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THERMODYNAMICS OF RATE-INDEPENDENT PROCESSES IN
VISCOUS SOLIDS AT SMALL STRAINS∗

TOMÁŠ ROUBÍČEK†

Abstract. So-called generalized standard solids (of the Halphen–Nguyen type) involving also
activated rate-independent processes such as plasticity, damage, or phase transformations are de-
scribed as a system of a momentum equilibrium equation and a variational inequality for inelastic
evolution of internal-parameter variables. The stored energy is considered as temperature dependent
and then the thermodynamically consistent system is completed with the heat-transfer equation.
Existence of a suitably defined “energetic” solution is proved by a nontrivial combination of theory
of rate-independent processes by Mielke et al. [Handbook of Differential Equations, Elsevier, Am-
sterdam, 2005, pp. 461–559; Models of Continuum Mechanics in Analysis and Engineering, H.-D.
Alber, R. Balean, and R. Farwig, eds., Shaker Ver., Aachen, 1999, pp. 117–129; Nonlinear Differ.
Equ. Appl., 11 (2004), pp. 151–189; Arch. Ration. Mech. Anal., 162 (2002), pp. 137–177] adapted for
coupling with viscous/inertial effects and of sophisticated estimates by Boccardo and Gallouët of the
temperature gradient of the heat equation with L1-data. Illustrative examples are presented, too.

Key words. generalized standard materials, heat equation, enthalpy transformation, doubly
nonlinear variational inequalities, energetic solution, plasticity, damage, magnetostriction, shape-
memory alloys
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1. Introduction, generalized standard materials. Theory of rate-indepen-
dent processes based on the so-called energetic formulation by Mielke and Theil [54, 55]
and Mielke, Theil, and Levitas [56] has been extensively developed and widely applied
in [16, 20, 21, 22, 27, 39, 44, 47, 49, 50, 52, 71]. The rate-independent processes may
involve plasticity, damage, or various phase transformations in ferroic materials. It is
well known that coupling rate-independent processes with some others that are rate
dependent brings, in general, serious difficulties; cf., e.g., [25, 38, 48]. In some cases
when such processes are coupled rather indirectly, such combination is, however, well
possible as shown in [64] for viscous and inertial effects; for some special cases we
refer to [1, 19, 74]. The goal of this contribution is to expand this coupling also for
thermal processes that are, of course, inevitably rate dependent.

After formulation of the problem here and in section 2 in terms of displacements,
internal parameters, and temperature, we reformulate the problem in terms of en-
thalpy in section 3 to be better fitted with the semidiscretization method proposed
in section 4, where we show existence of the discrete solution, derive basic a priori
estimates, and prove convergence to the special weak (so-called energetic) solution of
the continuous problem. Eventually, section 5 presents various illustrative examples.
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The thermodynamics will be governed, besides dissipation mechanisms and con-
stitutive equations specified latter in (2.3) and (2.5), by the specific Helmholtz free
energy ψ : Rn×n

sym × Rm × Rm×n × R → [0,+∞] with Rn×n
sym := {A∈Rn×n; A� = A}.

Here ψ is a function of small-strain tensor e and the vector z of internal parameters,
of its spatial gradient for which we will use the notation Z ∈ R

m×n in the position of
a variable in ψ(e, z, Z, θ) and of the temperature θ. Generalization and modifications
for large-strains are outlined in Remark 4.7 below. We assume a partly linearized free
energy in the form

ψ(e, z, Z, θ) := ϕ(e, z, Z) + θφ(e)− φ0(θ).(1.1)

This ansatz is to ensure that entropy separates thermal and mechanical variables
(cf. (2.10) below), which facilitates the analysis of the coupled thermodynamical
model; cf. also Remark 4.9 below.

Using the ansatz of so-called generalized standard solids (due to Halphen and
Nguyen [32]), we consider a momentum equilibrium equation involving a viscous-like
response of the material in a Kelvin–Voigt-type rheology and inertia, combined with
an inclusion for inelastic evolution of internal-parameter variables. We assume small
strains and allow for a so-called gradient theory as far as the internal parameters are
concerned. Altogether, when completed also by the heat-transfer equation, we then
will deal with the following system

�
∂2u

∂t2
− div

(
ζ′2

(
e

(
∂u

∂t

))
+ σel

)
= f, σel = ϕ′

e (e(u), z,∇z) + θφ′(e(u)),(1.2a)

∂ζ1

(
∂z

∂t

)
+ σin � 0, σin = ϕ′

z(e(u), z,∇z)− divϕ′
Z(e(u), z,∇z),(1.2b)

cv
∂θ

∂t
− div (K∇θ) = ξ

(
∂z

∂t
, e

(
∂u

∂t

))
+ θφ′(e(u)) : e

(
∂u

∂t

)
,(1.2c)

where u : Q → Rn is a displacement, z : Q → Rm a vector of certain internal
parameters, and θ : Q → R absolute temperature with Q := (0, T ) × Ω with T > 0
a fixed time horizon. Further, � > 0 is a constant mass density, cv = cv(θ) > 0
heat capacity, K = K(e, z, θ) heat conductivity, and ζ2 : Rn×n

sym → [0,+∞) and ζ1 :
Rm → [0,+∞] are (pseudo)potentials of dissipative forces. From ψ, one derives the
“elastic” stress σel and an “inelastic” driving force σin as said in (1.2a, 1.2b). Such z
may involve plastic strain, hardening, damage, or volume fractions in various phase
transformations, etc. We will assume each ζ� positively homogeneous of degree �,
i.e. for all v it holds ζ�(rv) = r�ζ�(v), with any � = 1, 2, r ≥ 0. As to ζ2, its
homogeneity of degree 2 is just responsible for the viscous-like response. Elementary
calculus shows the formula for the directional derivative ζ′�(v)v, namely, ζ′�(v)v =

limε→0+
ζ�(v+εv)−ζ�(v)

ε = limε→0+
(1+ε)�−1

ε ζ�(v) = � ζ�(v). Then the dissipation rate
ξ(ż, ė) in (1.2c) is ζ1(ż) + 2ζ2(ė); cf. (2.4) below. We will confine ourselves to ζ′2
linear; hence ζ2 quadratic. Then, without loss of generality, we may consider

ζ1(ż) := δ∗S(ż) with S ⊂ R
m convex closed, and ζ2(ė) :=

1

2
Dė:ė,(1.3)

where δ∗S is the Legendre–Fenchel conjugate function to the indicator function δS of S
and D : Rn×n

sym → Rn×n
sym is a 4th-order tensor (assumed positive definite and symmetric

Dijkl = Djikl = Dklij). This means δ∗S(ż) := supz∈Rm ż · z − δS(z) = supz∈S ż · z.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

258 TOMÁŠ ROUBÍČEK

Assuming S bounded (resp., containing 0 in its interior) makes ζ1 bounded (resp., co-
ercive). Also, S = ∂ζ1(0). Nonsmoothness of ζ1 at 0, which follows from its positive
homogeneity of degree 1 (except the trivial case where ζ1 is linear), may describe
various activated processes, i.e., to trigger z evolving, the driving force ϕ′

z(e(u), z,∇z)
must exceed a certain activation threshold, namely, the boundary of S.

2. Thermodynamics of generalized standard materials. We now justify
thermodynamics of the model (1.2). Departing from the free energy ψ, we identify
the partial derivatives with the elastic stress σel, the inelastic driving stress σin,0, and
the “hyper-stress” σin,1, and the specific entropy by

σel := ψ′
e, σin,0 := ψ′

z, σin,1 := ψ′
Z , s := −ψ′

θ;(2.1)

the last equation is the so-called Gibbs’ relation. Then, as already introduced in
(1.2b),

σin := σin,0 − divσin,1(2.2)

so that the total driving force σin is the Gâteaux differential of the energy functional
z 	→ ∫

Ω
ϕ(e(u), z,∇z)dx. Further, we define the specific internal energy ε by

ε := ψ + θs.(2.3)

Then the so-called entropy equation

θ
∂s

∂t
+ div(j) = ξ := ζ1

(
∂z

∂t

)
+ 2ζ2

(
e

(
∂u

∂t

))
(2.4)

balances the heat flux j and the rate of the heat production due to the dissipation rate
ξ ≥ 0 (here due to the loss of mere mechanical energy, but some additional sources
might be considered too; see Remark 4.4 below).

The important fact is that the above procedure satisfies the 2nd thermodynamical
law, provided

j = j(e, z, θ,∇θ) := −K(e, z, θ)∇θ(2.5)

with the matrix of heat-conduction coefficientsK(e, z, θ) positive definite (the so-called
Fourier law in the nonlinear anisotropic medium). Indeed, dividing (2.3) by θ and
using Green’s formula, the Clausius–Duhem inequality reads as

(2.6)

d

dt

∫
Ω

s(t, x)dx =

∫
Ω

ξ + div(K(e(u), z, θ)∇θ)
θ

dx =

∫
Ω

1

θ

(
ξ −K(e(u), z, θ)∇θ · ∇1

θ

)
dx

=

∫
Ω

ξ

θ
+

K(e(u), z, θ)∇θ · ∇θ
θ2

dx ≥ 0,

provided θ > 0 and provided the system is thermally isolated. Differentiating (2.3) in
time and using the Gibb’s relation (2.1) and the entropy equation (2.4) gives

dε

dt
=

dψ

dt
+

d

dt
(θs) =

(
ψ′
e :
∂e

∂t
+ ψ′

z ·
∂z

∂t
+ ψ′

Z :
∂∇z
∂t

+ ψ′
θ

∂θ

∂t

)
+

(
∂θ

∂t
s︸ ︷︷ ︸

= 0 due to (2.1)

+ θ
∂s

∂t

)
.

