progression almost 
disappeared when the effect of glutamate is included in 
the multivariate analysis. 

 CT Findings at Admission 
 Given that early hypodensity and other CT fi ndings 

have been identifi ed as predictors   of early deterioration 

 [6, 7, 14] , a CT scan performed shortly after stroke onset 
might be considered to be a useful tool in predicting pro-
gression. However, and as with other clinical predictors, 
the positive predictive value of this variable is unsatisfac-
tory; 38% in the case of hypodensity. 

 Mechanisms of END 

 The mechanisms of END have not been completely 
elucidated. Hemodynamic factors, development of brain 
edema, stroke recurrence or biochemical mechanisms 
have been proposed as potential mechanisms. 

 Hemodynamic Factors in END 
 It has been suggested that hemodynamic factors may 

be one of the main mechanisms in clinical neurological 
deterioration. According to this hypothesis, failure of the 
collateral blood fl ow could provoke END due to insuffi -
cient brain perfusion after an acute proximal arterial oc-
clusion. The risk of this occurring would be especially 
present where the basal situation is not optimal due to the 
existence of macro- or microvascular diseases such as the 
previously mentioned diabetes mellitus or coronary arte-
rial disease. 

 Hemodynamic factors such as mean middle cerebral 
artery blood fl ow velocity, measured by transcranial Dop-
pler, cerebral blood fl ow, determined either by positron 

  Fig. 1.  Poor outcome in patients suffering 
from END in comparison with non-END. 
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emission tomography or by single photon emission com-
puted tomography, and cerebrovascular reactivity (CVR) 
have been related to the fi nal infarct volume and long-
term outcome  [27–29] . Furthermore, the analysis of fl ow 
patency by TCD has recently been evaluated in detail and 
validated in acute cerebral ischemia with the fi nding that 
MCA recanalization is the main predictor of good out-
come  [11, 30] . In spite of these numerous studies, only 
two have focused on the infl uence of hemodynamic fac-
tors in progressing stroke  [11, 31] . The high relevance of 
collateral blood fl ow supply in this setting was demon-
strated in an angiographic study by Toni et al.  [11] , who 
found that the presence of collaterals was an independent 
predictor of early improvement whereas the absence of 
collateral blood supply was an independent predictor of 
END. However, this pathogenetic mechanism only man-
ages to predict deterioration in 46% of patients. 

 CVR estimates the additional cerebral blood fl ow that 
can reach the distal territory of a brain artery when re-
quired. This parameter depends particularly on the pres-
ence of a proximal vessel stenosis, effective collateral cir-
culation, and blood viscosity  [27] . In patients with ca-
rotid artery stenosis, below normal values of CVR is an 
indication of the loss of autoregulation and the failure of 
collateral circulation and, hence, supposes an increased 
risk of stroke  [32] . It has recently been found that when 
CVR values are below normal within 24 h of stroke onset 
there is an approximately eightfold increase in the likeli-
hood of subsequent END  [31] . Impaired CVR at stroke 
onset probably indicates that the vasodilator compensa-
tory mechanisms are exhausted and, as a consequence, 
that there is a high risk of recruitment of the oligemic 
ischemic tissue into the infarcted area. In contrast, nor-
mal CVR may suggest that recanalization has taken place 
or that suffi cient collateral blood fl ow is preventing the 
growth of the infarcted area. However, although we found 
that when CHR was normal 93% of patients remained 
stable or improved (negative predictive value), its posi-
tive predictive value for END was only 38%. It therefore 
seems clear that a further mechanism must be involved 
in patients who suffer END. 

 Brain Edema 
 Although brain edema plays a role in late neurological 

deterioration and especially in END  [14] , its relevance 
has probably being overestimated. It has been hypothe-
sized that arterial occlusion with an insuffi cient collat-
eral blood supply leads to early brain edema, which is 
ultimately responsible for END  [7] . However, brain ede-
ma as the cause of neurological deterioration only ac-

counts for a small proportion of END and event in those 
with massive MCA infarction neurological deterioration 
seems to be associated with intracerebral molecular 
mechanisms rather than brain edema itself  [33] . In a re-
cently published study, our group found that 18% of 
stroke patients suffered a massive MCA infarction but 
that only about half of these suffered malignant MCA 
with neurological deterioration due to brain edema. Of 
the remaining patients suffering massive MCA infarc-
tion, we found that 26% deteriorated in spite of non-sig-
nifi cant brain edema suggesting that other mechanisms 
of END must be involved. In this same study it was found 
that c-Fn, a marker of blood-brain barrier disruption, 
was a highly sensitive and specifi c predictor of brain ede-
ma in acute ischemic stroke. In analyzing EAAs and in-
fl ammatory molecules, we confi rmed their previously re-
ported association with END, increased infarct volume, 
and poor outcome but not with brain edema infarction 
 [33] . 

 Excitotoxic Theory 
 Despite the importance of early clinical course on 

stroke outcome, published studies have not identifi ed a 
clinical profi le which is able to reliably predict those pa-
tients likely to suffer neurological deterioration in the 
very early acute phase of ischemic stroke. Older and 
younger patients, history of diabetes and arterial hyper-
tension, stroke severity, hyperglycemia within the fi rst 2 
days after admission, and larger infarct volume amongst 
other factors have been associated with progressing stroke 
(see  table 1 ). However, the ability to predict progression 
based on these clinical factors has been estimated at less 
than 60%. A different approach that has been receiving 
increasing attention is the analysis of potential molecular 
mechanisms of END. Excitatory amino acids, specifi cal-
ly glutamate, have been found to participate in the patho-
physiology of cerebral ischemia  [37, 38]  and to be power-
ful predictors of END. Glutamate is found correctly to 
predict 86–95% of cases that will suffer END in the fol-
lowing hours and when adjusted in a multivariate analy-
sis for concomitant predictors of stroke progression it still 
remains as the main independent predictor of END  [15, 
22, 39, 40] . 

 Glutamate is released in high concentrations by the 
presynaptic neurons in the core of the cerebral infarction 
and the penumbral cortex and leads to the prolonged and 
intense activation of specifi c receptors which in turn re-
sults in a massive infl ux of calcium that activates a variety 
of catabolic processes subsequently producing cell death 
 [41, 43] . 
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 The release of glutamate is the fi rst stage in a cascade 
of molecular reactions that act in a sequential manner 
provoking the delayed death of those cells that are both 
adjacent to and distant from the area of the infarction. 
These reactions include the generation of nitric oxide and 
the activation of various proteases that participate in the 
infl ammatory and cytotoxic mechanism leading to neu-
ronal death so increasing the initial infarct area. 

 The importance of glutamate in the physiopathology 
of tissular necrosis has been demonstrated in different 
experimental models of focal cerebral ischemia. In 1996, 
we found high concentrations of glutamate in the CSF 
and plasma of stroke patients with  ! 24 h of onset  [44, 45] . 
Plasma glutamate concentrations of  1 200  � mol/l within 
the fi rst 24 h of stroke onset were found to have a 97% 
positive predictive value for the subsequent progression 
of cortical, subcortical and lacunar ischemic strokes in-
dependently of the infarct volume and stroke severity at 
admission  [22] . Plasma glutamate levels in CSF remained 
abnormally high for at least 24 h in those patients who 
suffered END whereas they returned to normal levels in 
 ! 6 h in patents who did not suffer from progressing stroke 
 [39] . Recently, in a study focused on patients with hemi-
spheric stroke of  ! 12 h evolution, we again found higher 
concentrations of glutamate in patients with END and 
that glutamate levels mediate DWI lesion growth in these 
patients  [45] . Beyond the penumbral area, tissue is still at 
risk and there is a high correlation between baseline and 
24 h glutamate levels and the volume of the peripenum-
bral area which subsequently becomes infracted  [46] . It 
should be noted that only 30% of patients with peripen-
umbral infarction had mismatch at admission, so neuro-
protective therapies with glutamate antagonists could 
well be useful in limiting DWI lesion growth even in those 
cases without initial DWI/PWI mismatch. 

 The extracellular accumulation of glutamate in the ce-
rebral tissue is not directly related to the initial magnitude 
of the ischemic tissue suggesting the hypothesis of indi-
vidual susceptibility to excitotoxic damage. Although 
GABA neurotransmission, which results in increased 
chloride fl ow across the postsynaptic membrane and hy-
perpolarization, partially counterbalances the toxic ef-
fects of glutamate during ischemia, the main neurotoxic 
effect is due to the total extracellular accumulation of glu-
tamate that is essentially due to a disorder in the system 
of uptake by the neurons and especially by the glia cells 
 [47] . The Na + -dependent carriers of excitatory amino ac-
ids capture this extracellular glutamate and maintain con-
centrations below excitotoxic levels. During ischemia 
these carriers, fi ve of which are currently known, lose 

their normal function and the concentrations of gluta-
mate reach excitotoxic levels. Immunohistochemical 
studies have revealed that two of these carriers, EAAT1 
and EAAT2, are located in the astrocytes and that EAAT2 
is responsible for the uptake of more than 90% of the glu-
tamate in the adult brain. 

 Our group has recently described a new functional 
polymorphism in the EAAT2 gene promoter associated 
to higher concentrations of plasmatic glutamate and 
greater neurological deterioration in stroke patients. This 
polymorphism alters the functioning of the carriers and 
contributes to an imbalance between the release and the 
uptake of glutamate with the corresponding excitotoxic 
damage in situations of stroke but not of normal fl ow. In 
studies performed with astrocyte cultures, we have found 
that the basal activity of the mutated promoter was 30% 
less than the wild-type promoter. 

 Infl ammation and END 
 Several studies support the hypothesis that infl amma-

tion may also play an important role in progressing stroke 
 [16, 49] . An independent association of high levels of in-
fl ammatory molecules in blood with END and poor out-
come has been observed in both territorial  [49]  and lacu-
nar infarctions  [16] . 

 Increased levels of cytokines such as interleukin (IL)-1, 
tumor necrosis factor- �  (TNF- � ), and IL-6, as well as ad-
hesion molecules such as ICAM-1, have been observed in 
the peripheral blood and CSF of ischemic stroke patients. 
Several facts support the idea that plasma levels of IL-6, 
TNF- � , and ICAM-1 within the fi rst 24 h of acute stroke 
refl ect the total release of these molecules in the ischemic 
brain tissue rather than an acute-phase reaction or a sys-
temic cause. 

 Cytokines have been found to be involved in several 
mechanisms that may potentiate ischemic brain injury 
including the release of the inducible form of nitric oxide 
synthase by astrocytes; the promotion of a local proco-
agulant state, and the regulation of apoptotic programmes. 
TNF- �  promotes the expression of adhesion molecules 
such as ICAM-1 on the endothelium, facilitating leuko-
cyte adherence and migration from capillaries into the 
brain, microvessel occlusion, and, subsequently, a pro-
gressive reduction in blood fl ow. In these studies infl am-
matory molecules contributed to END after adjustment 
for glutamate and GABA concentrations in blood. The 
results suggest that infl ammation in END may not just 
have an excitotoxic role. A signifi cant correlation has 
been found between glutamate and GABA concentra-
tions with infl ammatory markers in blood and it is likely 
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that infl ammatory and excitatory mechanisms cooperate 
in the progression of stroke in a sequential and interact-
ing process  [42, 43]  ( fi g. 2 ). 

 There are few results with regard to the therapeutic 
implications for END. We have found that aspirin has a 
neuroprotective effect inhibiting glutamate release after 
a period of oxygen-glucose deprivation in both in vitro 
models and a rat model of permanent focal cerebral isch-
emia  [34] . In acute stroke patients we have found that 
prior treatment with aspirin prevents END  [35] , an effect 
that has been described in series with lacunar infarction 
 [15]  as well as the patients included in the NINDS rtPA 
trial  [36] . Our results suggest that this effect is not due to 
changes in the acute-phase response but rather to low glu-
tamate concentrations. Other mechanisms also seem to 
participate given that after adjustment for glutamate the 
odds ratio of END for aspirin did not signifi cantly change. 
Blanco et al.  [50]  have recently reported that increased 
plasma 15-dPGJ 2 , a PPAR- �  agonists, is associated with 
good early and late neurological outcome and smaller in-
farct volume in atherothrombotic ischemic stroke, sug-
gesting a neuroprotective role for 15-dPGJ2 probably re-
sulting from the inhibition of the infl ammatory cascade 
triggered by the ischemic event. This study provides the 
fi rst evidence of the potential neuroprotective value of 
15-dPGJ2, or other PPAR- �  ligands, in acute ischemic 
stroke. 

 In conclusion, the current state of our knowledge about 
END is that we are dealing with a multifactorial event 
which is only partially predictable by the clinical, labora-
tory, and imaging data that is used in our ordinary prac-
tice. Hence, we need to advance in the search for bio-
chemical markers and for new neuroimaging tags of 
stroke progression. 

 Although the spread of the infarcted area due to hemo-
dynamic factors after a proximal artery occlusion has 
been considered as being the main cause of END, the 
present pathophysiological knowledge of acute ischemic 
stroke suggests that the enlargement of cytotoxic edema 
as shown by diffusion-weighted MRI, and subsequent 
neurological worsening, might rather be due to a delayed 
propagation of neuronal death mediated by multiple mo-
lecular and cellular mechanisms such as excitotoxicity, 
free radicals and NO generation, infl ammation and apo-
ptosis. 

 The treatment of ischemic stroke must be aimed at 
correcting not only hemodynamic changes but also at lim-
iting cellular changes and their consequences by blocking 
the infl ammatory process and the neurotoxicity of excit-
atory amino acids, which are the main mechanisms of 
neurological deterioration. 

 Infl ammation and neurotoxicity play a central role in 
ischemic stroke and in the mechanisms of neurological 
deterioration. It seems reasonable to focus therapeutic 

  Fig. 2.  x axis: the evolution of the cascades 
over time; y axis: the impact of each ele-
ment of the destructive (top) and protective 
(bottom) cascades on fi nal outcome; con-
tinuous line: major pathophysiological enti-
ties of tissue destruction in stroke (grouped 
by the acute mechanisms of excitotoxicity 
and the delayed mechanisms of infl amma-
tion and apoptosis); broken line: the corre-
sponding protective tissue responses. Re-
produced with the kind permission of Dr. 
Dirnagl  [43] . 
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intervention with neuroprotective agents on decreasing 
the neurotoxic effect of excitatory amino acids, particu-
larly of glutamate, of proinfl ammatory cytokines and of 
cell adhesion molecules. The pharmacokinetics of these 
molecular mechanisms suggest that neuroprotective 
agents may be administered early and continuously for a 
period of at least 24 h. Recent fi ndings about stroke sus-

ceptibility due to the presence of polymorphisms in the 
promoter region of the EAAT-2 gene, which is associated 
with higher glutamate plasma levels and END, opens up 
the possibility of using pharmacogenetics in future clini-
cal trials with drugs that interfere with the excitotoxic 
pathway as a step towards the development of individu-
alized treatment of patients with stroke. 
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 Introduction 

 Ischemic stroke is a dynamic process, where a series of 
excitotoxic, infl ammatory and microvascular mecha-
nisms take place that lead to tissue necrosis. Recanaliza-
tion with rt-PA is the only type of treatment with proven 
effi cacy during the fi rst 3 h. Attempts to prolong over time 
the effi cacy of this treatment have not until now proved 
fruitful. Meanwhile, a large group of drugs with neuro-
protective properties, and which have been shown to be 
effective in experimental models of ischemia, have not 
been proven to be effective in man  [1] . Treatment with 
oral citicoline within the fi rst 24 h after onset in patients 
with moderate to severe stroke has shown to increase the 
probability of complete recovery at 3 months  [2] . Treat-
ment with a free radical scavenger NXY-059 within 4.5 h 
showed improved outcome in a large phase III trial  [3] . 
Methodological diffi culties in patient selection and in the 
fi nal objectives of studies have been used to justify differ-
ences in effi cacy between results obtained in experimen-
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  Abstract 
 Acute stroke should be considered a medical emergency, 
where actions taken in the fi rst hours are fundamental for 
achieving recovery of the damaged cerebral tissue and a 
better prognosis for the patient. Recanalization and neu-
roprotective treatment has been used with mixed results. 
The effectiveness observed in the fi rst hours with throm-
bolytic drug treatment is only applicable to a small per-
centage of patients, and attempts to widen this treatment 
window have not yet proved fruitful. Pharmacological 
neuroprotective treatment has not yet demonstrated the 
clinical effectiveness observed in experimental models. 
The concept of neuroprotection in cerebral ischemia also 
involves a series of mechanisms that take place at the 
cerebral level following vascular occlusion. In this con-
text, it should be borne in mind that a series of physio-
logical functions usually involved in the cerebral metab-
olism (control of blood pressure, of temperature, of 
glycemia and of arterial oxygen saturation) play a key role 
in modulation of the ischemic process. Changes in the 
control of these mechanisms may aggravate the process 
of cerebral damage in the fi rst hours of ischemic stroke. 
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tal models and in clinical trials. From improved knowl-
edge of the physiopathology of cerebral ischemia, and 
supported by the results obtained in clinical trials, it has 
been observed that fl uctuations in a series of biological 
parameters, such as blood pressure (BP), temperature, 
glycemia, and tissue oxygenation, exercise a marked in-
fl uence on the ischemic process. Protocolized care of pa-
tients with ischemic stroke, which is favored by controlled 
clinical trials and by the development of stroke units, has 
clearly demonstrated the effect of these parameters on 
stroke evolution. Progression in the improvement ob-
served in the placebo group in the three main studies with 
rt-PA  [4–6]  suggests that protocolized care improves the 
evolution of the patient ( fi g. 1 ), while studies conducted 
to demonstrate the effectiveness and effi ciency of stroke 
units also provide support for the positive effect on evo-
lution of protocolized care with control of various param-
eters. 