(2.7)
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By Green’s formula and by (2.4), we get

d

dt

∫
Ω

ε dx =

∫
Ω

σel :
∂e

∂t
+ σin · ∂z

∂t
+ ξ − divj dx;(2.8)

in fact, (2.8) is to be understood formally in general, since
∫
Ω σin · ∂z∂t dx rather means

the duality 〈σin, ∂z∂t 〉 with σin being the Gâteaux differential of z 	→∫Ω ϕ(e(u), z,∇z)dx.
Testing (1.2a) by ∂u

∂t , we get
∫
Ω

�
2

∂
∂t |∂u∂t |2 + σ : e(∂u∂t ) − f · ∂u

∂t dx = 0 with σ =

De(∂u∂t ) + σel. Testing (1.2b) by ∂z
∂t , we get σin

∂z
∂t + ζ1(

∂z
∂t ) = 0. Using these identities

for (2.7) integrated over Ω, we obtain

d

dt

∫
Ω

�

2

∣∣∣∣∂u∂t
∣∣∣∣2 + ε︸ ︷︷ ︸

total energy

dx =

∫
Ω

�

2

∂

∂t

∣∣∣∣∂u∂t
∣∣∣∣2 + σ :

∂e

∂t
+ σin

∂z

∂t
(2.9)

+ ζ1

(
∂z

∂t

)
− div(j) dx =

∫
Ω

f · ∂u
∂t

dx+

∫
Γ

j dS︸ ︷︷ ︸
power of external load and heat

.

This reveals the total energy balance in terms of the sum of the kinetic and the internal
energies.

Now, we confine ourselves to the special ansatz (1.1), and, from (2.1), we get the
entropy

s = s(e, θ) = φ′0(θ)− φ(e)(2.10)

and, from (2.3), also the internal energy

ε(e, z, Z, θ) := ψ(e, z, Z, θ) + θs(e, z, θ) = ϕ(e, z,∇z) + h(θ),(2.11)

where we denoted

h(θ) = θφ′0(θ) − φ0(θ).(2.12)

In some special cases (namely, when Gibbs’ and Helmholtz’s free energies coincide
with each other), h(θ) has the meaning of enthalpy; hence we dare call h(θ) (up to the
mentioned tolerance) in this way. Substituting for s to (2.4), we obtain an equation for
temperature, the so-called heat-transfer equation. Assuming the anisotropic nonlinear
Fourier law (2.5), this heat equation results as

cv(θ)
∂θ

∂t
− div(K(e(u), z, θ)∇θ) = ζ1

(
∂z

∂t

)
+ 2ζ2

(
e

(
∂u

∂t

))
+ θφ′(e(u)):e

(
∂u

∂t

)(2.13)

with the dissipative heat ξ from (2.4) and with cv heat capacity given by

cv(θ) = θφ′′0 (θ).(2.14)
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Altogether, counting also (1.3), we thus will treat the system

�
∂2u

∂t2
− div

(
De

(
∂u

∂t

)
+ ϕ′

e (e(u), z,∇z) + θφ′(e(u))
)

= f,

(2.15a)

∂ζ1

(
∂z

∂t

)
+ ϕ′

z(e(u), z,∇z)− divϕ′
Z(e(u), z,∇z) � 0,

(2.15b)

cv(θ)
∂θ

∂t
− div(K(e(u), z, θ)∇θ) = ζ1

(
∂z

∂t

)
+ De

(
∂u

∂t

)
:e

(
∂u

∂t

)
+ θφ′(e(u)):e

(
∂u

∂t

)
.

(2.15c)

We now have naturally to prescribe the initial condition for displacement, velocity,
the internal parameter, and temperature, i.e.,

u(0, ·) = u0,
∂u

∂t
(0, ·) = u̇0, z(0, ·) = z0, θ(0, ·) = θ0.(2.16)

The problem is to be completed by boundary conditions. Let us consider ∂Ω =
Γ0 ∪ Γ1 ∪ Γ2 with Γ0 and Γ1 disjoint open sets and measn−1(Γ2) = 0, and denote
Σ0 := (0, T ) × Γ0, Σ1 := (0, T ) × Γ1, and Σ := (0, T ) × ∂Ω, and then (with a bit
compromised generality) consider the boundary conditions

u
∣∣
Σ0

= 0,

(
De

(
∂u

∂t

)
+ ϕ′

e(e(u), z,∇z) + θφ′(e(u))
) ∣∣∣

Σ1

· ν = 0,(2.17a)

ϕ′
Z(e(u), z,∇z)

∣∣
Σ
· ν = 0,(2.17b)

K(e(u), z, θ)∇θ∣∣
Σ
· ν + b

(
θ
∣∣
Σ
− θext

)
= 0,(2.17c)

where ν denotes the outward normal to the boundary ∂Ω of Ω, b = b(x) is a phe-
nomenological coefficient of heat transfer through the boundary, and θext = θext(t, x)
is the external temperature.

3. Enthalpy transformation, data qualification, and energetic solution.
It is desirable to allow for a certain growth of cv(·) if we have the viscosity in the form
De(∂u∂t ) in order to be able to treat the adiabatic term; cf. [63] and Remark 5.7 below.
On the other hand, the technique from [63] specifically relies on the Galerkin method
and does not seem directly transferable to the Rothe method we use here which, in
turn, seems better fitted to the rate-independent part than the Galerkin method. The
particular difficulty is in limiting a time-discretization of the nonlinear term cv(θ)

∂θ
∂t .

Therefore, we first write the original system (2.15) in terms of enthalpy instead of
temperature, using so-called enthalpy transformation

w = h0(θ) :=

∫ θ

0

cv(r) dr;(3.1)

thus h0 is a primitive function to cv normalized such that h0(0) = 0. In view of (2.12)
and (2.14), we have

h′(θ) = (θφ′0(θ)− φ0(θ))
′ = θφ′′0 (θ) + φ′0(θ)− φ′0(θ) = θφ′′0 (θ) = cv(θ) = h′0(θ);(3.2)

hence h0 differs from h just by a constant, namely, φ0(0). Further, we define

T (w) :=

{
h−1
0 (w) if w ≥ 0,

0 if w < 0,
K (e, z, w) :=

K(e, z,T (w))

cv(T (w))
,(3.3)
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where h−1
0 here denotes the inverse function to h. This transforms the system (2.15)

into the form

�
∂2u

∂t2
− div

(
De

(
∂u

∂t

)
+ ϕ′

e(e(u), z,∇z) + T (w)φ′(e(u))
)

= f,

(3.4a)

∂ζ1

(
∂z

∂t

)
+ ϕ′

z(e(u), z,∇z)− divϕ′
Z(e(u), z,∇z) � 0,

(3.4b)

∂w

∂t
− div(K (e(u), z, w)∇w) = ζ1

(
∂z

∂t

)
+ De

(
∂u

∂t

)
:e

(
∂u

∂t

)
+ T (w)φ′(e(u)):e

(
∂u

∂t

)
.

(3.4c)

We will call (3.4c) shortly the enthalpy equation rather than the heat-transfer equation
in the enthalpy formulation.

Let us assume that the material described by (1.2) occupies a bounded Lipschitz
domain Ω. The problem is to be completed by boundary conditions. Let us consider
∂Ω = Γ0∪Γ1∪Γ2 with Γ0 and Γ1 disjoint open sets and measn−1(Γ2) = 0, and denote
Σ0 := (0, T ) × Γ0, Σ1 := (0, T ) × Γ1, and Σ := (0, T ) × ∂Ω, and then consider the
boundary conditions

u
∣∣
Σ0

= 0,

(
De

(
∂u

∂t

)
+ ϕ′

e(e(u), z,∇z) + T (w)φ′(e(u))
) ∣∣∣

Σ1

· ν = 0,(3.5a)

ϕ′
Z(e(u), z,∇z)

∣∣
Σ
· ν = 0,(3.5b)

K (e(u), z, w)∇w∣∣
Σ
· ν + b

(
T (w)

∣∣
Σ
− θext

)
= 0,(3.5c)

where ν denotes the outward normal to the boundary ∂Ω of Ω. In general, to have a
priori estimates, we will assume the coercivity of the specific stored and the dissipative
energies:

∃ p > max

(
1,

2n

n+2

)
, q > max

(
1,

2n

n+4

)
, q0 > 1, c0, c1, c2> 0 :

∀e∈R
n×n
sym , z∈R

m, Z∈R
m×n : ϕ(e, z, Z) ≥ c0|e|p + c0|z|q0 + c0|Z|q,(3.6a)

∀ż∈R
m : ζ1(ż) ≥ c1|ż|,(3.6b)

∀ė∈R
n×n
sym : ζ2(ė) ≥ c2|ė|2.(3.6c)

In view of (1.3), the qualification (3.6b, 3.6c) means that S contains 0 in its interior
and D is positive definite. Further, we will occasionally need ϕ′

e indepedent of Z and
ϕ′
Z indepedent of e, which leads us to assume that

ϕ(e, z, Z) = φ1(e, z) + φ2(z, Z),(3.7)

and we also qualify ϕ(·, z, Z) as a smooth function with a “p-strongly monotone”
gradient in the sense, with some α > 0 (independent of z),

∀e, ẽ ∈ R
n×n
sym : α

(|e|p−2e− |ẽ|p−2ẽ
)
:(e−ẽ) ≤ (ϕ′

e(e, z)− ϕ′
e(ẽ, z)

)
:(e−ẽ);(3.8)

here we already used that ϕ′
e does not depend on Z because of (3.7). The qualification

(3.8) will allow for proving strong convergence in terms of e(u) in Step 3 of the proof
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of Proposition 4.3 which, in turn, seems an inevitable starting step to prove further
in Step 7 of that proof even better strong convegence in terms of e(∂u∂t ). An example
ϕ(e, z) = a(z)|e|p with p > 1 satisfies (3.8) with α := p infRm a(·) > 0. We will have
also to assume

∃� ≥ 0 : (e, z, Z) 	→ ϕ(e, z, Z) + �|e|2 is strictly convex.(3.9)

Let us comment that (3.9) seems essential for making running the implicit time dis-
cretization method (cf. (4.13)–(4.16)), which, in turn, seems a very natural tool espe-
cially in the context of rate-independent processes, as already observed in [44, 55, 56],
and a further limit passage would allow us to weaken this sometimes restricted struc-
tural assumption under the price, however, of further enlargment of the proofs. We
will call ϕ satisfying (3.9) as strictly (e)-semiconvex; let us just remind the standard
terminology calling ϕ semiconvex if ϕ+ �| · |2 is convex (or equivalently strictly con-
vex) for � large enough. Note also that (e)-semiconvex functions must be convex in
(z, Z). A nontrivial example for n = 1 = m is ϕ(e, z, Z) = ez + εz2 + εZ2 with
ε, ε > 0, which is nonconvex but strictly (e)-semiconvex, satisfying (3.9) for � > 1

4ε ,
because only in that case the Jacobian of the mapping from (3.9) is positive defi-

nite; note that this Jacobian is constant and equals
(2� 1 0
1 2ε 0
0 0 2ε

)
. Also, the function

ϕ(e, z, Z) = ze2 + ε(e6+z2+Z2) with ε > 0 is strictly (e)-semiconvex on the domain
{(e, z, Z); z ≥ 0}.

It has been observed already, e.g., in [51, 64] that continuity of ζ1 or a certain
quadratic structure of ϕ facilitates the limit passage in the rate-independent flow rule
(3.4b). This is why we assume that one of the two cases holds:

ζ1 continuous, or(3.10a)

q = 2 in (3.6a), and ϕ(e, ·, ·) quadratic/affine, and for some C,(3.10b) ∣∣ϕ′
(z,Z)(e, z, Z)

∣∣ ≤ C
(
1+|e|p(q∗−1)/q∗)+ C

(
1+|e|p(q∗−2)/(2q∗))(|z|+|Z|),

where q∗ = nq/(n−q) if q > n (or q∗ < +∞ for q ≥ n) denotes the Sobolev critical
exponent to q, here used for q = 2.

Moreover, for p1 ≥ 0, we need to assume

φ convex, |φ′(e)| ≤ C(1 + |e|p1),(3.11a)

∃C1 ∈ R ∀z ∈ R
m : ζ1(z) < +∞ ⇒ ζ1(z) ≤ C1|z|.(3.11b)

Other assumptions are on cv and K and will facilitate interpolation of the adiabatic
term (i.e., the last term in (3.4c)) similarly as in [63]. To be more specific, we require
the following:

cv : [0,+∞) → R
+ continuous,(3.12a)

∃ω1 ≥ ω > 1, c1 ≥ c0 > 0 ∀θ ∈ R
+ : c0(1+θ)

ω−1 ≤ cv(θ) ≤ c1(1+θ)
ω1−1,(3.12b)

K : Rn×n × R
m × R → R

n×n bounded, continuous, and(3.12c)

inf
(e,z,w,v)∈R

n×n
sym ×Rm×R×Rn, |v|=1

K (e, z, w)v : v > 0 with K from (3.3).(3.12d)

For Proposition 4.2, we impose more restrictions on ω, namely, we also need to assume
the exponents p and p1 and ω from (3.6a), (3.11a), and (3.12b) to satisfy

ω >
2np2

(n+2)(p2−2p1)
with p2 := max(p, 2) > 2p1.(3.13)
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Furthermore, to have the accelaration ∂2

∂t2 u controlled at least in some “dual” space

(cf. (4.23) below), we need to assume
∣∣ϕ′

e(e, z)
∣∣ ≤ C(1+ |e|p+ |z|q∗) with some C and

with q∗ the Sobolev exponent to q. Yet, due to Proposition 4.3, we will need even a
stronger qualification of ϕ′

e, namely,∣∣ϕ′
e(e, z)

∣∣ ≤ C
(
1 + |e|p/2 + |z|q∗/2),(3.14a)

ϕ′
e(·, z) be Lipschitz continuous uniformly with respect to z;(3.14b)

note that we used that ϕ′
e is independent of Z due to (3.7).

We consider evolution on the time interval I := (0, T ) with a fixed time horizon
T > 0 and denote Q := (0, T ) × Ω, Σ := (0, T ) × ∂Ω, and Ī := [0, T ]. We will
use a standard notation for function spaces, namely, the space of the continuous Rk-
valued functions C(Ω̄;Rk), its dual M (Ω̄;Rk) (i.e., up to an isometrical isomorphism,
the space of Borel measures), the continuously differentiable functions C1(Ω̄;Rk), the
Lebesgue space Lp(Ω;Rk), the Sobolev space W 1,p(Ω;Rk), and the Bochner space
of X-valued Bochner measurable p-integrable functions Lp(I;X). If X = (X ′)∗,
the notation L∞

w∗(I;X) stands for space of weakly* measurable essentially bounded
functions I → X ; this space is dual to the space L1(I;X ′) and, in general, is not
equal to L∞(I;X). If X is separable reflexive, then L∞(I;X) = L∞

w∗(I;X) by Pettis’
theorem. For the Dirichlet boundary condition (2.17), we also introduce the Banach
space

W 1,p
Γ0

(Ω;Rn) :=
{
v ∈ W 1,p(Ω;Rn); v|Γ0 = 0

}
.

Moreover, we denote by B(Ī;X), Bw∗(Ī;X), BV(Ī;X), or Cw(Ī ;X) Banach space
of the functions Ī → X that are bounded Bochner measurable, bounded weakly*
measurable, have a bounded variation or are weakly continuous, respectively; note
that all these functions are defined everywhere on Ī. We will use the notation q′ =
q/(q−1) for the conjugate exponent to q. Instead of u(t, ·) or z(t, ·) or w(t, ·), we
will mostly write briefly u(t) or z(t) or w(t), respectively. As far as the data, we will
assume

u0 ∈W 1,p
Γ0

(Ω;Rn), u̇0 ∈ L2(Ω;Rn), θ0 ∈ Lω(Ω), θ0 ≥ 0,(3.15a)

f ∈ L1(I;L2(Ω;Rn)), θext ∈ L1(Σ), θext ≥ 0.(3.15b)

Also, to have the energy balance, we will need the initial condition z0 be “semistable”
with respect to u(0) = u0 in the sense

∀v ∈W 1,q(Ω;Rm) :

∫
Ω

ϕ
(
e(u0), z0,∇z0

)
dx≤

∫
Ω

ϕ
(
e(u0), v,∇v

)
+ζ1

(
v−z0

)
dx.(3.16)

Definition 3.1 (energetic solution). Assuming (3.7) and (3.15), we call a triple
(u, z, w) with

u ∈ Cw(Ī;W
1,p
Γ0

(Ω;Rn)),(3.17a)

∂u

∂t
∈ L2(I;W 1,2

Γ0
(Ω;Rn)) ∩ (W 1,2(I;W 1,2

Γ0
(Ω;Rn)∗) +W 1,1(I;L2(Ω;Rn))

)
,(3.17b)

z ∈ B(Ī ;W 1,q(Ω;Rm)) ∩ BV(Ī ;L1(Ω;Rm)),(3.17c)

w ∈ Lr(I;W 1,r(Ω)) ∩ L∞(I;L1(Ω)) ∩Bw∗(Ī ;M (Ω̄)) with any 1 ≤ r <
n+2

n+1
,(3.17d)

∂w

∂t
∈ M (Ī;W 1+n,2(Ω)∗)(3.17e)
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an energetic solution to (3.4) with the initial conditions (2.16) and the boundary con-
ditions (3.5) if

(i) the weakly formulated (3.4a) with (3.5a, 3.5b) holds, i.e., for all v∈C1(Q̄;Rn)
such that v|Σ0=0,

(3.18a)∫
Ω

�
∂u

∂t
(T ) · v(T ) dx+

∫
Q

(
De

(
∂u

∂t

)
+ ϕ′

e(e(u), z) + T (w)φ′(e(u))
)

: e(v)

− �
∂u

∂t
· ∂v
∂t

dxdt =

∫
Q

f · v dxdt+
∫
Ω

�u̇0 · v(0) dx;

(ii) the weakly formulated enthalpy equation (3.4c) with (3.5c) holds, i.e., for all
v∈C1(Q̄),

(3.18b)∫
Ω̄

v(T )w(T, dx)+

∫
Q

K (e(u), z, w)∇w·∇v−w∂v
∂t

−T (w)φ′(e(u)) : e
(
∂u

∂t

)
v

− 2ζ2

(
e

(
∂u

∂t

))
v dxdt+

∫
Σ

bT (w)v dSdt

=

∫
Q̄

v hz(dxdt) +

∫
Ω

w0v(0) dx+

∫
Σ

bθextv dSdt,

where w0 = h0(θ0) and hz ∈ M (Q̄) is the measure (=heat produced by rate-
independent dissipation) defined by prescribing its values for every closed set
of the type A := [t1, t2]×B with B a Borel subset of Ω by

hz(A) := VarS(z|B; t1, t2) with VarS(z̃; t1, t2)

:= sup

k∑
i=1

∫
Ω

δ∗S
(
z̃(si, x)−z̃(si−1, x)

)
dx,

where the supremum is taken over all partitions of the type t1 = s0 < · · · <
sk = t2, k∈N;

(iii) the total energy balance holds, i.e.,

(3.18c)∫
Ω

�

2

∣∣∣∣∂u∂t (T )
∣∣∣∣2 + ϕ(e(u(T )), z(T ),∇z(T )) dx+

∫
Ω̄

w(T, dx) +

∫
Σ

bT (w) dSdt

=

∫
Ω

�

2

∣∣u̇0∣∣2+ ϕ(e(u0), z0,∇z0) + h0(θ0) dx+

∫
Q

f · ∂u
∂t

dxdt+

∫
Σ

bθextdSdt;

(iv) the “semistability” holds for any v ∈ W 1,q(Ω;Rm) and for a.a. t ∈ [0, T ], i.e.,∫
Ω

ϕ(e(u(t)), z(t),∇z(t)) dx ≤
∫
Ω

ϕ(e(u(t)), v,∇v) + ζ1(v − z(t)) dx;(3.18d)

(v) the initial conditions u(0) = u0 and z(0) = z0 hold.
Note that (3.18c) is just (2.9) with ε from (2.11) when also (3.1)–(3.2) is taken

into account. Note also that (3.17e) makes values of w(t) well defined in the sense
of W 1+n,2(Ω)∗, and (3.17d) further shows that even w(t) ∈ M (Ω̄), which has been
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exploited in (3.18b, 3.18c) for the time t = T . It should be emphasized that t 	→ w(t)
cannot be expected continuous in any sense because, since ζ1 is homogeneous degree-
1, the measure hz may concentrate at particular time instances. On the other hand,
although (3.18b) itself could be used for v(T ) = 0 to eliminate w(T ), we actually need
w(T ) for (3.18c). All these technicalities arise due to presense of rate-independent
dissipation, which may have a tendency to concentrate heat production during jump-
ing of the internal parameter z, in contrast to more conventional models with only
rate-dependent terms like [63].