 A meta-analysis by the Stroke Unit Trialist’s Collabo-
ration  [7]  showed that stroke unit care was associated 
with a reduction in the odds of death recorded at fi nal 
follow-up (median 1 year; odds ratio 0.83; 95% CI 0.71–
0.97). The odds of death or institutionalized care were 
lower (0.76; 95% CI 0.65–0.90), as were death or depen-
dency at fi nal review (odds ratio 0.75; 95% CI 0.65–0.87). 
Subgroup analyses showed that the observed benefi ts 
were independent of patient age, sex, stroke severity, and 
type of stroke unit organization. 

 This paper emphasizes four physiological measures 
that can be taken to mitigate ischemic brain damage: 
(1) control of body temperature, (2) control of glycemia, 
(3) control of the BP, and (4) control of arterial oxygen 
saturation. 

 Control of Body Temperature 

 A relationship between hyperthermia and ischemic 
stroke has not been completely demonstrated and raises 
questions that have yet to be resolved. In experimental 
models of ischemia, it has been demonstrated that hypo-
thermia reduces cerebral damage following cerebral ar-
tery occlusion  [8–11] . In this situation, the effectiveness 
of hypothermia appears to be related to early administra-
tion (in the fi rst 2 h)  [12]  and extended duration of the 
same ( 1 24 h)  [13] . Hyperthermia originating after isch-
emia induced experimentally in animals produces great-
er cerebral damage  [14–16] . The detrimental effect of 
hyperthermia on the outcome and neuropathological 
consequences of cerebral ischemia in experimental ani-
mals was also shown in a study demonstrating that hy-
perthermia increases mortality rate and the severity of 
histopathological damage in comparison with normo-
thermia  [17] . 

 Although experimental studies suggest that hypother-
mia reduces neuronal damage, acting in various steps of 
the ischemic cascade, the neuroprotective mechanism of 
hypothermia has not been determined  [18] . Hypothermia 
seems to counteract ischemic brain damage by several 
mechanisms: prevention of the blood-brain barrier dis-
ruption that happens soon after ischemic onset that al-
lows edema formation from extravasation  [19] ; diminish-
ing of oxygen-based free radical production that results 
from activation of microglia and other cell types  [20] ; re-
duction of the excitotoxic-neurotransmitter release that 
overstimulates neighboring neurons  [21, 22] ; lowering of 
metabolic rate and subsequent energy depletion  [23] , and 
anti-infl ammatory action  [24] . Hyperthermia is thought 

0

5

10

15

20

25

30

35

40

50

0

5

10

15

20

25

30 rt-PA

Placebo

ECASS NINDS ECASS-II ECASS NINDS ECASS-II

E
ff

ic
ac

y:
 r

an
ki

n
 0

.1
 (

%
)

M
o

rt
al

it
y:

h
em

o
rr

h
ag

ic
 c

o
m

p
lic

at
io

n
s 

(%
)

  Fig. 1.  Results of the clinical trials with rt-
PA: progression in the improvement ob-
served in the placebo group in the three 
main studies. 
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to be an important event accentuating biochemical and 
infl ammatory ischemic mechanisms within the ischemic 
penumbra, and thus contributing to progression of the 
infarct brain  [18] . 

 Numerous studies have been performed to investigate 
the issue of whether body temperature in stroke patients 
may be related to the extent of ischemic brain damage or 
to outcome, measured by stroke severity and poststroke 
mortality. These studies show a relationship between in-
creased body temperature in stroke patients and greater 
brain infarct size or poorer stroke outcome  [25–34] . A 
meta-analysis that includes a total of 3,790 patients dem-
onstrates clearly that there is greater morbidity and mor-
tality in patients with cerebral infarct and hyperthermia 
than in those without hyperthermia  [35] . 

 There are, however, discrepancies of interpretation 
concerning the origin and signifi cance of hyperthemia 
in the acute phase of ischemic stroke. The moment of 
appearance of hyperthermia appears to be important: it 
appears that only hyperthermia that presents in the fi rst 
24 h is associated independently with greater infarct vol-
ume and with worse prognosis  [31] , as well as with great-
er mortality  [36] . However, hyperthermia within the 
fi rst 72 h of stroke may also predict poor outcome and 
is related to signifi cantly increase poststroke mortality 
 [27] . 

 Another important aspect of the relationship between 
temperature and cerebral infarction concerns the patho-
genesis of hyperthermia. A meta-analysis  [35]  considers 
that hyperthermia is a prognostic factor independent of 
poor evolution, while Boysen and Christensen  [37]  sug-
gest that hyperthermia is determined by the severity of 
the ischemic stroke. A study showed that a rise in body 
temperature occurring in ischemic stroke patients with-
in hours after onset was related to major, but not mild 
to moderate stroke, indicating that clinically measurable 
early poststroke hyperthermia might be a result of brain 
infarct itself. The infl uence of temperature on outcome 
observed in experimental models of ischemic stroke has 
not been proven in patients with stroke, and further 
studies are needed. Given that poststroke hyperthermia 
is associated with cerebral ischemia mechanisms related 
to brain infarct development within the ischemic core 
and the penumbra, it would be safe to say that hyper-
thermia following ischemic stroke seems to be an event 
both induced and inducing brain infarct progression 
 [18] . 

 Patients with acute stroke are exposed to superim-
posed infections (pulmonary and urinary). These infec-
tions may be an important peripheral cause of hyperther-

mia following stroke. The results obtained by Reith et al. 
 [29]  and Castillo et al.  [31]  may be suggestive of superim-
posed infection-induced hyperthermia not infl uencing 
stroke outcome; however it has been suggested that ad-
verse prognosis in hyperthermic stroke patients may be 
associated with infective complications. 

 Although antipyretics are widely recommended for the 
treatment of hyperthermia (the European Stroke Initia-
tive guideline recommends that the lowering of body tem-
perature should be considered when it is  1 37.5   °   C), there 
is no evidence in regard to their temperature-lowering ef-
fect or to their infl uence on outcome in stroke. 

 However, despite the evidence that temperatures of 
37.5   °   C worsen the outcome in acute stroke patients, the 
effect of antipyretics in stroke through the prevention of 
hyperthermia is also poorly studied. Therapeutic ap-
proaches with antipyretics such as paracetamol have only 
shown effi cacy in reduction of body temperature  [38] , but 
no effect on the neurological, functional or prognostic 
status of the patients  [39, 40] . Because of the small num-
bers of patients recruited into these studies, no conclu-
sions on the use of antipyretics in acute stroke can be 
drawn. Until results from randomized clinical trials are 
available, the administration of antipyretics is recom-
mended in all acute stroke patients with body tempera-
ture  1 37.5   °   C, in addition to rapid diagnosis and treat-
ment of possible infections. 

 Hypothermia as a treatment in acute stroke is still ex-
perimental, and evidence of its effi cacy is lacking. In sev-
eral studies, patients with acute stroke have received hy-
pothermic therapy for neuroprotection  [41–46] . These 
studies are small and heterogeneous in most of variables 
that might determine the effect of cooling in stroke, such 
as time after symptom onset that therapy was started, 
target temperature, and duration of hypothermia. The 
target temperature was 32–33   °   C in most of them, the 
therapeutic window was 3–8 h, and the duration of hypo-
thermia varied from 6 h to several days. 

 Feasibility and safety are far from established and se-
rious side effects such as hypotension, cardiac arrhyth-
mia, and pneumonia are commonly reported, especially 
in anesthetized patients with temperatures of 32–33   °   C 
 [18] . There is currently no evidence from randomized tri-
als to support the routine use of chemical or physical cool-
ing therapy in acute stroke  [47] . Nevertheless, since ex-
perimental studies have shown a neuroprotective effect 
of hypothermia in cerebral ischemia, further trials with 
cooling therapy in acute stroke are warranted. 
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 Control of Glycemia 

 Elevated blood glucose is common in the early phase 
of stroke. The prevalence of hyperglycemia, defi ned as 
blood glucose level  1 6.0 nmol/l (108 mg/dl), has been ob-
served in two thirds of all ischemic stroke subtypes on 
admission and in at least 50% in each subtype including 
lacunar strokes  [48] . It has been stated that the presence 
of hyperglycemia during the acute phase of stroke is a re-
fl ection of a pre-existent and unknown diabetes mellitus. 
Studies to determine glycosylated hemoglobin and/or 
fructosamine have been carried out, showing the exis-
tence of a previous and unknown diabetes mellitus in 
5.5–11.4% of patients admitted with acute stroke  [49, 
50] . 

 Multiple mechanisms contribute to the detrimental ef-
fect of acute hyperglycemia. Animal models of focal ce-
rebral ischemia suggest that type of vessel occlusion, pres-
ence of collateral blood fl ow, and occurrence of reperfu-
sion are relevant and that hyperglycemia may infl uence 
neuronal damage through accentuated tissue acidosis and 
lactate generation  [51, 52] . Moderately and severely in-
creased blood glucose has been found to further deterio-
rate the metabolic state and mitochondrial function in 
the area of ischemic penumbra  [53] . The blood-brain bar-
rier is vulnerable to hyperglycemia, presumably through 
the liberation of lactic acid and free radicals  [54] . In a 
model of middle cerebral artery occlusion, a fi vefold in-
crease in hemorrhagic infarct was observed in hypergly-
cemic cats compared with the normoglycemic animals 
 [55] . Relative insulin defi ciency liberates circulating free 
fatty acids, which, together with hyperglycemia, dimin-
ishes vascular reactivity  [56] . Experimental studies have 
shown that the administration of insulin and glucose at 
the time of a focal cerebral ischemia may reduce the size 
of the cerebral infarction  [57] . 

 Hyperglycemia is associated with a worse stroke out-
come  [49, 58, 59] . There is, however, considerable debate 
about whether a causal relationship exists between hyper-
glycemia and stroke prognosis. Both prospective and 
case-control studies have concluded that hyperglycemia 
is a predictor of outcome and mortality independently of 
age, stroke subtype, and severity  [49, 58–60] . A meta-
analysis of 33 studies  [61]  suggests that the relative risk 
of death in hyperglycemic non-diabetic stroke patients is 
increased by 3.3 (95% CI 2.3–4.6), with a non-signifi cant 
trend in hemorrhagic stroke in non-diabetics and no prog-
nostic effect on the outcome in diabetic patients. Acute 
hyperglycemia also increased the risk of a poor function-
al recovery in non-diabetic stroke survivors with a rela-

tive risk of 1.4. Other studies have not found hyperglyce-
mia to be an independent predictor of stroke outcome 
and have suggested that hyperglycemia simply refl ects a 
catecholamine-based stress response to a more severe 
stroke  [62–64] . 

 The majority of the studies have used a single time-
point measure of blood glucose to defi ne glycemic control. 
However, animal models of focal ischemic stroke suggest 
that persistent elevation of blood glucose through the pe-
riod during which the ischemic penumbra develops may 
yield a more robust measure of the infl uence of hypergly-
cemia on infarct evolution  [55] . A retrospective study 
found an increase in the blood glucose levels in the fi rst 
12 h after stroke, which was greater in the more severe 
cases, and was related with early mortality, although not 
with outcome at 3 months  [65] . However, it has been ob-
served in a recent prospective study that blood glucose 
levels fall spontaneously in the fi rst 24 h after stroke  [65] . 
In any case, it is important to emphasize that the persis-
tence of hyperglycemia in the fi rst 7 days after stroke was 
related to a larger fi nal infarct volume and with worse 
progression  [66] . High blood glucose at the time of re-
canalization of the occluded brain artery was associated 
with poor outcome  [67] . 

 Although results from controlled clinical trials assess-
ing insulin therapy in patients with stroke are still lacking, 
the data presented from animal studies and clinical ob-
servational studies support the need for avoiding early 
hyperglycemia in patients with non-lacunar stroke and 
global ischemia  [68] . Until further data are available, 
it is diffi cult to defi ne the optimal glucose concentration. 
The level of target glucose concentrations is not the 
same for the different current target values in the pub-
lished guidelines: EUSI:  ! 10 nmol/l, ASA:  ! 300 mg/dl = 
16.63 nmol/l  [69] . Intensive treatment with insulin for 
maintaining glucose levels between 4 and 6 mmol/l in 
critical patients (of which 18% presented neurological 
disease) has been shown to be safe and to signifi cantly 
reduce mortality and in-hospital complications  [70] . The 
GIST demonstrates the safety of administering a glucose-
potassium-insulin infusion in acute phase stroke patients 
with the aim of keeping glucose levels between 72 and 
126 mg/dl (4 and 7 nmol/l)  [71] . However, until further 
results prove the effectiveness of this approach, it cannot 
be regarded as standard practice. In some treatment 
guidelines for stroke, the level of glycemia beyond which 
the initiation of treatment with insulin is recommended 
seems excessively high ( 1 200 mg/dl)  [72]  given that  
lower glucose levels (153.5 mg/dl) have been associated 
with a poor outcome at 3 months  [73]  and that a level 
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 1 140 mg/dl (OR 8.4; 95% CI 1.8–40.0) is an independent 
predictor of poor functional outcome at 3 months in pa-
tients with recanalization within 6 h, and might partially 
reduce the effi cacy of fi brinolytic treatment and early re-
canalization  [67] . 

 A reasonable target in most cases of lower blood 
glucose levels is between 100 and 200 mg/dl (5.5 and 
11 nmol/l)  [74]  although levels of glycemia  1 150 mg/dl 
should probably be avoided and insulin therapy should 
administered from a glycemia level of 150 mg/dl  [75] . The 
decision whether to treat the individual patient inten-
sively with insulin, aiming at normalization of blood 
 glucose levels, also has to take into account the clinical 
setting. 

 Control of Blood Pressure 

 Cerebral perfusion is normally determined by local 
brain metabolic demands and is independent of systemic 
BP except at very low or high levels (cerebral autoregula-
tion). Following acute ischemic stroke, autoregulation is 
lost, and perfusion becomes pressure-dependent. Obser-
vational studies suggest that approximately 75% of pa-
tients with ischemic stroke have elevated BP when mea-
sured within 24–48 h of onset. Systemic hypertension at 
the time of ischemic stroke is believed to be a physiolog-
ical response that maintains adequate cerebral perfusion 
in the ischemic penumbra  [76] . 

 The prognostic infl uence of BP during the acute phase 
of ischemic stroke is still a matter of controversy. High 
BP may induce the formation of brain edema, hemor-
rhagic transformation, and further vascular damage. 

However, low BP may induce secondary reduction of per-
fusion in the area of ischemia  [76] . Both high and a low 
BP, as well as falls in BP, have been related to a poor 
prognosis in patients with acute stroke ( fi g. 2 )  [77–79] . It 
was found that BP reduction in the fi rst 24 h of stroke 
onset was independently associated with poor neurologi-
cal outcome at 3 months  [79, 80] , and with neurological 
deterioration  [79] . The use of sublingual nifedipine has 
been the subject of particular scrutiny for its tendency to 
cause rapid, often precipitous declines in BP  [81] . A post-
hoc analysis of the effect of nimodipine in acute ischemic 
stroke within 24 h showed that a reduction of diastolic 
BP (DBP) of about 15 mm Hg was associated with poor 
outcome  [82] . 

 Several observational studies have reported the rela-
tionship between raised BP levels and a poor prognosis 
 [83–87] , although some authors have demonstrated bet-
ter outcomes in patients with high initial BP  [88, 89] . A 
systolic pressure BP (SBP)  1 160 mm Hg within the fi rst 
24 h has been related to a poor outcome  [87] . Data for 
the International Stroke Trial (IST) confi rmed that the 
risk of early death and late death or dependency was in-
dependently associated with increasing SBP in 17,398 
patients  [78] . A systematic review of 32 studies involving 
10,892 patients concluded that high BP in acute ischemic 
stroke was associated with subsequent death, deteriora-
tion or dependency, and that moderate lowering of BP 
might improve outcome. 

 Whether discontinuing a chronically administered an-
tihypertensive medication at the time of admission would 
be neuroprotective and whether such benefi ts outweigh 
the short-term risks of an exacerbation is unknown. Most 
patients with acute ischemic stroke are treated with anti-
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  Fig. 2.  High and low BPs in acute ischemic 
stroke are associated with higher infarct 
volume. 
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hypertensive drugs despite the absence of severe hyper-
tension  [90] . There is no general agreement regarding how 
BP should be managed in the acute phase of ischemic 
stroke. Current opinions vary from do not treat  [91]  to 
treat  [92] . Although lowering BP seems attractive, cere-
bral autoregulation is lost during acute stroke, and perfu-
sion becomes pressure-dependent, so lowering BP might 
be expected to worsen outcome. Mildly or moderately 
elevated BP frequently declines spontaneously during the 
fi rst minutes or hours of focal ischemia and generally does 
not require urgent pharmacological treatment  [93] . Ob-
servations of Mattle et al.  [94]  suggest that elevated BP is 
needed to perfuse ischemic brain tissue until recanaliza-
tion takes places and after it BP declines spontaneously 
without treatment. It may not be appropriate to reduce 
BP if it is not known whether the occluded artery has re-
canalized. The consensus is that antihypertensive agents 
should be withheld unless SBP is  1 220 mm Hg or DBP 
is  1 120 mm Hg  [95] , although the recommended cutoff 
values for treatment are lower (SBP  1 185 mm Hg or DBP 
 1 110 mm Hg) in patients receiving rt-PA, because exces-
sively high BP is associated with parenchymal hemor-
rhage  [96, 97] . 