Since (3.4a, 3.4c) are standardly involved in (3.18a, 3.18b), the justification of
Definition 3.1 needs to verify the inclusion (3.4b) in a weak sense, here

(3.19)∫
Q

ϕ′
z(e(u), z,∇z)·

(
v−∂z

∂t

)
+ϕ′

Z(e(u), z,∇z):∇
(
v−∂z

∂t

)
+ζ1(v) dxdt ≥

∫
Q

ζ1

(
∂z

∂t

)
dxdt

for any v ∈ C1(Q̄;Rm). Also note that the initial conditions ∂u
∂t (0) = u̇0 and w(0) =

w0 = h0(θ0), not explicitely required in Definition 3.1(v), are involved in (3.18a,
3.18b). Following [64, section 4], we can indeed prove (3.19) from (3.18).

Proposition 3.2 (justification of energetic-solution concept). Let (3.6)–(3.16)
hold. Any energetic solution with ∂z

∂t ∈ L1(Q;Rm) is also a weak solution in the sense
that (3.18a, 3.18b), (3.19), and the initial conditions u(0) = u0 and z(0) = z0 hold.

Sketch of proof. Using the definition DzΦ(e(u(t)), z(t), v) of the directional deriva-
tive of Φ(e(u(t)), ·) : W 1,q(Ω;Rm) → R at z(t) in the direction v with Φ(e, z) :=∫
Ω
ϕ(e, z,∇z) dx and using further the semistability (3.18d) of z at time t with re-

spect to z(t) + εv and the degree-1 homogeneity of ζ1, we obtain∫
Ω

ϕ′
z

(
e(u(t)), z(t),∇z(t)) · v + ϕ′

∇z

(
e(u(t)), z(t),∇z(t)) : ∇v dx(3.20)

= DzΦ(e(u(t)), z(t), v) := lim
ε↓0

Φ(e(u(t)), z(t)+εv)− Φ(e(u(t)), z(t))

ε

= lim
ε↓0

∫
Ω

ϕ(e(u(t)), z(t)+εv,∇z(t)+ε∇v)− ϕ(e(u(t)), z(t),∇z(t))
ε

dx

≥ − lim
ε↓0

∫
Ω

ζ1(z(t)+εv−z(t))
ε

dx = − lim
ε↓0

∫
Ω

ζ1(v) dx = −
∫
Ω

ζ1(v) dx.

Then we test the force equilibrium (3.18a) by ∂u
∂t . It is important that (3.18a) bears ex-

tension by continuity for the test functions v ∈ L2(I;W 1,2
Γ0

(Ω;Rn)) ∩L∞(I;L2(Ω;Rn))

and that ∂2u
∂t2 ∈ L2(I;W 1,2

Γ0
(Ω;Rn)∗) + L1(I;L2(Ω;Rn)) is in duality with ∂u

∂t ∈
L2(I;W 1,2

Γ0
(Ω;Rn)) ∩ L∞(I;L2(Ω;Rn)); hence the by-part integration

∫
Ω

�
∂u

∂t
(T ) · ∂u

∂t
(T )− �u̇0 · ∂u

∂t
(0) dx−

∫ T

0

〈
�
∂u

∂t
,
∂2u

∂t2

〉
dt =

�

2

∫
Ω

∣∣∣∣∂u∂t (T )
∣∣∣∣2− |u̇0|2 dx

(3.21)

is legal as an equality. Thus we get the energy equality in the force equilibrium;
cf. (4.67) below but as an equality. Moreover, hz = ζ1(

∂z
∂t ) because now ∂z

∂t ∈
L1(Q;Rm); here also (3.11b) was used. Thus also ∂w

∂t ∈ L1(I;W 1+n,2(Ω)∗).
Further, we test (3.18b) by v = 1; here it is important that 1 is in duality with

∂w
∂t ∈ L1(I;W 1+n,2(Ω)∗); hence we get also the energy equality in the thermal part.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

266 TOMÁŠ ROUBÍČEK

Subtracting these two identities from (3.18c) gives∫
Q

ζ1

(
∂z

∂t

)
+ ϕ′

z(e(u), z,∇z) ·
∂z

∂t
+ ϕ′

Z(e(u), z,∇z) : ∇
∂z

∂t
dxdt = 0.(3.22)

Summing (3.22) with (3.20) integrated over I = (0, T ) just gives (3.19).
We can see that the concept of the weak solution as used in Proposition 3.2

requires additional qualification of ϕ(e, ·, ·) and of ∂z
∂t . In fact, ∂z

∂t could be eliminated
from the left-hand side of (3.19) by substitution from (3.4a) (cf. [64]), but, more
important, the concept of the weak solution does not wear enough information to
track the energy balance. This is therefore particularly unsuitable in the context
of thermodynamical evolution where we will ultimately exploit the concept of the
energetic solution to execute Step 7 in the proof of Proposition 4.3. Let us sumarize
the main analytical result in the following assertion.

Theorem 3.3 (existence of energetic solutions). Let all the assumptions (3.6)–
(3.16) hold. Then the initial-boundary-value problem for the system (3.4) with the
initial conditions (2.16) and the boundary conditions (3.5) admits an energetic solution
(u, z, w) in accord with Definition 3.1.

4. Proof of existence of energetic solutions. An important phenomenon
here is that, proving existence of a solution, we need to pass to the limit in the non-
linear Nemytskĭı operators induced by ζ1 and ζ2. Another peculiarity is that, due
to degree-1 homogeneity of ζ1, the heat equation has its right-hand side not only
in L1(Q) (as it would be in case of a higher-degree homogeneity of dissipative-force
potential) but even in measures.

The existence proof is therefore technically rather delicate. We will use a fully
implicit time-discretization with a constant time step τ > 0 (assuming Kτ = T/τ ∈
N) and a regularization of the force-equilibrium equation, leading to the following
recursive increment formula

�
ukτ−2uk−1

τ +uk−2
τ

τ2
− div

(
De

(
ukτ−uk−1

τ

τ

)
+ ϕ′

e(e(u
k
τ ), z

k
τ )(4.1a)

+ T (wk
τ )φ

′(e(ukτ )) + τ
∣∣e(ukτ )∣∣γ−2

e(ukτ )

)
= fk

τ ,

∂ζ1

(
zkτ − zk−1

τ

τ

)
+ ϕ′

z(e(u
k
τ ), z

k
τ ,∇zkτ )− divϕ′

Z(z
k
τ ,∇zkτ ) � 0,(4.1b)

wk
τ−wk−1

τ

τ
− div

(
K (e(ukτ ), z

k
τ , w

k
τ )∇wk

τ

)
= ζ1

(
zkτ−zk−1

τ

τ

)
(4.1c)

+
(
1−√

τ
)
De

(
ukτ−uk−1

τ

τ

)
: e

(
ukτ−uk−1

τ

τ

)
+ T (wk

τ )φ
′(e(ukτ )) : e

(
ukτ−uk−1

τ

τ

)
for k = 1, . . . ,Kτ = T/τ , starting for k = 1 by using

u0τ = u0,τ , u−1
τ = u0,τ − τu̇0, z0τ = z0, w0

τ = w0 := h0(θ0).(4.2)

Note that ϕ′
e does not depend on ∇zkτ due to (3.7). Of course, the system (4.1) is to
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be considered completed by the boundary conditions, i.e., here

ukτ
∣∣
Γ0

= 0,

(4.3a)

(
De

(
ukτ−uk−1

τ

τ

)
+ ϕ′

e(e(u
k
τ ), z

k
τ ) + T (wk

τ )φ
′(e(ukτ )) + τ

∣∣e(ukτ )∣∣γ−2
e(ukτ )

)∣∣∣∣∣
Γ1

· ν = 0,

(4.3b)

ϕ′
Z(e(u

k
τ ), z

k
τ ,∇zkτ )

∣∣
Γ
· ν = 0,

(4.3c)

K (e(ukτ ), z
k
τ , w

k
τ )∇w

∣∣
Γ
· ν + bT (wk

τ )
∣∣
Γ
= bθkext,τ ,

(4.3d)

where θkext,τ is an approximation of θext at time t = kτ , similarly as fk
τ in (4.1a)

approximates f at t = kτ . Note that, to compensate growth of the right-hand-side
terms in (4.1c), (4.1a) involves a regularizing term τdiv(|e(ukτ )|γ−2e(ukτ )) which, later,
will vanish when passing τ ↓ 0. For this reason we need also to regularize the initial
condition u0 by taking u0,τ∈W 1,γ(Ω;Rn) in (4.2). We, however, did not regularize
(4.1b) to avoid troubles with limit passage in semistability later.

As far as the (regularized) initial and boundary conditions and the loading are
concerned, we assume

(4.4a)

u0,τ∈W 1,γ
Γ0

(Ω;Rn), sup
τ>0

∫
Ω

ϕ
(
e(u0,τ ), z0,∇z0

)
dx < +∞,

lim
τ↓0

γ
√
τ
∥∥e(u0,τ )∥∥Lγ(Ω;Rn×n)

= 0, lim
τ↓0

u0,τ = u0 in W 1,p(Ω;Rn),

(4.4b)

θ̄ext,τ∈L∞(Σ), θ̄ext,τ ≥ 0, lim
τ↓0

θ̄ext,τ = θext in L
1(Σ),

(4.4c)

f̄τ∈L∞(I;L2(Ω;Rn)), lim
τ↓0

f̄τ = f in L1(I;L2(Ω;Rn)),
∥∥f̄τ∥∥L∞(I;L2(Ω;Rn))

≤ K√
τ
,

(4.4d)

where θ̄ext,τ |((k−1)τ,kτ ] = θkext,τ and f̄τ |((k−1)τ,kτ ] = fk
τ for k = 1, . . . ,Kτ .

Lemma 4.1. Let (3.6), (3.7), (3.10), (3.12), (3.15), and (4.4) hold, and let ϕ and
φ be lower semicontinuous and satisfy (3.9) and (3.11). Moreover, let γ ≥ p be chosen
so large that γ > max( 2

c(n) , (p1+1) ω
ω−1 ) and

1
ω + p1+1

γ < c(n), with c(n) = 1 if n ≤ 2

or c(n) = n+2
2n if n ≥ 3, and let τ > 0 be sufficiently small, namely,

τ ≤
(c2
�

)2
(4.5)

with c2 from (3.6c) and � from (3.9) (or just τ ≤ T if ϕ is convex and thus � = 0).
Then there exists a weak solution (ukτ , z

k
τ , w

k
τ ) ∈W 1,γ(Ω;Rn)×W 1,q(Ω;Rm)×W 1,2(Ω)
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to the boundary-value problem (4.1)–(4.3). Moreover, for any k = 1, . . . ,Kτ , w
k
τ ≥ 0

and the following “discrete mechanical energy” balance holds:∫
Ω

�

2

∣∣∣∣ukτ−uk−1
τ

τ

∣∣∣∣2 + ϕ
(
e(ukτ ), z

k
τ ,∇zkτ

)
+
τ

γ

∣∣e(ukτ )∣∣γ(4.6)

+ τ

k∑
l=1

(
ζ1

(
zlτ−zl−1

τ

τ

)
+ 2
(
1−√

τ
)
ζ2

(
e

(
ulτ−ul−1

τ

τ

)))
dx

≤
∫
Ω

�

2

∣∣u̇0∣∣2 + ϕ
(
e(u0,τ ), z0,∇z0

)
+
τ

γ

∣∣e(u0,τ )∣∣γ
+ τ

k∑
l=1

(
f l
τ ·
ulτ−ul−1

τ

τ
+ T (wl

τ )φ
′(e(ulτ )) : e

(
ulτ−ul−1

τ

τ

))
dx

as well as the following “discrete total energy” balance holds:

(4.7)∫
Ω

�

2

∣∣∣∣ukτ−uk−1
τ

τ

∣∣∣∣2 + ϕ
(
e(ukτ ), z

k
τ ,∇zkτ

)
+ wk

τ +
τ

γ

∣∣e(ukτ )∣∣γ dx+ τ

k∑
l=1

∫
Γ

bT (wl
τ )dS

≤
∫
Ω

�

2

∣∣u̇0∣∣2+ϕ(e(u0,τ ), z0,∇z0)+w0+τ

k∑
l=1

f l
τ ·
ulτ−ul−1

τ

τ

+
τ

γ
|e(u0,τ)|γdx+τ

k∑
l=1

∫
Γ

bθlext,τdS,

and also the “discrete semistability”∫
Ω

ϕ(e(ukτ ), z
k
τ ,∇zkτ ) dx ≤

∫
Ω

ϕ(e(ukτ ), v,∇v) + ζ1(v − zkτ ) dx(4.8)

holds for any v ∈ W 1,q(Ω;Rm).
Proof. We can see existence of a conventional weak solution to (4.1) by standard

methods for pseudomonotone set-valued operators induced by boundary-value prob-
lems for quasilinear elliptic equations. The coercivity of the underlying operator can
be shown by testing the particular equations in (4.1), respectively, by ukτ , z

k
τ , and

|wk
τ |α−1wk

τ with 0 < α < min(q0, γ/max(2, (p1+1)ω/(ω−1)))− 1 with q0 from (3.6a).
Here, for the a priori estimate, we have used Hölder’s inequality and the boundary
conditions (4.3) for

(4.9)

1

τ

∫
Ω

|wk
τ |1+αdx+

∫
Γ

bT (wk
τ )|wk

τ |α−1wk
τdS

≤
∫
Ω

ζ1

(
zkτ−zk−1

τ

τ

)
|wk

τ |α + 2(1−√
τ )ζ2

(
e

(
ukτ−uk−1

τ

τ

))
|wk

τ |α

+ T (wk
τ )
∣∣φ′(e(ukτ ))∣∣ ∣∣∣∣e(ukτ−uk−1

τ

τ

)∣∣∣∣ |wk
τ |α +

1

τ
|wk−1

τ | |wk
τ |α dx+

∫
Γ

bθkext,τ |wk
τ |αdS.

The left-hand-side boundary term can be estimated from below by εω1,c1

∫
Γ
b|wk

τ |α+1/ω1

dx − C with εω1,c1 > 0 depending on ω1 and c1 from (3.12b) and C large enough,
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which then can serve to handle the right-hand-side boundary term
∫
Γ
bθkext,τ |wk

τ |αdS,
using also (4.4c). The first right-hand-side term can be estimated as

(4.10)

ζ1

(
zkτ−zk−1

τ

τ

)
|wk

τ |α ≤ Cεζ1

(
zkτ−zk−1

τ

τ

)1+α

+ ε|wk
τ |1+α

≤ CεC
α
1

∣∣∣∣zkτ−zk−1
τ

τ

∣∣∣∣1+α

+ ε|wk
τ |1+α ≤ Cε,τ + ε|zkτ |q0 + ε|wk

τ |1+α

with C1 from (3.11b) and with Cε and Cε,τ depending on ε and τ and, in the latter
case, also α and C1 and q0 from (3.6a). Taking ε > 0 small enough, the last two terms
can be absorbed in the left-hand sides of (4.9) and of (4.1b) tested by zkτ . The second
right-hand-side term in (4.9) can be estimated similarly, using the sufficient growth
of the regularing term on the left-hand sides in (4.1a) tested by ukτ ; here we use that
we can choose γ > 2(1+α). The third right-hand-side term in (4.9) can be estimated

(4.11)

T (wk
τ )
∣∣φ′(e(ukτ ))∣∣ ∣∣∣∣e(ukτ−uk−1

τ

τ

)∣∣∣∣ ∣∣wk
τ

∣∣α ≤ C
∣∣wk

τ

∣∣1/ω(1 + |e(ukτ )|p1
)(
1 + |e(ukτ )|

)∣∣wk
τ

∣∣α
≤ C

(
1 + |e(ukτ )|p1+1

)ω(1+α)/(ω−1)
+ ε
∣∣wk

τ

∣∣1+α

≤ C + ε
∣∣e(ukτ )∣∣γ + ε

∣∣wk
τ

∣∣1+α

with C a generic constant; p1 comes from (3.11a), and we used that γ > (p1+1)ω(1+α)/
(ω−1). Moreover, we used also (3.12b), which ensures w = h0(θ) ≥ ωc0(1+θ)

ω − ωc0
so that

θ = T (w) ≤
(
w

ωc0
+1

)1/ω

− 1 ≤
(
w

ωc0

)1/ω

.(4.12)

Taking ε > 0 small enough, the last two terms in (4.11) can be absorbed in the
left-hand sides of (4.9) and of (4.1a) tested by ukτ . Similarly and even more easily,
using again (3.11a), one can estimate also the term T (wk

τ )φ
′(e(ukτ )) : e(ukτ ) arising

in (4.1a) when tested by ukτ . The remaining right-hand-side term in (4.9) can be
estimated as 1

τ |wk−1
τ | |wk

τ |α ≤ C|wk−1
τ |1+α + ε|wk

τ |1+α and then again absorb the last
term in the left-hand sides of (4.9). Altogether, we obtain an a priori information of
(ukτ , z

k
τ , w

k
τ ) ∈W 1,γ(Ω;Rn)×W 1,q(Ω;Rm)× L1+α(Ω).

Now, we can see that the right-hand side of (4.1c) together with the regularized
right-hand side θkext,τ of the boundary conditions (4.3d) form a linear continuous
functional on W 1,2(Ω), where we use that γ was chosen large enough. Indeed, as q >
max(1, 2n/(n+4)) (cf. (3.6)), we have zkτ , z

k−1
τ ∈ W 1,q(Ω;Rm) ⊂ L1/c(n)+ε(Ω), and

thus the dissipative-heat term ζ1(z
k
τ−zk−1

τ ) belongs to L1/c(n)+ε(Ω); here also (3.6)
and (3.11b) have been used. As γ > 2/c(n), the dissipative-heat term De(ukτ−uk−1

τ ):
(ukτ−uk−1

τ ) belongs to L1/c(n)+ε(Ω) for small (generic) ε > 0. Also, due to (4.12),
we have T (wk

τ ) ∈ L1/ω+ε(Ω), and, due to (3.11a), we have φ′(e(ukτ )) : (ukτ−uk−1
τ ) ∈

Lγ/(p1+1)(Ω) so that we have the adiabatic-heat term T (wk
τ )φ

′(e(ukτ )) : (u
k
τ−uk−1

τ ) ∈
L1/c(n)+ε(Ω) as we assumed 1

ω + p1+1
γ < c(n). The space L1/c(n)+ε(Ω) is naturally

embedded continuously into W 1,2(Ω)∗. Hence by a bootstrap argument, testing the
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weak formulation of (4.1c) with the boundary conditions (4.3d) once again, now by
wk

τ , gives still the a priori information about wk
τ in W 1,2(Ω).

Since the regularization causes wk
τ ∈ W 1,2(Ω), we can use that [wk

τ ]
− ∈ W 1,2(Ω)

is a legal test function for (4.1c), which allows us to prove wk
τ ≥ 0; here we use

recursively that wk−1
τ ≥ 0 starting from the initial condition w0

τ = h0(θ0) ≥ 0 and
the property [wk

τ ]
−T (wk

τ ) = 0 due to the definition (3.3), also by using θkext,τ ≥ 0
assumed in (4.4c).