 When treatment is indicated, lowering pressure should 
be done cautiously. Few clinical studies are available to 
guide clinicians  [98] . Large trials assessing the effect of 
lowering BP on the outcome after stroke are lacking. Stud-
ies with calcium antagonists during the acute phase of 
ischemic stroke have shown their capacity to reduce SBP 
and DBP but also negative effects on stroke outcome  [82, 
99, 100] . Angiotensin-converting enzyme inhibitors have 
been shown to reduce BP without modifying cerebral 
blood fl ow, although there are no controlled clinical trials 
showing effi cacy in stroke outcome  [101] . To date, only 
one of the various hypotensor drugs, candesartan, has 
been tested in the acute phase of stroke. Administered 
during the fi rst 7 days, it has been shown to be safe in 
these patients, and in addition has a benefi cial effect on 
outcome and mortality at 12 months, although it had no 
apparent effect on BP  [102] . 

 A Cochrane Review regarding deliberate alteration of 
BP within 2 weeks of stroke onset found fi ve small trials 
involving a total of 218 patients randomized to nimodip-
ine, nicardipine, captopril, clonidine, glycerol trinitrate, 
or perindopril versus placebo or control treatment, and 
concluded that the limited data made it impossible to as-
sess the relationship between BP and clinical outcome 
 [103] . Current guidelines suggest parenteral agents such 
as labetalol that are easily titrated and that have minimal 
vasodilatory effects on cerebral blood vessels. In some 

cases, an intravenous infusion of sodium nitroprusside 
may be necessary for adequate BP control. Patients can 
also be treated with oral agents, such as captopril  [95] . 

 In the absence of defi nitive data supporting the eleva-
tion or reduction of BP in patients with acute ischemic 
stroke, it is clear that evidence from one or more large 
randomized clinical trials is now required, and it is evi-
dent that any clinical trials of vasoactive drugs in acute 
stroke should be paralleled by studies assessing the effect 
of these agents on regional cerebral perfusion  [98] . 

 Control of Arterial Oxygen Saturation 

 Maintaining adequate tissue oxygenation seems to be 
of great importance during periods of acute cerebral isch-
emia in order to prevent hypoxia and potential worsening 
of the neurological injury. Patients with acute stroke 
should be monitored using pulse oximetry, with a target 
oxygen saturation level of  6  95%. There is general agree-
ment to strongly recommend supplemental oxygen to hy-
poxic patients (evidence of hypoxia by blood gas deter-
mination, or desaturation detected by pulse oximeter). 
Non-hypoxic patients with acute ischemic stroke do not 
need supplemental oxygen therapy  [104] . There are insuf-
fi cient data about the utility of hyperbaric oxygen to rec-
ommend this therapy for most patients with stroke  [72, 
95] . 

 Closely related to arterial saturation is control of the 
volemia and viscosity of the blood. Studies investigating 
this issue have been discouraging. Both studies conducted 
by means of isovolemic hemodilution with dextran  [105] , 
and later studies of hypervolemic hemodilution by veni-
punction administration of pentastarch  [106]  were nega-
tive. In a meta-analysis of 18 control studies  [107]  it was 
demonstrated that this procedure did not signifi cantly re-
duce mortality or the degree of incapacity. 

 Non-Pharmacological Neuroprotection: 
Role of Emergency Stroke Management 

 Non-pharmacological neuroprotection includes all in-
terventions protecting the brain from pharmacological 
damage after cerebral vascular occlusion. Four physiolog-
ical parameters (BP, glucose serum levels, body tempera-
ture, and oxygen saturation) are considered as indepen-
dent prognostic factors in acute ischemic stroke. Although 
there are discrepancies and controversies concerning the 
real signifi cance of some of these changes (e.g., the real 
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signifi cance of hyperthermia in the acute phase of isch-
emic stroke, or on the behavior and prognostic impor-
tance of BP in the fi rst hours of ischemic stroke), the cur-
rent tendency is to achieve adequate control in the ho-
meostasis of these biological parameters, independently 
of their pathogenic signifi cance. As a consequence, the 
main treatment guidelines for acute stroke point to the 
advisability and need to achieve good control of these 
clinical parameters. 

 These measures should be applied at an early stage, 
fi rst in the non-hospital environment and then continuing 
in the hospital environment within casualty departments, 
and later in stroke units. For this sequence to be imple-
mented rapidly and in an organized way, there needs to 
be a close relationship and coordination between these 
three service areas. Application of the stroke code is a 
good example of coordination and effectiveness in im-
mediate care for acute stroke  [108] . These measures need 
to be protocolized, following agreed guidelines and pro-
tocols  [72] . 

 Several studies have demonstrated unequivocally the 
effectiveness of Stoke Units for the protocolized care of 
these patients. When the patient with acute stroke is 
cared for in a Stroke Unit, a reduction in mortality, re-

duced evolution and a lower hospitalization rate have all 
been observed  [109–111] . In the meta-analysis (Stroke 
Trialist’s Collaboration), Stroke Units were shown to be 
more effective than stroke teams or other forms of health-
care organization. The factors determining the benefi ts 
associated with the Stroke Unit care may be control of 
BP and temperature  [112]  and reduction of complica-
tions  [113] .  

 In a case-control study with inclusion of consecutive 
active stroke patients, it has been demonstrated that those 
who maintain physiological homeostasis showed im-
proved outcomes at 7 days from stroke onset after being 
matched for other key predictors of stroke outcome  [113] . 
Early general care, and early control of BP, glycemia, 
body temperature, and oxygen saturation, are the basic 
and best current brain-protecting measures available for 
all stroke patients, while the possibility of administering 
neuroprotective and neurorestorative drugs needs to be 
established. General care and homeostasis maintenance 
have become emergent and fi rst-line brain-protecting 
treatments that must be started as soon as possible in or-
der to save more brain tissue to obtain the best conditions 
for further specifi c stroke therapies  [112] . 
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management (osmotherapy, diuretics, etc.) and even 
more aggressive medical therapies such as controlled ven-
tilation, or high-dose barbiturates have shown poor re-
sults with a mortality rate of up to 80%  [1] . Induced mod-
erate hypothermia (32–33   °   C) and decompressive hemi-
craniectomy have been proposed as second-tier therapies 
in other neurological disorders with elevation of ICP such 
as traumatic brain injury (TBI)  [2] . In the last few years, 
experimental models have shown the effi cacy of these 
therapies in both reducing the infarct size and improving 
neurological outcome in focal cerebral ischemia  [3–10] . 

 A review of the neuroprotective mechanisms of mod-
erate hypothermia and hemicraniectomy in animal mod-
els and their application in patients with a malignant mid-
dle cerebral artery infarction is the aim of this article. 

 Induced Hypothermia: Basic Concepts 

 There is much confusion regarding the use of proper 
terminology in thermoregulation and hypothermia clini-
cal research. A good resource for the clinician is the glos-
sary of terms for thermal physiology periodically revised 
by the Commission for Thermal Physiology of the Inter-
national Union of Physiological Sciences (IUPS)  [11] . Ac-
cording to this Commission, hypothermia is defi ned as 
‘the condition of a temperature regulator when core tem-
perature is below its range specifi ed for the normal active 
state of the species’  [11] . Induced or deliberate hypother-
mia is defi ned by the same group as ‘the state of hypo-
thermia produced purposefully by increasing heat loss 
from the body and/or inactivation of heat conservation 

 Key Words 
 MCA infarction  �  Hypothermia  �  Decompressive 
hemicraniectomy  �  Stroke

  Abstract 
 Massive unilateral hemispheric infarction often develops 
progressive postischemic edema that leads to a malig-
nant course of stroke with mortality of up to 80% with 
conventional medical therapies. Hypothermia and de-
compressive hemicraniectomy have shown neuroprotec-
tive effects in several animal models of focal transient and 
permanent MCA occlusion by reducing infarct size and 
improving neurological outcome. Our aim in this paper 
was to review the possible mechanisms of both therapies 
as well as the optimal time window and duration of ap-
plication of each treatment in animal model and in human 
malignant MCA infarction reported in the literature. 

 Copyright © 2006 S. Karger AG, Basel 

 Background 

 Diagnosis of malignant MCA infarction can be made 
in patients with a massive hemispheric unilateral infarc-
tion that clinically courses with a severe hemispheric 
 syndrome with forced head and eye deviation, usually 
showing a rapid neurological deterioration within the fi rst 
2–3 days after onset. The main cause for death in these 
patients is the development of severe brain postischemic 
edema, with progressive brain herniation and raised in-
tracranial pressure (ICP). Conventional conservative 
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and heat production by physical and/or pharmacological 
means’  [11] . Clinically induced or regulated hypothermia 
is defi ned by Bernard and Buist  [12]  as the controlled 
lowering of core temperature for therapeutic reasons. 

 Because deep hypothermia causes life-threatening ar-
rhythmias, ventricular fi brillation, and cardiac arrest, core 
temperatures below 28   °   C can only be safely achieved by 
using cardiopulmonary bypass  [13] . Mild-to-moderate in-
duced hypothermia (32–34   °   C) has been used to achieve 
neuroprotection in many neurological insults such as an-
oxic neurological injury after cardiac arrest, severe TBI, 
major stroke and hepatic encephalopathy, among others. 
For a comprehensive review of the uses of hypothermia, 
the reader is referred to Bernard and Buist’s review  [13] . 

 The common use of the same terminology to describe 
different types of hypothermia has misled clinicians. The 
terms mild and moderate have been used interchangeably 
in many papers to refer to different target core tempera-
tures. Although agreement on terminology is lacking, it is 
generally accepted that, depending on the core tempera-
ture, hypothermia is classifi ed as mild (33–36   °   C), moder-
ate (28–32   °   C), deep (10–28   °   C), profound (5–10   °   C), and 
ultraprofound (0–5   °   C)  [13] . Despite this widely used clas-
sifi cation, the use of term ‘moderate hypothermia’ varies 
widely in neurocritical care  [14]  and, surprisingly, in this 
classifi cation, the 32–33   °   C range, which is the most wide-
ly used range in neuro-ICUs, has simply been forgotten. 
For the sake of consistency, we will consider the usual 
lower core temperature used in the management of stroke 
and head injury (32–33   °   C) as moderate hypothermia. 

 Hypothermia is Neuroprotective in Animal 
Models 

 Hypothermia is the oldest form of brain protection. 
Although the neuroprotective effect of deep hypothermia 
has been known since the early 1950s, the fact that neu-
roprotection can be achieved by small changes in tem-
perature has only been known since 1987 when Busto et 
al.  [15]  reported this fi nding in experimental models of 
brain ischemia. 

 There is established evidence that temperature infl u-
ences stroke outcome. Different studies have shown that 
admission core temperature is a good predictor for both 
short- and long-term mortality, independently of other 
clinical variables associated to stroke severity, such as 
initial NIHSS score  [16, 17] . Moderate increases in core 
temperature within the fi rst 24 h are associated with 
greater cerebral damage  [18] . Although controlled nor-

mothermia is the only accepted therapy in stroke patients 
 [19] , there is growing experimental evidence which sug-
gests that hypothermia has a place as a neuroprotective 
therapy in patients with stroke and especially in those 
with a malignant course. 

 In animal models of focal ischemia, induced hyper-
thermia increases the severity of cerebral injury  [15] . 
Larger lesions are provoked when hyperthermia coin-
cides with the onset of cerebral ischemia. Several models 
of global and focal ischemia in animals have demonstrat-
ed the ability of hypothermia both to reduce infarct size 
and improve neurological outcome  [20] . 

 However, overenthusiasm with experimental results 
has to be tempered to avoid disappointment such as that 
which occurred in TBI. Enthusiasm aroused by experi-
mental studies and encouraging results from early clinical 
trials reported in 1990s faded when the multicenter phase 
III American trial (NABISH-I) showed no signifi cant ef-
fect of hypothermia in outcome in severe TBI  [21] . 

 Hypothermia is still the most powerful neuroprotec-
tive method in animal models of TBI and stroke because 
it affects a wide range of the pathophysiological processes 
involved. Rather that focusing on blocking a specifi c cas-
cade, hypothermia has the advantage of acting at several 
points on the deleterious pathophysiological events trig-
gered by TBI and stroke. Deep hypothermia unquestion-
ably protects brain against global ischemia, but its appli-
cation has been extremely limited by its side effects and 
it can only be used in situations that require cardiac ar-
rest  [20] . On the other hand, mild and moderate hypo-
thermia are better tolerated and have been assayed in 
models of transient and permanent MCA occlusion with 
variable, but in general good results. Some authors  [7, 8]  
found benefi ts with hypothermia only under conditions 
of transient (not permanent) MCA occlusion in rat. Yana-
moto et al.  [10]  extended these results to models of per-
manent focal ischemia. 

 The optimal time window to induce hypothermia and 
its duration is still a matter of debate. Maier et al.  [6]  sug-
gested that mild hypothermia should be maintained from 
the start and last at least 1–2 h to obtain optimal neuro-
protection in transient focal ischemia. However, it has 
been shown that induced hypothermia delayed 3 h after 
MCA occlusion, also has neuroprotective effects, as 
shown in an MRI study in rats  [22] . All the available data 
suggests a potential benefi t of extending hypothermia into 
the late reperfussion period (postischemic hypothermia) 
 [4, 9] . In addition, when hypothermia is induced in the 
postischemic period, it should be maintained for a long 
time  [3] . If we were to extrapolate these data to clinical 
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practice, hypothermia should be induced early after 
stroke onset and may be maintained until the end of the 
reperfussion period. 

 Neuroprotective Mechanisms of Hypothermia 

 In most experimental studies, the effects of hypother-
mia are evaluated early because animals are sacrifi ced only 
after 24 h from the onset of focal ischemia. The question 
that arises from this approach is whether hypothermia only 
delays injury caused by ischemia or, to the contrary, wheth-
er its effects are maintained later on. Regarding this issue, 
some authors  [10]  have already shown that the benefi cial 
effects of prolonged mild hypothermia remain at 21 and 
30 days after the onset of ischemic insult. 

 Some of the suggested mechanisms reported in the lit-
erature include induction of ischemic tolerance  [23] , re-
duction the expression of early genes including c-fos  [24] , 
reduction in cerebral metabolic rate  [25] , reduction of 
neurotransmitter release during ischemia, including glu-
tamate  [26, 27] , prevention of cell death by apoptosis and 
necrosis  [6, 28] , decrease of infl ammatory response  [29] , 
reduction of matrix metalloproteinases activity  [30]  and 
stabilization of the blood-brain barrier  [31] . However, the 
most important mechanisms that cause the strong neuro-
protection provided by induced hypothermia are still a 
matter of debate and are probably multiple. In the words 
of Corbett and Thornhill  [32]  

  ... it is not possible to point to a single mechanism that underlies 
the robust neuroprotection provided by long duration postischemic 
hypothermia. Indeed, the remarkable benefi t provided by mild hy-
pothermia is likely due to a multitude of actions which make it the 
ultimate neuroprotective cocktail. This contrasts with neuroprotec-
tive drug therapies that typically target a single mechanism and that 
so far have proven ineffective in clinical trials.  

 Moderate Hypothermia in Malignant MCA 
Infarction 

 The fi rst approach on moderate hypothermia in the 
treatment of patients with malignant middle cerebral ar-
tery infarction was reported by Schwab et al.  [33] . Mod-
erate hypothermia was induced in 25 patients within 
14 8 7 h after stroke onset by surface cooling (cooling 
blankets, cold infusions and cold washing). Nearly half of 
the patients (56%) survived with improved neurological 
outcome at 3 months. An important fi nding of this study 
was that in most of the patients who died, death occurred 

by cerebral herniation or secondary rise in ICP during 
rewarming. 

 Clinical data gathered from 50 consecutive patients 
from four neurocritical care units that use the same ap-
proach has been reported  [34] , confi rming the previous 
results. Hypothermia was associated with considerable 
but reversible adverse effects such as arrhythmia or bra-
dycardia, coagulopathy, hypotension and pneumonia. 
Rewarming constituted the critical phase of hypothermia 
therapy because of a constant secondary rise in ICP. A 
signifi cantly lower mortality was associated with longer 
rewarming periods. 

 Alternative techniques for hypothermia induction 
have been investigated by Georgiadis et al.  [35]  evaluat-
ing the feasibility of inducing and maintaining moderate 
hypothermia using endovascular cooling devices. Six pa-
tients were included and only 1 died as a consequence of 
uncontrolled ICP. The target temperature was obtained 
in only 3.5–6.5 h. 

 In July 2004, De Georgia et al.  [36]  reported the results 
of a pilot randomized clinical feasibility trial of endovas-
cular cooling (COOL AID). It included 40 patients (18 
were randomized to hypothermia and 22 received con-
ventional medical treatment). Given the small sample 
size, the difference was not statistically signifi cant, how-
ever older patients with severe stroke and comorbidity 
developed pulmonary complications  [36] . 

 Hypothermia in MMCA infarction has also been as-
sayed in patients with absent or minimal response to 
thrombolytic therapy  [37] . Moderate hypothermia using 
surface cooling was achieved in 6–12 h time window and 
maintained from 12 to 72 h depending on when the ves-
sel was recanalized. There were no hypothermia-related 
complications, such as coagulopathy or thrombopenia 
that might have caused hemorrhagic complications after 
thrombolysis. 