Let us now choose some (ukτ , z
k
τ , w

k
τ ) solving (4.1). With these ukτ and wk

τ given,
let us still consider an auxiliary minimization problem, namely,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

minimize

∫
Ω

�
ukτ−2uk−1

τ +uk−2
τ

τ2
· u+ τζ1

(
z−zk−1

τ

τ

)
+
τ

γ

∣∣e(u)∣∣γ
+
(
1−√

τ
)
De

(
ukτ−uk−1

τ

τ

)
: e(u) + τ3/2ζ2

(
e

(
u−uk−1

τ

τ

))
+ϕ
(
e(u), z,∇z)+ T (wk

τ )φ
′(e(ukτ )) : e(u)− fk

τ ·u dx
subject to (u, z) ∈W 1,γ(Ω;Rn)×W 1,q(Ω;Rm), u|Γ0 = 0.

(4.13)

Due to the assumed mode of convexity (3.9) and coercivity of ϕ and (3.6c), if τ is
small as specified, (4.13) features a convex coercive functional and possesses therefore
a solution which we denote by (ũkτ , z̃

k
τ ). As this functional is even strictly convex,

(ũkτ , z̃
k
τ ) is determined uniquely as (ukτ , w

k
τ ) is considered fixed. Writing optimality

conditions for (ũkτ , z̃
k
τ ) gives

(4.14a)

�
ukτ − 2uk−1

τ + uk−2
τ

τ2
− div

(√
τDe

(
ũkτ−uk−1

τ

τ

)
+ ϕ′

e

(
e(ũkτ ), z̃

k
τ

)
+ τ
∣∣e(ũkτ )∣∣γ−2

e(ũkτ )

)
= fk

τ + div

((
1−√

τ
)
De

(
ukτ−uk−1

τ

τ

)
+ T (wk

τ )φ
′(e(ukτ ))

)
,

∂ζ1

(
z̃kτ−zk−1

τ

τ

)
+ ϕ′

z

(
e(ũkτ ), z̃

k
τ ,∇z̃kτ

)− divϕ′
Z

(
e(ũkτ ), z̃

k
τ ,∇z̃kτ

) � 0,

(4.14b)

with the boundary conditions (4.3a, 4.3c) with (ũkτ , z̃
k
τ ) instead of (ukτ , z

k
τ ) and(√

τDe

(
ũkτ−uk−1

τ

τ

)
+ ϕ′

e

(
e(ũkτ ), z̃

k
τ ,∇z̃kτ

)
+ τ
∣∣e(ũkτ )∣∣γ−2

e(ũkτ )

) ∣∣∣
Γ1

· ν(4.15)

=

((
1−√

τ
)
De

(
ukτ−uk−1

τ

τ

)
+ T (wk

τ )φ
′(e(ukτ ))

) ∣∣∣
Γ1

· ν

instead of (4.3b). Now it is important that the boundary-value problem (4.14), (4.3a,
4.3c), (4.15) represents the 1st-order sufficient optimality conditions for (4.13) if τ
is small enough so that the functional in (4.13) is convex. Testing the difference of
(4.1a) and (4.14a) by ukτ − ũkτ and the difference of (4.1b) and (4.14b) by zkτ − z̃kτ , in
the sum we can see that zkτ = z̃kτ and ukτ = ũkτ when taking into account the strict
convexity of the underlying potential, namely,

(u, z) 	→
∫
Ω

ϕ(e(u), z,∇z) + ζ1(z−zk−1
τ ) +

τ
∣∣e(u)∣∣γ
γ

+
ζ2(e(u))√

τ
dx(4.16)
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if τ > 0 is small as specified above in (4.5); note that here the assumed strict (e)-
semiconvexity (3.9) is used. Then the functional in (4.13) must have a bigger or equal
value on (uk−1

τ , zk−1
τ ) than on (ũkτ , z̃

k
τ ) = (ukτ , z

k
τ ), which gives∫

Ω

�

2

∣∣∣∣ukτ−uk−1
τ

τ

∣∣∣∣2 + τζ1

(
zkτ−zk−1

τ

τ

)
+ τ
(
2−√

τ
)
ζ2

(
e

(
ukτ−uk−1

τ

τ

))
(4.17)

+
τ

γ

∣∣e(ukτ )∣∣γ + ϕ
(
e(ukτ ), z

k
τ ,∇zkτ

)
dx

≤
∫
Ω

�

2

∣∣∣∣uk−1
τ −uk−2

τ

τ

∣∣∣∣2 + ϕ
(
e(uk−1

τ ), zk−1
τ ,∇zk−1

τ

)
+ τfk

τ ·
ukτ−uk−1

τ

τ

+
τ
∣∣e(uk−1

τ )
∣∣γ

γ
+ τT (wk

τ )φ
′(e(ukτ )) : e

(
ukτ−uk−1

τ

τ

)
dx

when employing also the algebraic inequality (ukτ−2uk−1
τ +uk−2

τ ) · (ukτ−uk−1
τ ) ≥

1
2 |ukτ−uk−1

τ |2 − 1
2 |uk−1

τ −uk−2
τ |2. Summing it for k = 1, . . . ,Kτ just yields (4.6).

Now, to get (4.7), we still add (4.1c) tested by 1 to (4.17); here it is an important
consequence of our carefully designed discretization (4.1) that the dissipative and
adiabatic terms cancel.

As for (4.8), it suffices just to realize that (4.13) has a lower value on (ukτ , z
k
τ )

than on (ukτ , v), which gives∫
Ω

ϕ
(
e(ukτ ), z

k
τ ,∇zkτ

)
+ τζ1

(
zkτ−zk−1

τ

τ

)
dx ≤

∫
Ω

ϕ
(
e(ukτ ), v,∇v

)
+ τζ1

(
v−zk−1

τ

τ

)
dx.

Then, one uses that ζ1 is homogeneous degree-1 and thus satisfies the triangle in-
equality ζ1(v−zk−1

τ ) ≤ ζ1(v−zkτ ) + ζ1(z
k
τ−zk−1

τ ), which altogether gives

(4.18)∫
Ω

ϕ
(
e(ukτ ), z

k
τ ,∇zkτ

)
dx ≤

∫
Ω

ϕ
(
e(ukτ ), v,∇v

)
+ τζ1

(
v−zk−1

τ

τ

)
− τζ1

(
zkτ−zk−1

τ

τ

)
dx

≤
∫
Ω

ϕ
(
e(ukτ ), v,∇v

)
+ τζ1

(
v−zkτ
τ

)
dx,

and thus (4.8) is proved.
Let us define the piecewise affine interpolant (uτ , zτ , wτ ) by

uτ (t) :=
t− (k−1)τ

τ
ukτ +

kτ − t

τ
uk−1
τ for t ∈ [(k−1)τ, kτ ],(4.19)

and similarly zτ (t) =
t−(k−1)τ

τ zkτ +
kτ−t
τ zk−1

τ and wτ (t) =
t−(k−1)τ

τ wk
τ +

kτ−t
τ wk−1

τ for
t ∈ [(k−1)τ, kτ ], with k = 0, . . . ,Kτ := T/τ . Also, we define the piecewise constant
interpolant (ūτ , z̄τ , w̄τ ) by

ūτ (t) := ukτ , z̄τ (t) := zkτ , w̄τ (t) := wk
τ for t ∈ ((k−1)τ, kτ ],(4.20)

for k = 0, . . . ,Kτ . Eventually, we define f̄τ and θ̄ext,τ by f̄τ |((k−1)τ,kτ ] := fk
τ and

recall that we already have defined θ̄ext,τ |((k−1)τ,kτ ] := θkext,τ . Occasionally, we will
use also a “retarded” piecewise constant interpolants uτ , zτ , and wτ defined by

uτ (t) := uk−1
τ , zτ (t) := zk−1

τ , wτ (t) := wk−1
τ for t ∈ [(k−1)τ, kτ).(4.21)
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Proposition 4.2 (a priori estimates for uτ , zτ and wτ ). Let, beside the assump-
tions from Lemma 4.1, the exponents p and p1 and ω from (3.6a), (3.11a), and (3.12b)
satisfy (3.13), and let further (4.4) and (4.5) hold. Then it holds that∥∥uτ∥∥W 1,∞(I;L2(Ω;Rn))∩L∞(I;W 1,p

Γ0
(Ω;Rn))∩W 1,2(I;W 1,2

Γ0
(Ω;Rn))

≤ C,(4.22a) ∥∥z̄τ∥∥L∞(I;W 1,q(Ω;Rm))∩BV(Ī;L1(Ω;Rm))
≤ C,(4.22b) ∥∥w̄τ

∥∥
L∞(I;L1(Ω))∩Lr(I;W 1,r(Ω))∩BV(Ī;W 1+n,2(Ω)∗) ≤C with any 1 ≤ r < n+2

n+1 ,(4.22c) ∥∥ūτ∥∥L∞(I;W 1,γ (Ω;Rn))
≤ C

γ
√
τ
.(4.22d)

Moreover, if also (3.14a) holds, then we also have the “dual” estimate of ∂2

∂t2uτ as a
measure (cf. (4.45) below), namely,

∥∥∥∂uτ
∂t

∥∥∥
BV(Ī;W 1,∞

Γ0
(Ω;Rn)∗)

≤ C .(4.23)

Proof. The first and second estimates in (4.22a), the first estimates in (4.22b,
4.22c), and (4.22d) follow quite directly from (4.7) by using the coercivity (3.6a) and
by estimating

τ

∫
Ω

f l
τ · u

l
τ−ul−1

τ

τ
dx ≤ τ

∥∥f l
τ

∥∥
L2(Ω;Rn)

(
K
√
T

�
+

�

4K
√
T

∥∥∥∥ulτ−ul−1
τ

τ

∥∥∥∥2
L2(Ω;Rn)

)
(4.24)

and by using the discrete Gronwall’s inequality which works here if the overall coef-

ficient in front of �
2‖uk

τ−uk−1
τ

τ ‖2L2(Ω;Rn) in (4.7) is away from zero. This actually holds

here, since (4.4d) and τ ≤ T imply τ
∥∥f l

τ

∥∥
L2(Ω;Rn)

�

4K
√
T

≤ √
τ �

4
√
T

≤ �
4 so that the

first term in (4.7) still dominates. Here we also have benefited from having already
proved that wk

τ ≥ 0.
Now we make an estimation of ∇wτ by exploiting the technique proposed by

Boccardo and Gallouët [14, 15]. Simplified like in [26], we use the test of the enthalpy
equation (4.1c) by χ(wk

τ ) using an increasing nonlinear function χ : [0,+∞) → [0, 1]
defined by

χ(w) := 1− 1

(1+w)β
, β > 0.(4.25)

Let us abbreviate the right-hand side of (4.1c) by rkτ and then

r̄τ = ζ1

(
∂zτ
∂t

)
+ 2(1−√

τ )ζ2

(
e

(
∂uτ
∂t

))
+ T (w̄τ )φ

′(e(ūτ )) : e
(
∂uτ
∂t

)
.(4.26)

Note that we have already proved that r̄τ is in L1(Q), although we have not yet proved
that it is bounded independently of τ . Now we execute the announced test of (4.1c)
by χ(wk

τ ), use the Green formula, and sum it for k = 1, . . . ,Kτ . It is important here
that χ(wk

τ ) ∈ W 1,2(Ω); hence it is a legal test function because 0 ≤ wk
τ ∈ W 1,2(Ω)

has already been proved and because χ is Lipschitz continuous on [0,+∞). Realizing
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that χ′(w) = β/(1+w)1+β and denoting by κ0 > 0 the infimum in (3.12d), we get

(4.27)

κ0β

∫
Q

|∇w̄τ |2
(1 + w̄τ )1+β

dxdt = κ0

∫
Q

χ′(w̄τ )|∇w̄τ |2 dxdt

≤
∫
Q

χ′(w̄τ )K (e(ūτ ), z̄τ , w̄τ )∇w̄τ · ∇w̄τ dxdt

=

∫
Q

K (e(ūτ ), z̄τ , w̄τ )∇w̄τ · ∇χ(w̄τ ) dxdt

≤
∫
Q

K (e(ūτ ), z̄τ , w̄τ )∇w̄τ · ∇χ(w̄τ ) dxdt

+

∫
Ω

χ̂(wτ (T, ·)) dx+

∫
Σ

bT (w̄τ )χ(wτ ) dSdt

≤
∫
Ω

χ̂(w0) dx+

∫
Σ

bθ̄ext,τχ(w̄τ ) dSdt+

∫
Q

r̄τχ(w̄τ ) dxdt

≤ ∥∥w0

∥∥
L1(Ω)

+
∥∥b∥∥

L∞(Γ)

∥∥θ̄ext,τ∥∥L1(Σ)
+
∥∥r̄τ∥∥L1(Q)

=: C1 + C2

∥∥r̄τ∥∥L1(Q)
,

where χ̂ is the primitive function of χ such that χ̂(0) = 0. In (4.27), we used χ̂(w) ≤ w
and also we used monotonicity of χ and hence convexity of χ̂ so that the “discrete
chain rule” holds:

χ̂(wk
τ )− χ̂(wk−1

τ )

τ
≤ wk

τ − wk−1
τ

τ
χ(wk

τ ).(4.28)

Now we take 1 ≤ r < 2. By Hölder’s inequality and by (4.27),

(4.29)∫
Q

∣∣∇w̄τ

∣∣rdxdt = ∫
Q

|∇w̄τ |r
(1 + w̄τ )(1+β)r/2

(1 + w̄τ )
(1+β)r/2dxdt

≤
(∫

Q

|∇w̄τ |2
(1 + w̄τ )1+β

dxdt

)r/2(∫
Q

(
1 + w̄τ

)(1+β)r/(2−r)
dxdt

)(2−r)/2

≤
(
C1 + C2

∥∥r̄τ∥∥L1(Q)

)r/2(∫ T

0

∥∥1 + w̄τ (t, ·)
∥∥(1+β)r/(2−r)

L(1+β)r/(2−r)(Ω)
dt

)(2−r)/2

.

Then, by the Gagliardo–Nirenberg inequality,

(4.30)∥∥1+w̄τ (t, ·)
∥∥
L(1+β)r/(2−r)(Ω)

≤ CGN

(∥∥1+w̄τ (t, ·)
∥∥
L1(Ω)

+
∥∥∇w̄τ (t, ·)

∥∥
Lr(Ω;Rd)

)λ∥∥1+w̄τ (t, ·)
∥∥1−λ

L1(Ω)

≤ CGN

(|Ω|+C3

)1−λ
(
|Ω|+ C3 +

∥∥∇w̄τ (t, ·)
∥∥
Lr(Ω;Rd)

)λ
for

2− r

(1 + β)r
≥ λ

(
1

r
− 1

n

)
+ 1− λ with 0 < λ ≤ 1.(4.31)
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We rise (4.30) to the power (1+β)r/(2−r), use it in (4.29), and choose λ :=
(2−r)/(1+β):

(4.32)(∫ T

0

‖1 + w̄τ (t, ·)‖(1+β)r/(2−r)

L(1+β)r/(2−r)(Ω)
dt

)(2−r)/2

≤
(∫ T

0

C
(1+β)r
2−r

GN

(|Ω|+C3

)(1−λ) (1+β)r
2−r

(
|Ω|+C3+‖∇w̄τ (t, ·)‖Lr(Ω;Rd)

)λ (1+β)r
2−r

dt

)(2−r)/2

≤
(∫ T

0

C
(1+β)r
2−r

GN

(|Ω|+C3

)(1−λ) (1+β)r
2−r

(
|Ω|+C3+‖∇w̄τ (t, ·)‖Lr(Ω;Rd)

)r
dt

)(2−r)/2

= C3 + C4

(∫
Q

|∇w̄τ |rdxdt
)(2−r)/2

.

By merging (4.29) with (4.32), one obtains the estimate ‖∇w̄τ‖rLr(Q;Rd)/(1+

‖∇w̄τ‖r(1−r/2)

Lr(Q;Rd)
) ≤ C(1+‖r̄τ‖L1(Q))

r/2 with some C large enough, which further gives

∥∥∇w̄τ

∥∥r
Lr(Q;Rd)

− C5 ≤
⎛⎝ ‖∇w̄τ‖rLr(Q;Rd)

1 + ‖∇w̄τ‖r(1−r/2)

Lr(Q;Rd)

⎞⎠2/r

≤ C6

(
1 +
∥∥r̄τ∥∥L1(Q)

)
(4.33)

for C5 and C6 large enough. Substituting the above-mentioned choice of λ := (2 −
r)/(1 + β) into (4.31), one gets after some algebra the conditions r ≤ n+2−βn

n+1 < n+2
n+1 ,

as indeed used in (4.22c); note that 0 < λ < 1 needed in (4.31) is automatically
ensured by 1 ≤ r < 2 and β > 0.

Further, we sum (4.17) for k = 1, . . . ,Kτ , which gives, after forgetting the non-
negative energy at time T , the estimate∫

Q

ζ1

(
∂zτ
∂t

)
+ (2−√

τ )ζ2

(
∂e(uτ )

∂t

)
≤
∫
Ω

ϕ(e(u0,τ ), z0,∇z0) + τ

γ

∣∣e(u0,τ)∣∣γ dx(4.34)

+
ρ

2

∥∥u̇0∥∥2L2(Ω;Rd)
+

∫
Q

f̄τ ·∂uτ
∂t

+ T (w̄τ )φ
′(e(ūτ )):

∂e(uτ )

∂t
dxdt.

Now we substitute r̄τ from (4.26) into (4.33) and multiply by a sufficiently small
weight, say, 1/(2C6), which gives

1

2C6

∥∥∇w̄τ

∥∥r
Lr(Q;Rd)

≤ 1

2
+

C5

2C6
+

1

2

∫
Q

∣∣∣∣ζ1 (∂zτ∂t
)
+ 2(1−√

τ )ζ2

(
e

(
∂uτ
∂t

))
(4.35)

+T (w̄τ )φ
′(e(ūτ )) : e

(
∂uτ
∂t

) ∣∣∣∣dxdt.
By this way, the dissipation terms

∫
Q ζ1(

∂zτ
∂t )dxdt and

∫
Q 2(1−√

τ )ζ2(e
(
∂uτ

∂t ))dxdt

contained in the right-hand side of (4.33) can be dominated by the corresponding
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left-hand-side terms in (4.17) when we sum (4.35) and (4.35). More specifically, we get

c1
2

∥∥∥∥∂zτ∂t
∥∥∥∥
L1(Q;Rm)

+ c2

∥∥∥∥∂e(uτ )∂t

∥∥∥∥2
L2(Q;Rn×n

sym )

+
1

2C6

∥∥∇w̄τ

∥∥r
Lr(Q;Rn)

(4.36)

≤
∫
Q

1

2
ζ1

(
∂zτ
∂t

)
+ ζ2

(
∂e(uτ)

∂t

)
+

1

2C6

∣∣∇w̄τ

∣∣r dxdt
≤
∫
Ω

ϕ(e(u0,τ ), z0,∇z0) + τ

γ

∣∣e(u0,τ )∣∣γ dx+
ρ

2

∥∥u̇0∥∥2L2(Ω;Rd)

+

∫
Q

f̄τ · ∂uτ
∂t

dxdt+
1

2
+

C5

2C6
+

3

2

∫
Q

∣∣∣∣T (w̄τ )φ
′(e(ūτ )) :

∂e(uτ )

∂t

∣∣∣∣ dxdt;
note that c1 and c2 came from (3.6b, 3.6c). We estimate the last term in (4.36) by
Hölder’s and Young’s inequalities as