 Prediction of Malignant MCA Infarction 

 Hypothermia has been shown to be more effective as 
a neuroprotective measure if applied earlier in the isch-
emic process. However, early identifi cation of patients at 
risk of developing a malignant course of cerebral infarc-
tion is not an easy task. A combination of initial clinical, 
laboratory or neuroimaging (CT or MRI) parameters 
might be used as selection criteria. A baseline NIHSS 
score  1 20 for left or  1 15 for right stroke hemisphere with-
in 6 h from symptom onset, and also nausea/vomiting, 
have been described as good clinical predictors  [38] . 
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 Among the radiological features, briefl y, at early 
( ! 6 h) hypodensity at least 50% of the MCA territory has 
a 94% specifi city for fatal outcome, with only 61% of sen-
sitivity  [39] . When it appeared later (within the fi rst 
48 h) the midline shift measured at the septum was 
 6 5 mm and pineal shift was  6 2 mm. Hydrocephalus, 
temporal lobe infarction and the involvement of addi-
tional vascular territories apart from the MCA have been 
associated with a poor outcome  [40] . CT signs are highly 
specifi c for fatal outcome but with the limitation that 
their sensitivity is lower than other neuroimaging tech-
niques such as multiparametric MRI. When MRI is per-
formed early after stroke onset, it can accurately predict 
a malignant course of an acute MCA infarction as Op-
penheim et al.  [41]  showed. MRI also yielded a good pre-
diction even in the fi rst 6 h  [42, 43] . 

 It has also recently been reported that laboratory data 
such as molecular markers of endothelial damage may be 
useful in predicting a malignant infarction  [44] . 

 Decompressive Hemicraniectomy 

 In 1905, Cushing  [45]  reported for the fi rst time a de-
tailed procedure of subtemporal and suboccipital decom-
pression to relieve high ICP in tumoral patients with 
brain herniation. Usually, it was performed in TBI by 
removal of different areas and amounts of the skull, with 
or without opening the meningeal covering or augmenta-
tive duraplasty. These procedures were mainly used in 
the late 1960s to manage patients with high ICP or as a 
primary measure in the evacuation of acute subdural he-
matoma when the surgeon felt that the brain was tight 
and edematous  [46] . In massive stroke, these procedures 
primarily allow the brain to expand and consequently 
provide the control of high ICP. 

 Decompressive Hemicraniectomy in Animal 
Models 

 Laboratory studies of hemicraniectomy for MCA oc-
clusion in rats have shown a decrease in mortality rate, a 
reduction in infarct volume and also an improvement of 
neurological outcome, especially when the surgery was 
performed as soon as possible after MCA occlusion  [47, 
48] . In the study of Forsting et al.  [48] , mortality was re-
duced from 36% in the control group to 0% in the treated 
animals. 

 However, in clinical practice, the main problem re-
mains to determine how long conservative treatment 
should be maintained before considering decompressive 
craniectomy. This issue has not been clarifi ed by experi-
mental studies. Decompressive craniectomy was effec-
tive in terms of neurological outcome whenever it was 
performed (1 or 24 h after vessel occlusion), but when 
performed again later, cortical infarct size was larger  [48] . 
Another study, addressed to investigate the effect of re-
perfusion, craniectomy or the combination of both treat-
ments, showed that even late craniectomy (4 and 12 h 
after occlusion) resulted in signifi cant benefi t  [49] . But, 
on the contrary, Hofmeijer et al.  [50]  found no benefi t in 
terms of infarct size histologically measured when the 
surgery was delayed (17 h after occlusion). 

 In conclusion, experimental models suggest that early 
craniectomy probably is associated with better results in 
terms of neurological outcome and infarct size. 

 Neuroprotective Mechanisms of 
Decompressive Hemicraniectomy 

 Brain herniations with brainstem compression and in-
creased ICP are the most frequent causes of death and 
disability after massive stroke. The rationale for decom-
pressive surgery is based on the Monro-Kellie law. Ac-
cording to this theory, intracranial volume should remain 
constant, and volumetric compensations should be 
achieved by shifts in CSF, in cerebral blood volume or 
brain herniations. Removing a variable amount of bone, 
with or without leaving the duramater opened or aug-
mented by a duraplasty, is a fast and effective way for 
increasing intracranial volume, reducing high ICP, in-
creasing the compliance of the intracranial space and 
 fi nally, for avoiding brain herniation and brainstem com-
pression. However, there is also some experimental evi-
dence which shows that decompressive may be neuro-
protective thanks to hemodynamic effects that consisted 
in an improvement of brain perfusion pressure through 
leptomeningeal collaterals  [51, 52] . 

 Decompressive Hemicraniectomy in Malignant 
MCA Infarction 

 Decompressive hemicraniectomy was fi rst performed 
in the management of large cerebral infarction several 
decades ago, with many isolated cases reported in the lit-
erature. However, the fi rst large non-randomized study 
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in which decompressive craniectomy was compared to 
controls was published in 1995 by the Heidelberg group. 
These authors reported that the surgically treated patients 
showed a signifi cantly lower mortality rate than those 
who were in the control group (34 vs. 80%)  [53] . 

 The optimal time for surgery has not been defi ned yet. 
However, the mortality rate in surgically treated patients 
might be reduced up to 20% when decompressive crani-
ectomy is performed earlier  [54] . It must be stressed that 
the control group in this study was a historical group 
which contained patients who had been unsuitable for 
surgery due to comorbidity or failure in obtaining in-
formed consent. This selection of patients introduced sig-
nifi cant bias that was not useful to extract conclusions 
from this study. 

 The clinical factors associated with better outcome 
after decompressive craniectomy were investigated in a 
systematic review of all the cases reported in English lit-
erature from 1970 to 2004  [55] . Age was found as a cru-
cial and independent factor in predicting not only mor-
tality but also functional outcome. In this study, only a 
36% of patients  ! 50 years were severely disabled or dead 
after 4 months. But these rates increased up to 80% in 
older patients ( 6 50 years). Interestingly, the timing of 
surgery, the presence of signs of herniation before sur-
gery, the hemisphere affected or the involvement of oth-
er vascular territories did not signifi cantly affect the out-
come. This age cut-off has been confi rmed in other re-
ports  [56] . 

 Moreover, decompressive craniectomy is not exempt 
of complications, even when conducted by an experi-
enced group of neurosurgeons. Wagner et al.  [57]  de-
scribed their experience with 60 patients. In their series, 
surgical complications such as the appearance of hemor-
rhages (parenchymal, subdural or epidural/subgaleal) and 
ischemic lesions reached 41 and 28% respectively. The 
occurrence of hemicraniectomy-associated bleeding was 
more frequently found in smaller hemicraniectomies and 
this complication was signifi cantly related to an increased 
mortality risk. Not only the size, but other technical prob-
lems, such as the shape of edges (sharp bone defects edg-
es associated more complications) infl uenced the hemi-
craniectomy effi cacy. 

 Apart from mortality and functional outcome, the 
quality of life is a major feature that should be evaluated 
in the survivors of this procedure. Almost all of Walt et 
al.’s  [58]  patients achieved a good quality of life and un-
expectedly, no signifi cant differences were found between 
left and right hemispheric infarction. Improvement in 
speech function was also found, with global complete 

aphasia being relatively rare. However, further studies 
are needed to confi rm these results  [59] . 

 In conclusion, there is no evidence from randomized 
controlled trials supporting the use of decompressive sur-
gery in malignant MCA infarction to date  [60]  and no 
results are available in adults to confi rm or refute the ef-
fectiveness of decompressive craniectomy. However, 
some prospective, single-center, non-randomized studies 
suggest that good outcomes might be expected in selected 
groups of patients by using this technique. The results 
from ongoing trials such as HAMLET (Hemicraniectomy 
After MCA Infarction with Life-Threatening Edema Tri-
al) will help us in the future. 

 Moderate Hypothermia versus Decompressive 
Hemicraniectomy 

 Craniectomy and moderate hypothermia have been 
compared in a study reported by Georgiadis et al.  [61] . 
They conducted a quasi-randomized study, in which de-
compressive craniectomy was performed when the non-
dominant hemisphere was affected (n = 17); moderate 
hypothermia was used for the dominant hemisphere (n = 
19). The timing of mechanical ventilation and the stay in 
the intensive care unit was not signifi cantly different be-
tween both groups, although mortality in the moderate 
hypothermia group was higher (47%) than in the decom-
pressive craniectomy group (12%). Most patients in the 
hypothermia group died as a result of rebound high ICP 
increase during rewarming. This study did not compare 
the functional outcome between both groups. 

 Combining Mild Hypothermia and 
Hemicraniectomy in Animal Models 

 Due to the multiple neuroprotective effects of hypo-
thermia, it has been suggested that moderate hypother-
mia could increase the therapeutic benefi t of other treat-
ments such as reperfussion or craniectomy. It could also 
be possible that hypothermia expanded the time window 
for the application of other therapies by delaying brain 
damage caused by cerebral ischemia. In this direction, 
Doerfl er et al.  [62]  designed a study to evaluate the effect 
of hypothermia and craniectomy separately and also 
when both were combined in an animal model. They 
found that early decompressive craniectomy signifi cantly 
reduced infarct size and improved neurological outcome 
but hypothermia only delayed the evolution of infarction 
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without reducing the infarct. In addition, the highest ben-
efi t was obtained when combining both treatments. 

 The CoolStroke trial is an ongoing study that it is cur-
rently being performed in our institution, which com-
bines both treatments in malignant MCA infarction. 
Briefl y, moderate hypothermia is early induced (within 
the fi rst 24 h) in patients  ! 65 years at high risk for devel-
oping a malignant MCA infarction. All patients receive a 
multimodal monitoring, which includes seriated brain 
CT scan. Elective hemicraniectomy (fronto-temporo-pa-
rietal craniectomy with duroplasty) is performed when 
patients present intracranial hypertension or the midline 
shift increases to 5 mm or more in the following hours/
days. 

 Conclusions 

 In experimental models, it has been shown that hypo-
thermia and decompressive craniectomy improve neuro-
logical outcome in severe acute stroke. Both therapies 
achieve better results when applied earlier. Hemicraniec-
tomy seems to be more effective than hypothermia in 
reducing mortality. The combination of both therapies 
may add some benefi ts and it is worthwhile exploring 
these hypotheses in pilot studies. However, although the 
application of these therapies in human stroke seems to 
offer hopeful results, the selection criteria of patients, the 
time window and the duration of each therapy need to be 
clarifi ed in clinical trials before such therapies can be rou-
tinely recommended. 
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and cholinergic approaches. In spite of some initially fa-
vorable reports based on the use of memantine, done-
pezil and galantamine, there is as yet no conclusive evi-
dence of a defi nitive treatment for VaD. Unsatisfactory 
results from VaD drug trials may be attributed in part to 
the diversity of the patients included (underlying patho-
genic mechanisms, number, type, and location of vascu-
lar lesions), and to methodological limitations in the de-
sign of the trials (outcome measures, end-points, size, 
follow-up period). The treatment of modifi able vascular 
risk factors – hypertension, diabetes mellitus, hypercho-
lesterolemia and heart disease – is an important strategy 
for the reduction of the risk of dementia, and is likely to 
slow the progress of cognitive decline. 

 Copyright © 2006 S. Karger AG, Basel 

 Introduction 

 Vascular dementia (VaD) is the second most frequent 
cause of dementia after Alzheimer disease (AD) in West-
ern countries, and the most common cause in some Asian 
regions  [1–3] . The incidence of VaD ranges from 1 to 
3/1,000 persons/year, and can reach 19/1,000 persons/
year if cases of mixed dementia are included  [4, 5] . The 
prevalence of VaD ranges from 1 to 8.8%  [3, 6–8] , and is 
expected to rise further in the near future given the in-
crease in life expectancy and the progressive aging of pop-
ulations. In addition, the total costs arising from the ef-
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  Abstract 
 Vascular dementia (VaD) is the second most common 
form of dementia after Alzheimer’s disease (AD), and 
one of the major causes of mental and physical disabil-
ity in developed countries. As such, the identifi cation and 
implementation of strategies which prevent the develop-
ment of the condition or enable improvements in pa-
tients with VaD are healthcare objectives of the fi rst 
 order. VaD is now regarded as a combined group of clin-
ical-pathological entities rather than one disease, that is, 
multiple pathogenic mechanisms and lesion types un-
derlie a cognitive impairment of vascular origin. The clin-
ical diagnosis of VaD is complex and diffi cult because of 
the heterogeneous nature of its clinical presentation and 
progression and the low sensitivity of existing clinical 
criteria. Moreover, there is growing evidence of the epi-
demiological signifi cance of mixed forms of dementia, 
and that ischemic processes may precipitate and exac-
erbate cognitive impairment in AD. Numerous com-
pounds have been proposed as potentially useful in the 
treatment of patients with VaD, comprising vasodilata-
tive, antithrombotic, hemorrheological, nootropic, anti-
serotoninergic and, most recently, antiglutamatergic 
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fects of dementia amount to one of the largest burdens on 
annual healthcare budgets in developed countries  [9] . As 
such, the identifi cation and implementation of therapeu-
tic strategies focused on the prevention or improvement 
of the cognitive impairment associated with cerebrovas-
cular disease (CVD) are healthcare objectives of the fi rst 
order. 

 However, the clinical diagnosis of VaD is still a very 
complex procedure because of the heterogeneous nature 
of the condition in physiopathological terms and the di-
versity of individual cases  [10, 11] . The clinical data col-
lated thus far has not yielded a clear diagnostic procedure 
for VaD; the presence of cerebrovascular lesions must 
also be determined. Moreover, the existing clinical crite-
ria for VaD are not suffi ciently sensitive, use different 
defi nitions of dementia, and are not easily interchange-
able  [12] . At the same time, the fact that patients with 
dementia often suffer simultaneously from CVD and de-
generative AD makes it diffi cult to determine whether the 
cause of cognitive deterioration is vascular or degenera-
tive in origin  [13, 14] . In recent years, the study of differ-
ent types of mixed dementia has received special atten-
tion because of their increased prevalence and the grow-
ing evidence that CVD can precipitate or worsen the 
development of AD  [15, 16] . 

 Neuroprotection in VaD can be defi ned as the differ-
ent physiological and pharmacological approaches which 
aim to improve core and neuropsychiatric symptoms and 
to slow or halt the progression of cognitive impairment. 
However, the current, limited understanding of the phys-
iopathological mechanisms that produce cognitive dete-
rioration in VaD means that a more specifi c therapeutic 
approach cannot yet be established. Several drugs have 
been used in the treatment of patients diagnosed with 
VaD, but the results from clinical trials thus far have been 
largely negative or have shown only very limited effi cacy 
 [10] . Unsatisfactory VaD trial results may be attributed 
in part to the diversity of patients included and to meth-
odological limitations in the trials themselves  [10, 17, 18] . 
Preliminary results from recent trials, testing some ace-
tylcholinesterase inhibitors and the NMDA-antagonist 
memantine, offer some new grounds for hope in the treat-
ment of VaD  [17, 18] . Nevertheless, new clinical trials, 
designed specifi cally to evaluate the cases of patients suf-
fering from cognitive impairment of vascular origin, are 
needed  [18, 19] . At the same time, it is possible that vas-
cular cognitive impairment can to some extent be im-
proved, and VaD prevented, if vascular risk factors are 
brought under control and strokes do not recur  [10, 18, 
20] . 

 Diagnosis of VaD and Clinical Trials 

 The paradigm of VaD as a condition with an abrupt 
start and staged progression through a series of strokes or 
multiple strokes in patients who register high risk vascu-
lar factors (post-stroke dementia or multi-infarct demen-
tia) is not matched by the normal clinical presentation of 
VaD  [11, 21] . In clinical series, around 25–30% of stroke 
survivors conform to the criteria for dementia 3 months 
after a stroke  [22–24] , and the possibility of delayed de-
velopment of dementia remains up to nine times higher 
among stroke survivors than for the age-matched popula-
tion for more than 5 years after the stroke  [25, 26] . How-
ever, VaD can also present in patients who have not pre-
viously suffered a stroke, with a gradual onset and pro-
gressive development more indicative of a degenerative 
disorder  [27] . Indeed, the absence of focal symptoms does 
not exclude the presence of cerebral vascular lesions. One 
neuropathological study has shown that only half of the 
patients with neuroradiological evidence of ischemic le-
sions had an indicative history of clinical stroke or motor 
defi cits  [5] . The clinical diagnosis of VaD is complex and 
diffi cult, therefore, because of the heterogeneous nature 
of both its clinical presentation and progression. 

 In the current situation, any type of dementia syn-
drome caused by vascular disease, whether ischemic or 
hemorrhagic, single or multiple, cortical or subcortical, 
should be classifi ed under the term VaD  [10, 28, 29] . VaD 
syndrome has been classifi ed in different clinicopatho-
logical subtypes (large-vessel VaD, multi-infarct demen-
tia and strategic infarct dementia; small-vessel VaD, sub-
cortical and cortico-subcortical; ischemic-hypoperfusive 
VaD, and hemorrhagic VaD), and may present clinically 
in many different forms  [29, 30] . Subcortical ischemic 
VaD, due to small-artery disease and hypoperfusion, is 
one the more frequent causes of VaD  [30, 31] . On the 
other hand, although atherosclerotic and cardioembolic 
events are the most common causes of VaD, other less 
frequent etiological processes, such as amyloid angiopa-
thy, cerebral autosomal dominant arteriopathy with sub-
cortical infarcts and leukoencephalopathy (CADASIL), 
vasculitis or collagen disorders, must also be taken into 
consideration  [11] . The clinical presentation and progres-
sion of VaD can vary, depending on the etiology of the 
CVD and the number and location of vascular lesions 
among other factors  [10, 11, 28, 29] . 

 Another signifi cant limitation on the clinical diagnosis 
of VaD patients arises from the defi nition of dementia. 
The current criteria for dementia require the presence of 
signifi cant memory impairment because the defi nition is 
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based on an AD-like pattern. However, the memory func-
tions of some VaD patients may be relatively uncompro-
mised  [32, 33] . Consequently, patients who present with 
clinically signifi cant cognitive impairments associated 
with CVD frequently do not fulfi ll the traditional criteria 
of dementia, and are neither properly diagnosed nor in-
cluded in epidemiological studies or clinical trials. The 
functional criteria for dementia must be reconsidered in 
order to better assess patients with cognitive impairment 
associated with CVD  [6, 10] . Executive dysfunction may 
be the most signifi cant symptom of VaD, as memory im-
pairment is of AD  [33] . In recent years, the term ‘vascular 
cognitive impairment’ (VCI) has been proposed to en-
compass all forms of mild to severe cognitive loss pre-
sumed to be caused by CVD, and includes VCI without 
dementia, mild VCI, and VaD  [19] . 

 Diagnostic Criteria for VaD 
 There is no single, universally-accepted set of diagnos-

tic criteria for VaD. Several diagnostic criteria have been 
proposed for the clinical diagnosis of VaD, such as the 
Diagnostic and Statistical Manual of Mental Disorders, 
4th ed (DSM-IV)  [34] , the National Institute of Neuro-
logical Disorders and the Stroke-Association Internatio-
nale pour la Recherche et l’Enseignement en Neurosci-
ences (NINDS-AIREN)  [35] , the State of California Alz-
heimer’s Disease Diagnostic and Treatment Centers 
(ADDTC) criteria for VaD  [36] , and the International 
Classifi cation of Diseases, 10th ed (ICD-10)  [37] . Each of 
these sets of VaD diagnostic criteria is both highly spe-
cifi c and insuffi ciently sensitive  [38] . Moreover, the con-
comitant application of different clinical criteria has 
shown that they overlap in less than half of cases  [39–41] . 
Major differences between the diagnostic criteria include 
the requirement of focal neurological signs, an unequal 
distribution of cortical dysfunctions, and evidence of a 
relevant CVD in neuroimaging studies  [12] . The diagnos-
tic criteria for VaD, however, follow a different defi nition 
of dementia and may not describe the same population 
of VaD patients, a situation which is likely to cause major 
discrepancies in results and fi ndings if comparative stud-
ies are carried out  [10, 42] . 

 To determine a reliable diagnostic procedure for VaD, 
therefore, the diagnostic criteria of VaD and AD should 
be followed in parallel, and combined with the evidence 
of neuroimaging studies. Neuroimaging techniques, 
mainly CT and MRI, play a key role in the diagnosis of 
VaD patients, because they can reveal the presence of 
vascular lesions. However, the evidence of neuroimaging 
studies is limited because neither the time at which the 

lesions appeared nor whether the vascular lesions are con-
tributory or coincidental to the cognitive decline can be 
determined from the information it supplies  [43] . A his-
tory of clinical strokes or the presence of brain infarcts in 
neuroimaging studies does not necessarily indicate ‘pure 
VaD’, because strokes can occur in AD subjects at the 
onset or during the course of the disease. Conversely, cor-
tical and subcortical microinfarctions may be present, 
even though these lesions are not apparent from MRI 
readings  [44] . Etiopathogenic diversity in VaD cases 
makes any comparative study of the conditions diffi cult 
because different subgroups of VaD patients may respond 
differently to particular drug therapies  [10, 29] . 

 Interaction of VaD and AD 
 Evidence of brain infarcts or a history of strokes does 

not necessarily rule out the presence of AD-type pathol-
ogy in patients with cognitive impairment. In older de-
mented patients, degenerative and cerebrovascular le-
sions are present at the same time more often than might 
be expected, a fact that signifi cantly complicates the exact 
diagnosis of VaD and AD  [2, 13, 45] . The simultaneous 
presence of vascular and degenerative lesions is usually 
referred to as ‘mixed dementia’  [46] . Mixed dementia is 
now known to be very common, although some studies 
suggest that it may be the single most common form of 
dementia  [47] . 

 Several neuropathological studies of patients who have 
been diagnosed with VaD found that at least half of the 
cases showed AD-type pathology  [2, 45, 48] . Autopsy 
studies of patients who had been clinically diagnosed with 
AD showed that more than 30% of the cases that met the 
pathological criteria for AD also exhibited signifi cant 
cerebrovascular lesions  [14, 49] . 

 Current thinking holds that vascular risk factors such 
as hypertension, atrial fi brillation, ischemic heart disease, 
diabetes mellitus, hypercholesterolemia, hyperhomocys-
teinemia, smoking and atherosclerosis should also be re-
garded as risk factors in the development of AD  [50] . The 
convergence of risk factors for VaD and AD has led some 
to speculate that the underlying pathogenic mechanisms 
for both conditions may be in some ways similar  [51, 52] . 
There is increasing evidence from experimental studies 
that the sequence of events leading to the development of 
AD-type pathology may be due in part to cerebral isch-
emia  [53] . At the same time, amyloid protein precursor 
overexpression and Aß peptide production in AD can 
cause cerebrovascular dysfunction, and the microvascu-
lar alteration caused by amyloid deposition increases the 
risk of strokes and VaD  [54] . In fact, some authors have 
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argued that sporadic AD is a vascular disease  [53] . Vas-
cular and degenerative processes are seen to interact in 
clinical presentations of cognitive impairment. Data 
from several clinical and neuropathological studies have 
emphasized the fact that the presence of ischemic lesions 
in the brain increased both the severity of cognitive defi -
cits and the prevalence of dementia in patients with AD-
type pathology  [16, 52, 55, 56] . Moreover, strokes may 
precipitate or accelerate a pre-existing degenerative pro-
cess or individual predisposition  [57] . 

 Treatment of VaD 

 In recent decades, a number of therapeutic trials have 
tested the effects of several drugs in the treatment of 
VaD, but the results have been largely negative or have 
shown only very limited effi cacy  [10, 17, 18] . The unsat-
isfactory results of these VaD trials may derive in part 
from the diversity of patients included (e.g. underlying 
pathogenic mechanisms, the number, type and location 
of vascular lesions), and from methodological limitations 
in the design of the trials (e.g. inadequate outcome mea-
sures and end-points, small sample sizes and short fol-
low-up periods). Although no specifi c treatment has as 
yet been approved for VaD, preliminary results from the 
use of some of the drug compounds have given grounds 
for hope. 

 Symptomatic Treatment of VaD 
 Nimodipine, a type-L calcium channel blocker, has 

been proposed as a drug capable of improving cognitive 
function in patients with VaD because of both its vasoac-
tive and neuroprotective effects. The Scandinavian Multi-
Infarct Dementia Trial (SMDT), a 6-month, double-
blind, placebo-controlled trial, tested nimodipine (30 mg, 
three times per day) on patients diagnosed with multi-in-
farct dementia (DSM-III criteria)  [58, 59] . No signifi cant 
effect was observed in the cognitive, social or global as-
sessments of the patients in comparison with the results 
from the placebo group. However, a post-hoc subgroup 
analysis of the SMDT showed that VaD subcortical pa-
tients treated with nimodipine performed better on neu-
ropsychological tests and functional scales than patients 
in the placebo group  [59] . These results are in line with 
those of a previous pilot trial involving patients suffering 
from cognitive impairment and leukoaraiosis  [60] . In 
a double-blind, placebo-controlled trial, nicardipine 
(20 mg every 8 h) had no effect on the progression of cog-
nitive impairment in VaD patients (DSM-III-R criteria), 

compared to patients in the placebo group, after a year-
long follow-up period. 

 A randomized, non-placebo-controlled trial of 325 mg/
day aspirin (versus no aspirin) was conducted on multi-
infarct dementia patients. After an average follow-up pe-
riod of 15 months, the group of aspirin patients showed 
signifi cantly higher cognitive scores than the untreated 
group  [61] . A Cochrane review of the use of aspirin in the 
treatment of VaD proved inconclusive because no eligible 
randomized clinical trials could be found and included 
in the assessment  [62] . Treatment with trifl usal, an anti-
platelet drug, in a randomized, open-label study, led to 
better scores in MMSE, compared to those of patients in 
the control group  [63] . In a double-blind, randomized 
trial, treatment with sulodexide (50 mg bid, for 6 months) 
was associated with an improvement in GBS scores, com-
pared to those of patients in the pentoxifylline group 
 [64] . 

 Citicoline or cytidine 5-diphosphocholine (CDP-cho-
line) is a precursor chemical that is essential for the syn-
thesis of phosphatidylcholine, one of the cell membrane 
components that are degraded during cerebral ischemia, 
thus freeing fatty acids and free radicals  [65] . A meta-
analysis of 12 double-blind, placebo-controlled, random-
ized trials of CDP-choline among elderly patients with 
cognitive impairment caused by chronic cerebral disor-
ders provides some evidence that CDP-choline has a pos-
itive effect on memory function and behavior and an 
even stronger effect on the overall clinical presentation. 
The evidence relates predominantly to patients with cog-
nitive impairment secondary to CVDs  [66] . Further stud-
ies with more appropriate inclusion criteria and outcome 
measures are required. 

 Piracetam, a cyclic derivative of  � -aminobutyric acid, 
increases oxygen and glucose utilization and has rheo-
logical and antithrombotic properties. A Cochrane re-
view of trials in AD, VaD and mixed dementia patients 
indicates that the evidence available does not support the 
use of piracetam in the treatment of patients with demen-
tia or cognitive impairment because effects were regis-
tered only in the overall impression of change, not in 
specifi c measures  [67] . Oxiracetam, an analogue of pi-
racetam, was tested in a double-blind, placebo-controlled 
trial on a heterogeneous group of 307 patients who had 
been diagnosed with multi-infarct, primary degenerative 
or mixed forms of dementia. That oxiracetam produced 
a signifi cant effect was observed in scores on the quality 
of life scale and in global clinical impression scores  [68] . 

 Hydergine or co-dergocrine mesylate was tested in a 
double-blind, placebo-controlled trial on patients diag-
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nosed with multi-infarct dementia  [69] . Treatment with 
a daily intravenous infusion of 3 mg hydergine over 2 
weeks was associated with signifi cant improvements in 
cognitive dysfunction, depression and global clinical im-
pression scores, as compared with the results obtained 
from the placebo group. 

 Naftidrofuryl is a serotonin 5-HT 2  receptor antagonist 
which has been shown to inhibit serotonin-induced vas-
cular smooth muscle contraction and platelet aggregation 
 [70] . In a double-blind, placebo-controlled trial, patients 
diagnosed with VaD or mixed dementia were random-
ized to receive either 400 mg/day, 600 mg/day or a pla-
cebo for 6 months. Naftidrofuryl treatment was shown to 
have benefi cial effects, measured on the ADAS-cog and 
SCAG scales and noted in both mild and moderate-severe 
(DSM-III-R criteria) patients, when compared with the 
placebo group  [71] . This study suggests that treatment 
with naftidrofuryl can slow the rate of cognitive deterio-
ration in VaD patients and confi rms previous fi ndings 
that naftidrofuryl is effective in the improvement of over-
all functioning in VaD patients  [72] . 

 The use of posatirelin, a synthetic peptide with modu-
latory effects in cholinergic and monoaminergic systems, 
was evaluated in a double-blind, placebo-controlled trial 
on VaD patients (NINDS-AIREN criteria). Patients 
treated with intramuscular posatirelin (10 mg/day) 
showed a signifi cant and long-lasting improvement in 
cognitive functions and attention, as compared to the pla-
cebo group  [73] . 

  Gingko biloba  extract performs rheological, antioxi-
dant and free radical-scavenging functions. The evidence 
for the benefi ts of the use of  G. biloba  in the treatment of 
dementia is controversial. Two double-blind and place-
bo-controlled clinical trials on patients with multi-infarct 
dementia and AD found signifi cant improvements in cog-
nition and overall clinical impression scores in patients 
treated with  Gingko   [74] , but the other trial was negative 
 [75] . A Cochrane review on the use of  G. biloba  in the 
treatment of cognitive impairment and dementia con-
cludes that although there is some evidence of potential-
ly positive effects on cognition associated with the use of 
 G. biloba , a larger trial using modern methodology is re-
quired  [76] . 

 Nicergoline is an ergot derivative with vasoactive, an-
tithrombotic and antioxidant properties. A 6-month, 
double-blind, placebo-controlled clinical trial of nicergo-
line (30 mg bid) on patients with multi-infarct dementia 
(DSM-IIII criteria) showed nicergoline had signifi cant 
positive effects on the Sandoz Clinical Assessment Geri-
atric scale (SCAG) and MMSE scores, as compared with 

results from the placebo group  [77] . A pilot study on non-
demented, elderly hypertensive patients, who had pre-
sented with evidence of leukoaraiosis on CT scans, showed 
that nicergoline administration over a 2-year period 
slowed the deterioration in cognitive functions  [78] . A 
Cochrane review indicates that there is consistent evi-
dence for the benefi cial effects of the use of nicergoline in 
the treatment of elderly patients with cognitive impair-
ment stemming from several causes, including CVD 
 [79] . 

 Argatroban, a thrombin inhibitor, was tested on 
Binswanger patients in a small study (without control). 
The group of patients treated with argatroban showed 
improvements in cognitive function and gait disorder, as 
compared with patients treated with an antiplatelet drug 
 [80] . 

 The heparin-mediated extracorporeal LDL/fi brinogen 
precipitation system (HELP system) induced a rapid and 
safe reduction in fi brinogen, lipids and other substances 
related to hemorrheology, whereby whole-blood and plas-
ma viscosity and the aggregability of blood cells was im-
proved  [81] . The effect of two HELP applications (within 
8 days) was investigated in 141 patients with multi-in-
farct dementia (DSM-III and NINDS-ADRDA criteria, 
Hachinski scale, MRI). The laboratory data and clinical 
symptoms were analyzed before and after treatment. A 
statistically signifi cant improvement was observed in 
scores on the Mathew scale, MMSE, and in the Activities-
of-Daily-Living-Test (ADLT). These results suggest a 
possible role for hemorrheology in the treatment of the 
symptoms of multi-infarct dementia patients  [82] . 

 Pentoxifylline is a xanthine derivative with hemorrhe-
ological and antithrombotic properties. A multicenter, 
placebo-controlled study compared pentoxifylline treat-
ment (1,200 mg/day) to the use of a placebo in multi-in-
farct VaD patients (DSM-III criteria and evidence of in-
farct in CT scan). At the end of a 9-month follow-up pe-
riod, intellectual and cognitive function scores had 
improved signifi cantly in the active group as compared 
to the control group  [83] . In a previous, small, double-
blind, placebo-controlled trial (64 patients), pentoxifyl-
line treatment appeared to slow the cognitive decline in 
patients with multi-infarct dementia  [84] . 

 Propentofylline, a combined inhibitor of adenosine re-
uptake and cAMP phosphodiesterases and a neuropro-
tective glial cell modulator, has been tested in clinical 
trials involving more than 800 patients with VaD. In a 
pooled group of VaD patients from four early phase III 
European trials and a European-Canadian phase III 
study, the benefi cial effects of propentofylline (300 mg, 
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tid) were consistently demonstrated in the areas of cogni-
tive and global function. The sustained benefi cial results 
of treatment for at least 3 months after withdrawal sug-
gest some positive effects on the progression of cognitive 
impairment  [85, 86] . In these studies, DSM-III-R criteria, 
NINDS-AIREN criteria and CT/MRI scans were used to 
select patients with possible and probable VaD. 

 Memantine is a voltage-dependent, uncompetitive an-
tagonist N-methyl- D -aspartate (NMDA) receptor, which 
appears to counteract glutamate-induced excitotoxicity 
after brain ischemia. Memantine (20 mg/day) was tested 
in two randomized, placebo-controlled trials  [87, 88] , 
which included a total of 900 patients diagnosed with 
mild to moderate probable VaD (NINDS-AIREN crite-
ria) who were treated for 6 months. Both studies indepen-
dently showed statistically signifi cant cognitive benefi ts 
in the cognitive subscale of the Alzheimer’s Disease As-
sessment Scale (ADAS-cog) score in patients treated with 
memantine as compared to those in the placebo group. 
There were no differences in global functioning (CIBIC-
plus) scores between the groups in either study. Indicators 
of the tolerance and safety of memantine were good. In a 
pooled subgroup analysis of these trials, the cognitive 
benefi ts of memantine were more pronounced in VaD 
patients with small-vessel disease than in those with large-
vessel disease as registered in CT or MRI scans. In addi-
tion, cognitive decline among VaD patients with small-
vessel disease in the placebo group was more severe than 
among those with large-vessel disease  [89] . 

 The development of acetylcholinesterase inhibitors 
was based on the cholinergic hypothesis of AD. However, 
several studies have investigated the potential use of cho-
linergic agents, such as donepezil hydrochloride, rivastig-
mine tartrate, and galantamine hydrobromide, in the 
treatment of VaD patients. The existence of cholinergic 
defi cits has been demonstrated in pure VaD and AD, al-
though they are less pronounced in VaD patients and fol-
low a different pattern to that found among patients with 
AD. 

 Galantamine inhibits acetylcholinesterase and modu-
lates central nicotinic receptors, thus amplifying the cho-
linergic response. Galantamine (24 mg/day) was tested in 
a randomized, parallel-group, double-blind, placebo-con-
trolled, 6-month trial, on patients with probable VaD 
(NINDS-AIREN criteria) and possible Alzheimer’s dis-
ease (NINCDS-ADRDA criteria) combined with radio-
logical evidence of CVD (mixed dementia)  [90] . A total 
of 592 patients were included in the trial (43% probable 
VaD). A statistically signifi cant improvement in cogni-
tion (ADAS-cog), global functioning (CIBIC-plus), daily 

living activities (Disability Assessment of Dementia – 
DAD), and behavioral symptoms (Neuropsychiatric In-
ventory – NPI) was observed in the group that received 
treatment as compared to those in the placebo group. 
These results were similar to fi ndings from previous trials 
in AD. However, although the trial was not structured to 
allow subgroup analysis, the VaD and mixed dementia 
groups of patients showed different patterns of response 
in some respects. Neither group showed signifi cant trends 
in cognitive effects as a result of active treatment. Like 
the AD subjects in the trial, the subgroup of mixed de-
mentia patients who received galantamine treatment 
showed greater improvements in cognition and global 
functioning than patients in the placebo group. In the 
subgroup of VaD patients, no differences were observed 
in global functioning between the placebo and galan-
tamine groups  [91] . In the galantamine trial, most of the 
patients with VaD had had strokes, whereas the majority 
of the group with mixed dementia had presented with 
white-matter lesions. In an open-label extension of this 
clinical trial, the group of galantamine patients showed 
similar, sustained benefi ts after a year  [92] . 

 Rivastigmine was used in a small open-label trial on 
patients with mild to moderate subcortical VaD. Mild 
improvements in cognition and caregiver stress were ob-
served  [93, 94] . However, the possible effi cacy of rivastig-
mine in the treatment of patients with VaD remains to 
be demonstrated. 

 Donepezil, a piperidine derivative drug, was tested in 
two double-blind, placebo-controlled trials  [95, 96]  on 
patients diagnosed with possible or probable VaD 
(NINDS-AIREN criteria). A total of 1,219 patients were 
included (73% probable VaD). Patients were randomly 
assigned to three treatment groups: donepezil 5 mg/day, 
donepezil 10 mg/day or a placebo, for 6 months. At the 
end of the follow-up period, both clinical trials showed 
similar results. The group of patients treated with done-
pezil showed statistically signifi cant improvement in cog-
nition (ADAS-cog, MMSE) and global functioning 
(CIBIC-plus) scores, compared to results from those in 
the placebo group. The benefi cial effects of treatment on 
daily living activities (Alzheimer’s Disease Functional 
Assessment and Changes Scale – ADFACS) were higher 
in both groups of patients treated with donepezil as com-
pared with patients in the placebo group, but, signifi cant-
ly, only in one of the trials  [96] . Donepezil was well toler-
ated in VaD patients, although more adverse effects were 
reported in the 10-mg group than in the 5-mg group. The 
signifi cant effect on the ADAS-cog score in both trials re-
sulted in an improvement over baseline. 57% of patients 
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in the donepezil trials had had cortical or subcortical 
strokes, 15–18% white-matter lesions only  [97] . The min-
imal cognitive decline observed in VaD patients in the 
placebo group during the follow-up period suggests that 
the cognitive improvement observed in patients treated 
with donepezil might be due to an improvement in cogni-
tive function rather than a slowing of the progress of cog-
nitive deterioration in those patients  [95] . 

 Prevention of VaD 
 Unlike forms of cognitive deterioration with a degen-

erative cause, VaD may be preventable to some extent, if 
vascular risk factors are controlled and strokes do not re-
cur. Moreover, there is growing evidence that ischemic 
processes may precipitate or accelerate cognitive impair-
ment in AD. Thus, the treatment of vascular risk factors 
may represent an important strategy to decrease the inci-
dence of dementia and slow the progression of VCI  [19, 
53, 57, 97–101] . The prevention of VaD is centered on 
the early identifi cation and control of vascular risk fac-
tors, to prevent vascular injury and CVD, and the care of 
stroke patients. 

 Stroke patients are at increased risk of both VaD and 
AD  [102] . Not all individuals who have suffered strokes 
develop dementia, and the reasons for the development 
of dementia in stroke patients are still poorly understood. 
Several risk factors – arterial hypertension, cardiac disor-
ders, diabetes, prior stroke, high hematocrit levels, alco-
hol abuse, pre-existing cognitive decline, age, clinical or 
stroke-related factors in different combinations – have all 
been reported to predict, in one way or another, the onset 
of dementia after a stroke  [22, 24, 103–105] . However, 
the single most frequent manifestation of VaD is subcor-
tical dementia deriving from small-vessel disease rather 
than multiple larger cortical infarcts. The presence of 
periventricular white-matter lesions and silent brain in-
farcts in neuroimaging studies is associated with steeper 
cognitive decline and identifi es subjects who are at a high-
er risk of the development of dementia  [106–108] . Vari-
ous risk factors have been identifi ed for white-matter 
changes and lacunae: in particular, hypertension, diabe-
tes and orthostatic hypotension  [109] . The care of acute 
ischemic stroke patients is based on the use of thrombo-
lytic drugs, antiplatelet/anticoagulant agents and phar-
macological and physiological neuroprotective approach-
es  [110] . The prevention of stroke recurrence through the 
control of risk factors, by carotid endarterectomy as well 
as the use of antithrombotic drugs (warfarin or antiplate-
let agents), is also likely to reduce the incidence of VaD 
and mixed dementia. 

 There is growing evidence that hypertension may con-
tribute to the development of cognitive decline and de-
mentia  [98, 111–115] . Several studies have shown not 
only a connection between HTA and an increased risk of 
cognitive deterioration  [116] , but also the existence of 
benefi cial effects from antihypertensive treatments  [117] . 
In the Honolulu Asia Aging Study (HASS), for every 
10 mm Hg increase in systolic blood pressure there was 
an increased risk of poor cognitive function  [112] . In the 
ARIC cohort, the presence of hypertension or diabetes in 
midlife predicted a greater decline in some neuropsycho-
logical tests 6 years later  [118] . In the Systolic Hyperten-
sion in Europe study (Syst-Eur), a double-blind placebo-
controlled trial, the treatment of isolated hypertension in 
 1 60-year-old subjects with nitrendipine signifi cantly re-
duced the incidence of dementia  [119] . A 2-year open-
label extension of Syst-Eur showed similar results  [120] . 
In the SCOPE study  [121] , the blood pressure difference 
between patients treated with candesartan and patients 
in control groups was 3.2/1.6 mm Hg, and no effect on 
cognition was observed over a mean of 3.7 years. Perin-
dopril, usually coupled with indapamide, had a signifi -
cant positive effect in lowering blood pressure and reduc-
ing the risk of dementia among patients who had suffered 
recurrent strokes  [122] . The decreased incidence of 
 dementia associated with antihypertensive treatment 
probably extends to AD, VaD and mixed dementia pa-
tients. 

 In relation with hypercholesterolemia, several studies 
have noted a connection between high LDL and total 
cholesterol levels and a high prevalence of dementia, 
mainly non-AD in form  [123–126] . Some studies suggest 
that the use of lipid-lowering agents lowers the risk of de-
mentia and protects against cognitive decline  [100, 124, 
125] . In a prospective case-control study, subjects of 50 
years and older to whom statins had been prescribed 
showed a signifi cantly lowered risk of developing demen-
tia, independent of plasma cholesterol levels or exposure 
to other lipid-lowering agents  [100] . An observational 
study of postmenopausal women with cardiovascular dis-
ease revealed that reductions in total and LDL choles-
terol levels over 4 years were associated with better cogni-
tive functioning and an approximately 50% reduced risk 
of cognitive impairment  [125] . It has been postulated that 
some of the neuroprotective effects of statins are likely to 
be cholesterol independent (the modulation of endothe-
lial function, the preservation of endothelial nitric oxide 
synthase activity in cerebral vasculature, or anti-infl am-
matory and antioxidant properties)  [127] . In a prospec-
tive study of elderly subjects, a higher baseline LDL cho-
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lesterol level was linked to an increased risk of developing 
post-stroke dementia  [126] . 

 However, the possible benefi cial effects of statins on 
cognitive decline were not supported by other observa-
tional studies  [128, 129] . The results from two important 
randomized placebo-controlled trials  [130–132]  designed 
to assess the cardiovascular effects of statin use have not 
refl ected a protective effect of statins on cognitive impair-
ment. In the Heart Protection Study (HPS), no signifi -
cantly decreased incidence of cognitive decline was ob-
served in patients treated with simvastatin (40 mg/day) 
over a 5-year follow-up period  [130, 131] . Similarly, no 
improvements in the incidence of cognitive impairment 
were observed in the Prospective Study of Pravastatin in 
the Elderly at Risk (PROSPER) trial, which compared 
the use of pravastatin (40 mg/day) to a placebo  [132] . 

 Nevertheless, the growing evidence that statins can re-
duce the incidence of cerebrovascular and cardiovascular 
events has contributed to an increased prescription of 
these drugs which might also prevent cognitive impair-
ment. A recent study showed that a substantial propor-
tion of clinicians favor the use of statins in primary and 
secondary prevention of cognitive impairment of vascu-
lar origin, despite a lack of defi nitive evidence to support 
their use  [133] . Randomized trials are needed to establish 
the real value of statins and other lipid-lowering agents 
in the prevention of dementia or the delay of its onset. 

 In population-based studies, the presence of type-2 di-
abetes was associated with an increased risk of VaD 
 [134] . 

 Cerebral hypoperfusion may be associated to cognitive 
impairment.   Low blood pressure appears to predispose 
some subpopulations to the development of dementia 
 [135] . A cohort study has revealed a U-shaped association 
between incident cognitive impairment and baseline 
blood pressure, with a higher risk of cognitive impair-
ment among subjects with lower systolic blood pressure 
 [116] . Systolic blood pressure levels below 130 mm Hg 
are independently associated with cognitive impairment 
in older subjects who suffer from heart failure  [136] . The 
early treatment of cardiac low-output status in older peo-
ple can prevent or reverse cognitive decline induced by 
prolonged cerebral hypoperfusion. 

 The role of antioxidant vitamins is unclear.   A study of 
VaD patients (DSM-III criteria) showed low levels of 
plasma  � -tocopherol which suggest reduced antioxidant 
activity  [137] . In a community-based epidemiological 
study of older men, the use of a combined vitamin E and 
C supplement was associated with a reduction in the in-
cidence of subsequent VaD  [138] . 

 Conclusions 

 In recent years, the focus of therapeutic trials in the 
fi eld of VaD has changed. Clinical trials in VaD have 
tested several drugs that have different mechanisms of 
action. However, the results are considered to be disap-
pointing in general terms, except for the more promising 
fi ndings from some more recent studies. The explana-
tions offered for the negative results thus far are many 
and various. 

 The greatest problems faced in VaD clinical trials de-
rive from the diffi culty in diagnosing VaD because of the 
heterogeneous nature of its clinical presentation and pro-
gression, and from the use of trial design models more 
suited to the study of AD. More often than not, VaD 
clinical trials follow procedures and judge their fi ndings 
by the criteria of effi cacy and the scales of evaluation 
proper to studies of AD; they do not take the specifi c pe-
culiarities of cognitive decline of vascular origin suffi -
ciently into account. Thus, the MMSE or ADAS-cog 
scales, for example, may not be very sensitive to changes 
in the conditions of patients with VaD. Future VaD clin-
ical trials must assess cognitive functioning by means of 
appropriate and adequate tests, take neuropsychiatric 
symptoms and executive dysfunction into account, and 
make a clear distinction between the decline in function-
ing caused by the stroke and the symptoms induced by 
cognitive impairment  [18] . At the same time, it also seems 
clear that VaD clinical trials should be designed for pa-
tients in the early stages of the condition, in whom the 
underlying pathogenic mechanisms are similar  [19] . 

 The promising results from the fi rst trials with meman-
tine and ChIs in the treatment of VaD suggest that the 
use of these drugs might be combined to cumulative ef-
fect in a synergistic form of therapy  [139] . At present, a 
cholinesterase inhibitor (donepezil, galantamine) or an 
NMDA antagonist (memantine) seems to be indicated for 
patients diagnosed with VaD or mixed dementia; only the 
responsiveness of the individual to the treatment should 
determine whether or not it be discontinued. 
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assessment of the selection of animal models and the 
parameters to be evaluated. Our laboratory has em-
ployed a rat embolic stroke model to investigate the 
combination of rtPA with citicoline as compared to 
monotherapy alone and investigated whether neuropro-
tection should be provided before or after thrombolysis 
in order to achieve a greater reduction of ischemic brain 
damage. 
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 Physiopathologic Cerebral Ischemia 

 The signifi cant advances in our understanding of the 
physiopathological mechanisms of cerebral ischemia are 
leading to a considerable development of drugs that, at 
various levels, can block or modify the chain of biochem-
ical processes set off by the hypoperfusion of the cerebral 
parenchyma. 

 The ischemic cascade starts within seconds to minutes 
of loss of perfusion. Protein synthesis initially ceases as 
the ischemic neuron attempts to conserve its rapidly wan-
ing energy store. Membrane ion-transport systems fail, 
and the neuron becomes depolarized. Membrane depo-
larization results in calcium infl ux, which in turn causes 

 Key Words 
 Stroke  �  Thrombolytics  �  Neuroprotection in acute 
stroke  �  Cerebral ischemia, animal models  �  
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  Abstract 
 Stroke is a major cause of death and disability world-
wide. The resulting burden on society grows with the 
increase in the incidence of stroke. The term brain attack 
was introduced to describe the acute presentation of 
stroke and emphasize the need for urgent action to rem-
edy the situation. Though a large number of therapeutic 
agents, like thrombolytics, NMDA receptor antagonists, 
calcium channel blockers and antioxidants, have been 
used or are being evaluated, there is still a large gap be-
tween the benefi ts of these agents and the properties of 
an ideal drug for stroke. So far, only thrombolysis with 
rtPA within a 3-hour time window has been shown to 
improve the outcome of patients with ischemic stroke. 
Understanding the mechanisms of injury and neuropro-
tection in these diseases is important to target news sites 
for treating ischemia. Better evaluation of the drugs and 
increased similarity between the results of animal ex-
perimentation and in the clinical setting requires critical 
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the release of stored neurotransmitters like glutamate, the 
major excitatory neurotransmitter in the brain. This re-
lease worsens the cellular insult by further increasing in-
tracellular calcium and depolarizing other metabolically 
compromised neurons. The massive calcium infl ux stim-
ulates several enzymes, which become unregulated and 
may provoke the destruction of cellular homeostatic 
mechanisms. Free radical formation and nitric oxide syn-
thesis contribute to neuronal damage. Hours to days after 
a stroke, the ischemic territory activates specifi c genes 
and the consequent cytokine and cell adhesion molecule 
formation stimulates local infl ammation and may further 
impair microcirculatory blood fl ow. Last, the activation 
of apoptotic genes may promote programmed cell death 
in the surviving neurons. 

 Ischemic Penumbra 

 It appears that intervention must occur very early for 
any substantial portion of brain tissue to be preserved. 
The penumbral region is fundamentally salvageable and 
is therefore the most important target of therapy for acute 
stroke. If the target of acute stroke therapy is the ischemia 
core, where the neurons most severely affected by oxygen 
starvation die rapidly, only fast and effective reperfusion 
strategies can reverse the blockage of the blood supply 
and potentially increase the fl ow above the critical thresh-
old, before the cells are irreversibly damaged  [1] . Border-
ing the core of the ischemia is the penumbra zone  [2]  
where blood fl ow gradually drops below the functional 
threshold but is still suffi cient to maintain morphological 
integrity for a certain time, but this depends on the degree 
of the residual perfusion  [1] . This penumbra zone is usu-
ally considered the most promising target for acute stroke 
therapy because the therapeutic window can last several 
hours  [3]  and because these areas can be revealed by func-
tional neuroimaging modalities  [4] . Again the penumbra 
would benefi t mainly from suffi cient reperfusion before 
irreversible cell damage has occurred, but additional neu-
roprotective agents targeted at various steps in the patho-
biochemical cascade could help, or might even be neces-
sary, to prevent or mitigate secondary ischemic cell dam-
age. The rate of progression of the penumbra from 
reversible to irreversible ischemic injury depends on 
many variables and may be accelerated in the presence 
of poor collateral circulation, hyperglycemia, and other 
exacerbating factors  [4] . If reversible ischemia is not pres-
ent at the time of treatment, then neuroprotective thera-
py cannot be expected to work. 

 Therapeutic Window 

 This therapeutic window of opportunity, specifi cally 
the time between the occurrence of the stroke and the 
time that treatment is initiated, has, until recently, often 
been assumed to differ in animals and humans. That is, 
there is the view that damage develops more slowly in 
human brains and that a short time window in a rat mod-
el did not preclude giving the drug after a longer interval 
between stroke and administration in humans. A good 
example of this is the clinical investigation of NMDA 
antagonist. Despite substantial evidence that these com-
pounds only provide protection when given shortly after 
(60–90 min) the ischemic insult  [5] , they have neverthe-
less been administered to stroke patients up to 6 h after 
stroke onset  [6] . The predominant reason is probably 
practicality because it is diffi cult to get patients to hospi-
tal and diagnosed within 90 min of stroke onset whereas 
6 h is a reasonable time frame for presentation and treat-
ment. Indeed, the problems of carrying out a clinical tri-
al within a short time frame are substantial. However, the 
success of the tissue plasminogen activator (tPA) trial 
with a 3-hour time window  [7]  shows that such studies 
are possible. It is noteworthy that tPA is also effective in 
animal stroke models within the same time frame  [8] , 
supporting the idea that animals and humans may be 
similar in the time their window of opportunity is open. 
Most investigated compounds act on the early events in 
the neurodegenerative cascade. Consequently, one can 
extrapolate that these drugs ought to be given rapidly af-
ter the ischemic insult if they are to be of any value. If, as 
we believe, the time window of neurodegenerative events 
is similar in experimental animals and humans, then we 
must use one of two approaches: (1) administer the drug 
very soon after the stroke – an approach that is practi-
cally very diffi cult, or (2) develop a compound acting on 
a later part of the ischemic cascade that can be given some 
time after the ischemic insult, indicating its practicality 
for clinical practice. 

 Development of Acute Stroke Therapies 

 The two most important therapeutic approaches in 
acute cerebral ischemia consist of improving cerebral 
blood fl ow by early reperfusion and blocking the bio-
chemical and metabolic changes at the ischemic cascade 
level. Most likely, the effective time windows for these 
treatments are different: rather short for effective reper-
fusion, probably because of the hemorrhagic complica-



 Gutiérrez et al.  Cerebrovasc Dis 2006;21(suppl 2):118–126 120

tions associated with late reperfusion of ischemic brain 
tissue, and later for neuroprotection, and particularly 
prolonged in the anti-infl ammatory and antiapoptotic ap-
proaches. Reperfusion induced by thrombolysis has been 
shown to be effective when initiated within 3 h of symp-
tom onset  [7] . In contrast, neuroprotective strategies have 
been disappointing clinically so far and have not im-
proved stroke outcome  [9–11] , although signifi cant re-
ductions of infarct size were demonstrated in animal 
models with the use of strategies to antagonize the vari-
ous steps in the excitotoxic cascade  [9, 12] , and inhibit 
free radical toxicity  [13, 14] , harmful secondary infl am-
matory mechanisms  [15]  and attenuate cell death due to 
apoptosis  [16, 17] . The discrepancy between animal mod-
els results and clinical effi cacy of the neuroprotective 
drugs is probably due to the limits of animal models in 
refl ecting complex clinical stroke. 

 Animals Models of Cerebral Ischemia 

 The effi ciency of various neuroprotective strategies is 
well documented in animal experiments but has thus far 
given disappointing results in ischemic stroke. The dif-
ferent causes of discrepancies between the animal models 
and clinical studies depend on both the drugs studied and 
the design of the experimental model and clinical study 
 [18, 19] . 

 Neuroanatomical, pathophysiological and metabolic 
differences exist between the rat, the animal most often 
used in preclinical studies of neuroprotective therapies, 
and humans, and these differences may help explain why 
the results of experimental studies are generally more fa-
vorable. 

 The objective of an experimental animal model is to 
achieve homogeneous and reproducible lesions with a 
minimum of variability, so as to maximize reliability and 
results. 

 The most appropriate model must be chosen when de-
signing the experimental investigation. There are various 
models of focal cerebral ischemia  [18] , although the ones 
most frequently used at present are the model of middle 
cerebral artery ligation after craniotomy  [20, 21] , the mid-
dle cerebral artery intraluminal occlusion model, insert-
ing a fi lament via the internal carotid artery  [22]  and the 
model of occlusion with autologous blood clot emboli  [23, 
24]  ( fi g. 1 a). The fi rst produces very homogeneous corti-
cal lesions but is traumatic and not very physiological, 
and is the furthest removed from clinic. It is very useful 
in pathophysiological studies of ischemia thanks to its 

regular results and can be very useful in the study of neu-
roprotective agents for demonstrating a certain effect on 
the lesion, but its results are hard to reproduce in clinical 
trials for all the reasons mentioned above. On the other 
hand, the intraluminal occlusion models, particularly the 
embolic method, are more similar to the cerebral infarc-
tion produced by arterial emboli in humans, and produce 
to very extensive lesions of widely varying size which af-
fect basal ganglia and the cortex and cause high mortality. 
This model is very attractive to study neuroprotectors, 
particularly in combination with pharmacological throm-
bolysis, but it has the inconvenience of being much less 
cost-effective due to the variability of the resulting lesions 
and high mortality. 

 Thrombolysis for Ischemic Stroke 

 Once we have produced a stroke we then experiment 
with methods to prevent or protect against its effect. One 
method is thrombolysis to restore cerebral blood fl ow. 

 The aim of thrombolytic therapy is to lyse an occlud-
ing thrombus or embolus and reduce the volume of irre-
versibly damaged cerebral tissue. However, a major com-
plication of thrombolysis in stroke is cerebral hemor-
rhage, which would offset any benefi cial effects. 

 Restoration of cerebral blood fl ow after an acute vas-
cular occlusion may be achieved by the administration of 
thrombolytic agents. Reperfusion plays an important role 
in the pathophysiology of cerebral ischemia. tPA and 
streptokinase are of effective in acute ischemic stroke and 
are the most extensively studied agents for thrombolysis 
in stroke. However, the results of streptokinase and tPA 
studies are not directly comparable. The mechanisms of 
action of the two agents differ substantially, and the pro-
longed and nonspecifi c systemic lytic effects of streptoki-
nase may have contributed to the high risk of hemor-
rhage. 

 The specifi c choice of thrombolytic drug to treat acute 
stroke depends on several pharmacokinetic factors. The 
timing of thrombolysis is of paramount importance. Isch-
emic brain tissue may be salvageable if reperfusion occurs 
before the tissue is irreversibly damaged, and moreover, 
the risk of hemorrhage appears to increase once the isch-
emic tissue becomes edematous  [7, 9] . The time between 
symptoms onset and initiation of medication and the 
dose levels of the thrombolytic agents are important de-
terminants for the risk of cerebral hemorrhage. Throm-
bolysis is an effective therapy for acute stroke, but only 
one thrombolytic agent, tPA, has proven effi cacy and 
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safety. Early and rapid assessment is essential because 
animal and human studies have shown that treatment 
must begin in the 3 h after stroke onset. A major limita-
tion in thrombolysis for acute ischemic stroke is this re-
stricted time window, and any method that could widen 
the reperfusion time window would be important. Only 
a small proportion of acute stroke patients are currently 
eligible for thrombolysis, mainly because of excessive de-
lay in reaching the presenting at the hospital. 

 Thrombolysis with intravenous tPA has been demon-
strated to be an effective treatment for acute ischemic 
stroke with unselected subtypes of vasculo-occlusive dis-
ease. Unfortunately, there is a substantial risk of cerebral 
hemorrhage when thrombolytic agents are used in the set-
ting of cerebral ischemia  [7, 25, 26] . This risk of hemor-
rhage is greatest in patients with the most severe neuro-
logic defi cits and they have the least chance for a good 
outcome  [25] . Strategies that provide better information 
regarding the response to thrombolysis may help evaluate 
patients’ identity for intravenous tPA or alternative thera-

pies. Theoretically, patients with smaller and more distal 
clots represent a subset of patients with a greater probabil-
ity of benefi t from tPA due to less severe defi cits at onset, 
smaller volumes of cerebral ischemia and a greater likeli-
hood of adequate collateral circulation. These patients 
may also have a lower risk of intracerebral hemorrhage due 
to their smaller volume of tissue injury  [27, 28] . The rec-
ommendation for the intravenous administration of rtPA 
within 3 h of stroke onset in carefully selected patients 
should not be changed  [29, 30] . The evidence is strong that 
all delays in treating patients should be avoided. 

 Neuroprotective Therapies 

 At present, no agent with putative neuroprotective ef-
fects can be recommended for the treatment of patients 
with acute ischemic stroke  [29, 30] . 

 Neuroprotective drugs aim to salvage ischemic tissue, 
limit infarct size, prolong the time window for reperfu-

  Fig. 1.   a  Schematic representation of experimental embolization procedure.  b  Infarct volume identifi ed in a co-
ronal section of brain stained with HE.  c  TUNEL-positive cells at the infarct border zone. 
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sion therapy, or minimize postischemic reperfusion in-
jury or infl ammation and the risk of hemorrhage. Each 
step along the ischemic cascade is a potential target for 
therapeutic intervention. In cerebral ischemia, only 
thrombolysis has been shown to improve clinical out-
come. Neuroprotective therapies have been effective in 
experimental models of ischemia but, at the moment, 
there is no defi nitive evidence of its benefi t in the numer-
ous trials carried out in humans, although some sub-
groups of patients seem to benefi t from some of them. 
The observed lack of effi cacy from these drugs may be 
due to delays in the initiation of treatment, inadequate 
dose, inadequate penetration, adverse effects, or insuf-
fi cient matching of the mode of action of the drug to the 
mechanism of brain injury  [31, 32] . Active neuroprotec-
tion in acute stroke should include control of blood pres-
sure within certain limits, antipyretic therapy, mainte-
nance of blood glucose, and early feeding and fl uid re-
placement. Manipulation of blood pressure in acute 
stroke may improve outcome. The design of new clinical 
trials with neuroprotective drugs requires adequate pre-
clinical assessment and the use of the new magnetic res-
onance techniques to the select patients and assess the 
effi cacy of the treatment. Some drugs (citicoline, clome-
thiazole, piracetam and ebselen) have shown a certain 
degree of clinical effi cacy, limited to subgroups of pa-
tients, and with a narrow therapeutic window, longer 
lasting in the case of citicoline  [33] . The ECCO 2000 
study  [34]  involved 899 patients at 125 centers who, 
within 24 h of ischemic hemispheric stroke onset, were 
randomly assigned to receive either oral citicoline 
(1,000 mg twice daily) or placebo for 6 weeks. The pri-
mary outcome measure, a 7-point or greater improve-
ment in the National Institutes of Health stroke scale 
score, was achieved by almost the same proportion of 
patients in both groups (52% citicoline, 51% placebo), 
suggesting no benefi t of citicoline. However, approxi-
mately 5% more patients treated with citicoline had ex-
cellent outcomes (modifi ed Rankin score  ! /= 1) than 
those receiving placebo. In this study the results were not 
conclusive but a positive neuroprotective tendency of 
citicoline was evidenced. Citicoline is the only putative 
neuroprotectant that has shown partial positive results 
in all randomized, double-blind individual trials and 
that has demonstrated effi cacy in the predefi ned primary 
end-point of a meta-analysis. The treatment with oral 
citicoline within the fi rst 24 h after symptom onset in 
patients with moderate to severe stroke increases the 
probability of complete recovery at 3 months  [35] . Re-
cently, the results of SAINT-1 study have been commu-

nicated. This study included more than 1,600 subjects, 
outcome on the mRS was signifi cantly improved by 
NXY-059 (Lees et al. for the SAINT-1 Study Group: Pre-
liminary results of the SAINT-1 Trial presented at the 
14th European Stroke Conference, Bologna, May 2005). 
However, one should wait for the fi nal publication to 
evaluate the data and usefulness of drugs. 

 Effective neuroprotection may require polytherapy 
that combines drugs with different mechanisms of action, 
perhaps administered at different poststroke intervals, to 
maximize effi cacy and/or extend the window for reperfu-
sion, minimize reperfusion injury or hemorrhage, or in-
hibit delayed cell death  [36–38] . Furthermore, because 
the failure of several neuroprotective trials has been at-
tributed to dose-limiting toxicity  [39] , combination ther-
apy may permit lower doses of each agent and minimize 
adverse effects. 

 Combination of Thrombolysis and 
Neuroprotection 

 Combined thrombolysis-neuroprotective approaches 
have shown promise in animal studies and are beginning 
to be investigated in clinical trials. The addition of neu-
roprotective medication may enhance effectivity of 
thrombolysis and reduces the incidence of hemorrhages. 
Synergistic effects have been demonstrated in animals 
when thrombolysis is combined with citicoline  [40] , an 
AMPA antagonist  [41] , and an NMDA antagonist  [42] . 
Administration of antileukocytic adhesion antibodies has 
been shown to extend the therapeutic window for throm-
bolysis  [43] . 

 Animal models suggest that the combination of low 
doses of intra-arterial urokinase with a neuroprotective 
agent, topiramate, may benefi t ischemic stroke treatment 
by improving neurologic recovery, attenuating infarction 
size, and reducing the risk of cerebral hemorrhage  [44] . 
In a model of focal cerebral ischemia, citicoline may offer 
signifi cant protection that may be further enhanced with 
the addition of urokinase. In other experimental studies, 
the administration of eliprodil, a neuroprotective agent 
which blocks both the modulatory polyamine site of the 
NMDA receptor and neuronal voltage-sensitive calcium 
channels or a thrombolytic agent (rtPA) have similarly 
reduced the volume of brain damage and the neurological 
defi cit. Combined cytoprotective therapy and thromboly-
sis markedly improved the degree of neuroprotection and 
may, thus, represent a valuable approach for the treat-
ment of stroke in humans  [45] . 
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 Various experimental animal models studies show 
that the combination of thrombolysis with neuroprotec-
tors (citicoline, MK-801, tirilazad, NBQX, anti-CD18) 
produces benefi cial effects superior to those obtained 
with monotherapy  [40, 42, 43,  46, 47] . However, clinical 
trials combining therapy (lubeluzole, clomethiazole)  [48, 
49]  did not show effi cacy. Combining neuroprotective 
drugs such as lubeluzole simultaneously with rtPA is fea-
sible and safe. The effi cacy of this strategy, using poten-
tially more effective neuroprotective agents, should be 
evaluated in an adequately powered clinical trial  [48] . In 
a pilot study, there were no safety concerns related to the 
combination of tPA and clomethiazole. The combination 
proved effective even though many patients received clo-
methiazole several hours after thrombolysis; future stud-
ies must require prompt administration of the neuropro-
tector either before or during administration of the throm-
bolytic. Patients with major strokes may be able to 
benefi t from the combination tPA and clomethiazole 
 [49] . Recently, the results of SAINT-1 study show data 
where the combination alteplase and NXY-059 reduced 
the risk of any hemorrhagic transformation and of symp-
tomatic intracranial hemorrhage (Lees et al. for the 
SAINT-1 Study Group: Preliminary results of the SAINT-
1 Trial presented at the 14th European Stroke Confer-
ence, Bologna, May 2005). Benefi ts of combined therapy 
are already being demonstrated in this study, but, once 
more, only fi nal results would allow further conclusions 
for better understanding of mechanisms of this combina-
tion and to demonstrate its usefulness. 

 Our Experience 

 As above mentioned, we chose citicoline due to its 
proven clinical effi cacy  [35] . Citicoline has been demon-
strated to be benefi cial in several models of cerebral isch-
emia. The good results with citicoline are probably the 
result of its mechanism of action providing a neuropro-
tective effect against both early and delayed ischemic 
damage, since it inhibits different steps of the ischemic 
cascade simultaneously and protects the targets (mem-
branes, nucleus, nucleic acids...). Citicoline stabilizes and 
repairs the membrane  [50] , favors the synthesis of phos-
phatidylcholine, nucleic acids, proteins, acetylcholine 
and other neurotransmitters, inhibits free fatty acid re-
lease  [51]  and protects against apoptosis  [52] . Citicoline 
is used in our study for these reasons. 

 The treatment regimen, which, would theoretically al-
low us to reduce the extent and seriousness of cerebral 

infarction to the maximum, would be the combination of 
thrombolysis to restore blood fl ow, as soon as possible 
together with effective neuroprotection to the inhibit the 
injury-causing mediators produced by ischemia- reperfu-
sion. To obtain the desired effi cacy of combined therapy, 
the most effective administration regimen must be iden-
tifi ed. Two possibilities are proposed in general: (1) ad-
minister the neuroprotector before reperfusion to delay 
progression to irreversible infarction in the penumbra 
zone and prolong the therapeutic window for thromboly-
sis, or (2) administer the neuroprotector once reperfusion 
has been carried out so as to improve neuroprotector pen-
etration in the penumbra zone, and its protective action 
against injuries due to ischemia-perfusion. 

 Experimental studies have demonstrated the superior-
ity of combining thrombolysis with different neuropro-
tectors  [47, 53] . Specially, the association of citicoline 
with rtPA  [40]  and urokinase  [54] , with the fi rst citicoline 
dose given before or simultaneous to thrombolysis, pro-
duces a greater reduction in the brain lesion than when 
either drug was used alone in animal models of ischemic 
stroke. However, to our knowledge, no evaluation of ad-
ministering citicoline once reperfusion has occurred has 
yet been published. With the objective of investigating 
whether neuroprotection should be provided before 
 reperfusion or once it is ensured, we have compared 
the effect of rtPA (5 mg/kg i.v.) with citicoline at low 
(250 mg/24 h for 3 days by the intraperitoneal route)  [55]  
or high (1,000 mg/24 h for 3 days by the subcutaneous 
route)  [56]  doses and the combination of both treatments 
by two routes  [57] , giving citicoline before or after rtPA 
in a rat embolic stroke model. This experimental rat mod-
el can be useful in preclinical studies of thrombolytics and 
neuroprotectors. The study has considered a combination 
of clinical (reduction of mortality and neurological scale 
score), morphological (infarct volume and TUNEL) 
( fi g. 1 b, c) and biochemical markers (IL-6, TNF- � ) of 
ischemic damage. The model also has associated high 
mortality rates due to the seriousness of the cerebral dam-
age it produces ( table 1 ). Global mortalities do not differ 
irrespective of whether citicoline is given before or after 
rtPA. Mortality due to brain damage was decreased with 
reperfusion and even more in the groups with a combined 
treatment, particularly when citicoline was administered 
after thrombolysis. Citicoline as a monotherapy, if any-
thing, has an equally high mortality as rtPA monothera-
py. The high scores obtained on the neurological scale 
illustrate the seriousness of the brain damage, but out-
come was more favorable when reperfusion occurred and 
when the neuroprotector was associated to thrombolysis. 
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Lower doses of citicoline as a monotherapy failed to re-
duce lesion size signifi cantly, but our study observed that 
higher doses of citicoline produced a greater reduction of 
brain damage than did low doses (unpubl. data). When 
citicoline was used in combination after rtPA therapy, 
there was a signifi cant reduction in the ischemic lesion 
( fi g. 2 a). This would support the hypothesis that com-
bined neuroprotection after thrombolysis can optimize 
results. Our results suggest that reperfusion enhances the 
supply of neuroprotector to the penumbra zone, thus in-

creasing its inhibition of the ischemic cascade and reper-
fusion injury. A signifi cant benefi t of any treatment in 
regards to reduction of neuronal death (TUNEL) ( fi g. 2 b) 
was observed when citicoline was administered after 
rtPA, but isolated reperfusion did not reduce cell death, 
probably because it failed to inhibit the mechanisms of 
delayed neuronal death. In summary, the combination of 
citicoline after reperfusion with rtPA appears to be the 
optimal treatment. Citicoline at a high dose is most effi -
cacious and might be superior to thrombolysis as mono-

Group n Global
mortality

Hemor-
rhage

Cerebral
damage

Other
causes

Sham 4 0 (0) 0 (0) 0 (0) 0 (0)
Control 34 29 (85.29) 0 (0) 29 (85.29) 0 (0)
rtPA 19 15 (78.95) 8 (42.11) 7 (36.84) 0 (0)
CiT250 27 23 (85.19) 0 (0) 20 (74.7) 3 (11.11)
CiT250-rtPA 12 8 (66.67) 3 (25) 4 (33.33) 1 (8.33)
rtPA-CiT250 13 9 (69.23) 5 (38.46) 4 (30.77) 0 (0)
CiT1000 16 12 (75) 0 (0) 9 (56.25) 3 (18.75)
CiT1000-rtPA 10 6 (60) 2 (20) 4 (40) 0 (0)
rtPA-CiT1000 18 14 (77.78) 3 (16.67) 11 (61.11) 0 (0)

Figures in parentheses are percentage.

Table 1. Mortality rates and causes
of mortality (number of deaths and 
 percentage are shown)

  Fig. 2.   a  Infarct volume in each treatment group expressed as a percentage of the embolized hemisphere. Data 
are means  8  SD. * Signifi cant difference compared with controls (Mann-Whitney test p  !  0.05).  b  Number of 
deaths and percentage are shown. * Signifi cant difference (p  !  0.05  �  2  test). The groups of treatment were: Sham, 
Control, rtPA = recombinant tissue plasminogen activator; CiT = citicoline; CiT-rtPA = combination of citicoline 
before rtPA; rtPA-CiT = combination of citicoline after rtPA. 
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therapy, without the associated risk of hemorrhage (un-
publ. data). Low dose of citicoline or rtPA when given 
alone did not signifi cantly reduce ischemic damage. 

 The fi nal consideration that most agents claimed to be 
neuroprotective in animal models has failed in human 
trials. The human data from the failed trials indicate that 
the neuroprotective agents were administered long after 
the successful administration times in animal models. In 
contrast, thrombolytic therapy has been reported as ben-
efi cial in animal and human stroke. 

 Optimization of therapeutic treatments might involve 
a complex series of interventions. Disruption of the isch-
emic cascade of events at multiple levels is likely to be 
more effective than disruption at any single point. A cock-

tail of drugs could be administered within the fi rst few 
hours of illness. 

 With the use of multiple neuroprotective therapies, 
each agent or approach could be given or applied either 
simultaneously or in rapid succession, allowing each 
agent to work on different ischemic injury mechanisms. 
Multiple drug therapy and the use of lower doses of indi-
vidual agents in the mixture thus potentially reduce side 
effects. The combination of neuroprotection and tPA 
markedly improved the degree of neuroprotection and 
opens a route for future studies on the management of 
acute ischemic stroke. The possible additive or synergis-
tic effects of these drugs should be investigated in future 
leading studies. 
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 Intravenous rt-PA is the only approved treatment for 
acute ischemic stroke. However, only a small percent of 
patients are eligible for such therapy. Neuroprotective 
agents may potentially offer benefi t to stroke patients 
without the associated hemorrhagic risk of thrombolytic 
therapy. Such agents target the ischemic penumbra and 
aim to reduce the risk of brain injury and long-term dis-
ability by disrupting the cellular, biochemical, and meta-
bolic consequences of infarction following exposure to 
ischemia. Despite evidence of utility in animal models, 
to date no neuroprotectants have demonstrated unequiv-
ocal effi cacy in humans. In order to address these incon-
sistencies, the Stroke Therapy Academic Industry Round-
table (STAIR) has produced guidelines for the preclinical 
and clinical evaluation of new drugs for the treatment of 
acute ischemic stroke  [1, 2] . These guidelines outline 
stringent criteria (including an appropriate therapeutic 
window, adequate dosing and plasma level measurement, 
functional outcome measures, patient selection, and sam-
ple size) with the aim of optimizing clinical trial design 
towards the highest probability of identifying new agents 
for the treatment of acute ischemic stroke. Some of the 
new drugs under investigation follow these guidelines, 
while others concentrate on the salvageable ischemic 
brain and use infarct growth on MRI for patient selection 
and as a surrogate end-point. 

 The compounds mentioned below were identifi ed 
through a search of the following sources: personal fi les, 
‘Major ongoing stroke trials’ section of the journal  Stroke  
 [3] , the trials directory of the Internet Stroke Center 

 Key Words 
 Neuroprotection  �  Insulin  �  Interferon- �  1a   �  Magnesium  � 
Zonampanel  �  Repinotan  �  Piclozotan  �  Cerovive  �  
Citicoline

  Abstract 
 New neuroprotective agents on trial may potentially of-
fer benefi t to stroke patients without the associated hem-
orrhagic risk of thrombolytic therapy. Clinical investiga-
tion of these drugs has been designed to obtain the 
highest probability of success, or concentrates on the 
salvageable ischemic brain and use infarct growth on 
MRI as a surrogate end-point. Nine substances in 10 tri-
als are currently being tested in three therapeutical strat-
egies in patients with acute ischemic stroke. These strat-
egies focus on: (1) the optimal management of serum 
glucose with the infusion of glucose, insulin and potas-
sium to induce and maintain euglycemia; (2) the modu-
lation of the infl ammatory response with recombinant 
human interferon- �  1a , and (3) interfering with the isch-
emic cascade using magnesium, albumin, the metal iron 
chelator DP-b99, the AMPA receptor antagonist zonam-
panel, the serotonin agonists repinotan and piclozotan, 
the free radical scavenger cerovive, and the membrane 
modulator citicoline. Future directions should develop 
neuroprotective compounds that are safe and well toler-
ated, are effective in a broad range of patients and can 
be used with or without rt-PA. 

 Copyright © 2006 S. Karger AG, Basel 

 Published online: May 2, 2006 

 Prof. Dr. José Ferro
Centro de Estudas, Egas Moniz
Hospital de Santa Maria
PT–1649-035 Lisboa (Portugal)
Tel./Fax +351 21 795 7474, E-Mail jmferro@fm.ul.pt 

 © 2006 S. Karger AG, Basel
1015–9770/06/0218 –0127$23.50/0 

 Accessible online at:
www.karger.com/ced 

http://dx.doi.org/10.1159%2F000091712


 Ferro   /Dávalos   

 

 Cerebrovasc Dis 2006;21(suppl 2):127–130 128

(www.strokecenter.org/trials)  [4] , the US National Insti-
tutes of Health Service Clinicaltrials.gov  [5] , the Co-
chrane clinical trials register  [6]  and a Medline search 
using the key words  neuroprotection ,  clinical trial  and 
 acute stroke . Trials on temperature control, hypothermia 
and blood pressure management were not considered. 

 Nine substances being tested in 10 trials were retrieved. 
They could be grouped into three therapeutical strate-
gies. 

 Strategy 1: Optimal Management of Physiological 
Parameters 
 Insulin and glucose: It is known that diabetes and hy-

perglycemia are associated with worse outcomes in acute 
ischemic stroke. Current guidelines  [7]  state the hypergly-
cemia should be treated with insulin, but the glycemia 
levels to initiate treatment are arbitrary and the effi cacy 
and safety of aggressive glycemia control to maintain eu-
glycemia is unknown. In a previous pilot trial the safety 
and practicability of an infusion of glucose, insulin and 
potassium (GIK) has been demonstrated (GIST study 
stroke)  [8] . The United Kingdom Glucose Insulin in 
Stroke trial (GIST-UK) is a multicenter randomized trial 
that seeks to determine whether outcome from acute 
stroke is favorably infl uenced by GIK-induced and main-
tained euglycemia. Patients with acute ischemic stroke 
(with concordant CT) within 24 h form onset and admis-
sion plasma glucose of at least 6.0 mmol/l are eligible. 
Primary end-points are all-cause mortality and depen-
dency or death (modifi ed Rankin score 4–6) at 90 days. 

 Strategy 2: Fighting Infl ammation 
 Interferon- �  1a : Infl ammation plays a deleterious role 

in the processes that lead from ischemia to necrosis. In-
terferon- �  1a  diminishes the infl ammatory response and 
therefore is a candidate drug to limit brain damage in 
acute ischemic stroke. The recombinant human interfer-
on- �  1a  in acute ischemic stroke is a randomized, placebo-
controlled sequential phase 1 dose escalation and safety 
trial of interferon- �  1a  in acute ischemic stroke ( ! 24 h). 
CT or MR is required. Outcome measures are toxicities 
graded according to the NCI criteria and to study spe-
cifi c predefi ned criteria. 

 Strategy 3: Interfering with the Ischemic Cascade 
 1. Magnesium: Magnesium is an ion channel blocker 

that blocks voltage-gated calcium channels and NMDA 
receptors. However, the IMAGES trial failed to show a 
benefi t of magnesium in acute ischemic stroke when giv-
en intravenously within 12 h, with the possible exception 

of lacunar infarcts  [9] . The large time window and conse-
quent delayed administration of magnesium may be one 
of the causes of the failure to demonstrate a benefi cial ef-
fect. The FAST-MAG (Field Administration of Stroke 
Therapy – Magnesium) is a multicenter, randomized, 
double-blind, placebo-controlled trial aims to access the 
potential neuroprotective effi cacy of hyperacute para-
medic-initiated magnesium sulfate administration (4 g 
i.v. over 15 min) to acute stroke patients identifi ed in the 
fi eld. Probable stroke patients, as identifi ed by the Los 
Angeles Prehospital Stroke Screen, whose neurological 
defi cits have been present for at least 15 min and who can 
be treated within 2 h of symptom onset, are eligible. The 
primary outcome is the functional outcome at 90 days, as 
measured by the distribution of the scores in the modifi ed 
Rankin scale. 

 2. DP-b99: This compound is a membrane-activated 
metal ion chelator intended to reduce metal levels once 
activated. Previous phase I and II trials indicated that 
DP-b99 may be safely administered to stroke patients 
with no major side effects. The ongoing double-blind, pla-
cebo-controlled multicenter trial will aim to confi rm the 
safety and effi cacy of this compound. Patients will be in-
cluded within 9 h of stroke onset and receive the medica-
tion intravenously over 4 days. Patients will be stratifi ed 
into those treated within 6 and 9 h of stroke onset. Pri-
mary outcome is change in the NIHSS score from base-
line to day 90. 

 3. Zonampanel: Zonampanel is a glutamate blocker, 
AMPA receptor antagonist. ARTIST+ (AMPA Receptor 
Antagonist Treatment in Acute Stroke Trial) is a multi-
center, double-blind, placebo-controlled, parallel-group 
randomized trial with a planned enrolment of 600 pa-
tients that was launched in 2001. Inclusion criteria are 
patients with acute ischemic stroke who can be treated 
with tPA within 3 h of onset, a NIHSS of 7–23 and a 
level of consciousness of 0 or 1 in that scale. Effi cacy will 
be measured by neurological and functional scales. A 
companion trial (ARTIST MRI) will include patients 
with acute ischemic stroke within 6 h of onset, who had 
an ischemic lesion volume measured by DWI MR of 5–
120 cm 3  and a diffusion-perfusion mismatch of  1 20%. 
Primary outcome is T 2  weighted and FLAIR lesion vol-
ume at 90 days. By October 2005, results were not yet 
published. 

 4. Repinotan: Repinotan is a serotonin agonist of the 
5-HT 1A  receptor subtype. Its safety, tolerability and dos-
age were investigated in the BRAINS study  [10] . Repino-
tan was well tolerated. The most common adverse events 
were headache. In a randomized, double-blind, placebo-



 Other Neuroprotective Therapies on Trial 
in Acute Stroke 

 Cerebrovasc Dis 2006;21(suppl 2):127–130 129

controlled trial including 681 ischemic stroke patients, 
repinotan failed to show clinical benefi t  [11] . This study 
included patients with suspected ischemic stroke admit-
ted and treated within 4.5 h. The primary outcome was 
a successful response on the Barthel Index, defi ned as a 
score of 85 at 3 months. 

 5. Cerovive (NXY-059): Cerovive is a nitrone that acts 
as a potent free radical scavenger. The clinical develop-
ment program consists of two large, randomized, double-
blind, placebo-controlled phase IIb/III studies (SAINT I 
and II), and was designed in accordance with the STAIR 
criteria for clinical development. The primary outcome 
measure is the distribution of scores on the modifi ed 
Rankin scale. The recently completed SAINT I study in-
cluded about 1,700 patients with ischemic stroke with a 
maximal time from onset of 6 h. Results were presented 
in May 2005 during the 14th European Stroke Confer-
ence in Bologna  [12] . The incidence and profi le of side 
effects were similar in the cerovive and placebo groups. 
A signifi cant reduction in disability measured by the 
modifi ed Rankin scale (odds ratio 1.20, 95% confi dence 
interval 1.01–1.42, p = 0.038) in patients treated with the 
study drug was found. However no differences in NIHSS 
scores could be detected between the two groups. Hope-
fully, these encouraging results will be confi rmed by the 
ongoing SAINT II study. SAINT II started in 2005 in US, 
Canadian and European centers, and plans to include 
3,200 patients with acute ischemic stroke and limb weak-
ness within 6 h of onset. 

 6. Piclozotan (SUN N4057): Piclozotan is a (5-HT) 1A  
receptor agonist that has shown marked neuroprotective 
effects in animal models of middle cerebral artery occlu-
sion. The SUN N4057 in acute ischemic stroke is a phase 
II RCT that will determine the effi cacy of a 72-hour infu-
sion of piclozotan in patients with acute ischemic stroke 
and a MRI demonstrating measurable penumbra (perfu-
sion-weighted imaging [PWI] minus diffusion-weighted 
imaging [DWI] volume). A total of 112 patients with lo-
calizing cortical signs, and a moderate-to severe neuro-
logic defi cit (NIHSS score of 6–22) will receive two dif-
ferent doses of the study drug (80 or 120 ng/ml) or pla-
cebo less than 6 h (50% of subjects) or between 6 and 9 h 
after the onset of symptoms. Primary outcome will be the 
change in stroke lesion volume from screening to day 
28. 

 7. Albumin: Moderate-to-high dose human albumin 
therapy affords consistent neuroprotection. Among its 
multiple actions, albumin administration after middle 
 cerebral artery occlusion induces the systemic mobiliza-
tion of  n -3 polyunsaturated fatty acids and may help to 

replenish polyunsaturated fatty acids lost from neural 
membranes. The ALIAS trial will determine if human 
serum albumin at 2 g/kg given over 2 h within 5 h of 
symptoms onset results in improved outcome at 3 months 
of patients with moderate to severe ischemic stroke
(NIHSS  6 6). Treatment infusion must be started within 
60 min of the onset of the tPA bolus in patients receiving 
thrombolytic treatment. This phase III, multicenter RCT 
started in 2005, and will randomize 1,800 patients with-
out congestive heart disease in more than 50 centers. 

 8. Citicoline (CDP-choline): Citicoline increases the 
biosynthesis of phospholipids of the neuronal membrane 
and has shown antiapoptotic and neuroplasticity effects 
in cerebral ischemia. Citicoline showed a signifi cant 33% 
(odds ratio 1.33; 95% confi dence interval 1.10–1.62) in-
crease in the global odds of recovery at 3 months com-
pared with placebo in a meta-analysis by pooling the in-
dividual patients’ data from a number of clinical trials 
 [13] . In contrast with many other drugs that have failed 
in the treatment of stroke within the fi rst 6 h, citicoline 
proved effi cacy when administered within 24 h after 
symptoms onset, without side effects. A new multicenter 
pivotal RCT is in progress to confi rm these results. The 
ICTUS trial will compare the effects on global recovery 
(combined NIHSS  ̂  1, modifi ed Rankin scale  ̂  1, and 
Barthel Index  6 95 averaged using the GEE) at 90 days 
of citicoline (2,000 mg/day i.v. for 3 days and orally for 
6 weeks) given within 24 h from symptoms onset and 
placebo in patients with a moderate to severe acute isch-
emic stroke (baseline NIHSS  6 8) of the MCA territory. 
The study will follow a sequential analysis, with the fi rst 
approach to test the effi cacy with 1,000 patients and an 
upper limit of 2,600 patients. 

 For acute ischemic stroke, safe and effective treat-
ments that offer an extended therapeutic window are ur-
gently needed to decrease disability and aid neurological 
recovery. In particular, it would be benefi cial if treatment 
could start immediately without the requirement for se-
lection by a CT scan. This should improve patient prog-
nosis and reduce the burden on family, carers and society. 
To offer new hope for the treatment of patients who ex-
perience an acute ischemic stroke, future directions 
should concentrate on developing a neuroprotective com-
pound that is safe and well tolerated, is effective in a 
broad range of patients, and can be used with or without 
rt-PA. 
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