3

2

∫
Q

∣∣∣∣T (w̄τ )φ
′(e(ūτ )) :

∂e(uτ)

∂t

∣∣∣∣ dxdt(4.37)

≤Cδ1

∥∥T (w̄τ )
∥∥p3

Lp3(Q)
+ δ1

∥∥φ′(e(ūτ ))∥∥p2/p1

Lp2/p1(Q;Rn×n)
+ δ1

∥∥∥∥∂e(uτ )∂t

∥∥∥∥2
L2(Q;Rn×n)

≤ Cδ1
ω
√
ωc0

∥∥w̄τ

∥∥p3/ω

Lp3/ω(Q)
+ δ1

∥∥φ′(e(ūτ ))∥∥p2/p1

Lp2/p1(Q;Rn×n)
+ δ1

∥∥∥∥∂e(uτ )∂t

∥∥∥∥2
L2(Q;Rn×n)

with p1 > 0, p2 := max(p, 2), p3 := 2p2/(p2−2p1) so that 1
p3

+ p1

p2
+ 1

2 = 1, where Cδ1

depends on δ1 > 0. Note that p3 is finite due to (3.13), and the constant c0 comes
from (3.12b); here we again used (4.12). For p1 = 0, we have φ′ bounded (cf. the

assumption (3.11a)), and we can simply forget the term δ1‖φ′(e(ūτ ))‖p2/p1

Lp2/p1(Q;Rn×n)

if taking Cδ1 large enough. If δ1 > 0 is small, the last term can be absorbed in the
left-hand side of (4.36).

Next, we estimate the term δ1‖φ′(e(ūτ ))‖p2/p1

Lp2/p1(Q;Rn×n)
in (4.37) by δ1

p2

p1
Cp2/p1(|Q|

+ ‖e(ūτ)‖p2

Lp2(Q;Rn×n)) with C here from (3.11a). Now, if p ≥ 2, we have p2 = p, and

thus we have the term ‖e(ūτ )‖p2

Lp2(Q;Rn×n) already estimated, since e(ūτ ) has already

been proved bounded in L∞(I;Lp(Ω;Rn×n)). If p < 2, then p2 = 2, and we use

∥∥e(ūτ (t))∥∥2L2(Ω;Rn×n)
≤ 2
∥∥e(u0,τ)∥∥2L2(Ω;Rn×n)

+ 2T

∫ t

0

∥∥∥∥∂e(uτ )∂t

∥∥∥∥2
L2(Ω;Rn×n)

dt;(4.38)

hence ‖e(ūτ )‖2L2(Q;Rn×n) ≤ 2T ‖e(u0,τ)‖2L2(Ω;Rn×n) + 2T 2‖ ∂
∂te(uτ )‖2L2(Q;Rn×n). As it is

premultiplied by δ1 in (4.37), we can eventually absorb this term in the left-hand side
of (4.36) if δ1 > 0 is taken small enough.

Further, using the already obtained estimate ‖w̄τ‖L∞(I;L1(Ω)) ≤ C and Gagliardo–
Nirenberg’s inequality once more yields∥∥w̄τ (t, ·)

∥∥
Lp3/ω(Ω)

≤CGN,2

∥∥w̄τ (t, ·)
∥∥1−μ

L1(Ω)

(∥∥w̄τ (t, ·)
∥∥
L1(Ω)

+
∥∥∇w̄τ (t, ·)

∥∥
Lr(Ω;Rn)

)μ
(4.39)

≤CGN,2C
1−μ
(
C +

∥∥∇w̄τ (t, ·)
∥∥
Lr(Ω;Rn)

)μ
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for

ω

p3
≥ μ

(
1

r
− 1

n

)
+ 1− μ.(4.40)

Now, we rise (4.39) to the power p3/ω, and, assuming

μp3
ω

< r,(4.41)

we integrate it over I = (0, T ) and use Young’s inequality

∥∥w̄τ

∥∥p3/ω

Lp3/ω(Q)
≤ C

p3/ω
GN,2 C

1−μ
ω p3

∫ T

0

(
C +

∥∥∇w̄τ (t, ·)
∥∥
Lr(Ω;Rn)

) μ
ω p3

dt(4.42)

≤ C7 + δ2
∥∥∇w̄τ

∥∥r
Lr(Q;Rn)

,

where C7 depends here on CGN,2, C, μ, p3, ω, r, and δ2. We further substitute it
into (4.37) and then into (4.36). As we have δ1 (and thus also Cδ1) already fixed,
we can now choose δ2 > 0 so small that we can absorb the right-hand-side term
δ2Cδ1(ωc0)

−ω‖∇w̄τ‖rLr(Ω;Rd) in the left-hand side of (4.36). It eventually gives the

the rest of (4.22a, 4.22b) and the second estimate in (4.22c). In particular, let us note
that, although the left-hand side of (4.36) yields the L1-estimate on ∂

∂tzτ , we are able
to formulate it as a BV-estimate for the piecewise constant interpolant z̄τ in (4.22b)
because of the identity ‖ ∂

∂t z̄τ‖M(Ī;L1(Ω;Rm)) = ‖ ∂
∂tzτ‖L1(Q;Rm).

Now, let us analyze the above conditions. Taking into account r < n+2
n+1 , (4.40)

and (4.41) imply, respectively,

ω

p3
> 1− μ

2n+ 2

n2+2n
and

ω

p3
> μ

n+ 1

n+ 2
.(4.43)

The optimal value of μ makes both these lower bounds equal to each other, which
takes place if μ = n/(n+1); note that 0 < μ < 1 is indeed satisfied, as desired for
(4.39). In this way, (4.40) (or equally (4.41)) yields (3.13).

The “dual” estimate for ∂wτ

∂t follows, by using (4.1c) with (4.3d), from the already
obtained estimates (4.22a–4.22c) by

(4.44)∥∥∥∥∂wτ

∂t

∥∥∥∥
L1(I;W 1+n,2(Ω)∗)

= sup
v∈L∞(I;W 1+n,2(Ω))

∫
Q

∂wτ

∂t
v dxdt

= sup
v∈L∞(I;W 1+n,2(Ω))

∫
Q

r̄τ ·v − K (e(ūτ ), z̄τ , w̄τ )∇w̄τ ·∇v dxdt

+

∫
Σ

b
(
θ̄ext,τ−T (w̄τ )

)
v dSdt.

Now we can estimate it by using ∇v bounded in L∞(Q;Rn) and the already proved
(parts of) estimates (4.22a–4.22c) and the fact that r̄τ is already proved bounded in
L1(Q). Similarly as already used for z̄τ , we have also here ‖w̄τ‖M(Ī;W 1+n,2(Ω)∗) =

‖ ∂
∂twτ‖L1(I;W 1+n,2(Ω)∗), which eventually gives the last BV part in (4.22c).
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Moreover, as for the estimate (4.23), let us realize that ∂uτ

∂t is piecewise constant

in time; hence ∂2uτ

∂t2 is a measure on Ī = [0, T ] supported just at the jumps of ∂uτ

∂t ,
namely,

∂2uτ
∂t2

=

Kτ∑
k=1

ukτ−2uk−1
τ +uk−2

τ

τ2
δ(· − kτ),(4.45)

where here δ denotes the Dirac measure. Thus, we can estimate

(4.46)∥∥∥∥∂2uτ∂t2

∥∥∥∥
M(Ī;W 1,∞

Γ0
(Ω;Rn)∗)

≤
Kτ∑
k=1

∥∥∥∥ukτ−2uk−1
τ +uk−2

τ

τ2

∥∥∥∥
W 1,∞

Γ0
(Ω;Rn)∗

=

Kτ∑
k=1

sup
‖v‖

W
1,∞
Γ0

(Ω;Rn)
≤1

∫
Ω

1

�

(
De

(
ukτ−uk−1

τ

τ

)
+ ϕ′

e(e(u
k
τ ), z

k
τ )

+ T (wk
τ )φ

′(e(ukτ )) + τ
∣∣e(ukτ )∣∣γ−2

e(ukτ)

)
: e(v)− fk

τ · v dx

= sup
‖v‖

C(Ī;W
1,∞
Γ0

(Ω;Rn))
≤1

∫
Q

1

�

(
De

(
∂uτ
∂t

)
+ ϕ′

e(e(ūτ ), z̄τ )

+ T (w̄τ )φ
′(e(ūτ )) + τ

∣∣e(ūτ )∣∣γ−2
e(ūτ )

)
:e(v)− f̄τ ·v dxdt.

With the same constants as in (4.37), we have also

∥∥T (w̄τ )φ
′(e(ūτ ))

∥∥2
L2(Q;Rn×n)

≤ 2Cδ1

3 ω
√
ωc0

∥∥w̄τ

∥∥p3/ω

Lp3/ω(Q)
+

2δ1
3

∥∥φ′(e(ūτ ))∥∥p2/p1

Lp2/p1(Q;Rn×n)
,

and thus, by (4.22a, 4.22c), we have T (w̄τ )φ
′(e(ūτ )) estimated in L2(Q;Rn×n).

Furthermore, by (4.22a–4.22c) and (3.14a), we have De(∂uτ

∂t ) bounded in L2(Q;Rn×n),
ϕ′
e(e(ūτ ), z̄τ ) bounded in L∞(I;L2(Ω;Rn×n)), τ |e(ūτ )|γ−2e(ūτ ) bounded in
Lγ/(γ−1)(Q;Rn×n) (even as O(τ1/γ)), and also f̄τ is bounded in L1(I;L2(Ω;Rn))
uniformly with respect to τ . Using Hölder’s inequality for (4.46), we eventually prove
(4.23).

Proposition 4.3 (convergence for τ ↓ 0). Let the assumptions of Lemma 4.1
together with (3.8) and (3.13) hold. Moreover, let also (3.14) and (3.16) hold. Then, in
terms of subsequences, {(uτ , zτ , wτ )}τ>0 converges weakly* in the topologies indicated
in (4.22a–4.22c) and (4.23). Every limit (u, z, w) obtained by this way is an energetic
solution in accord with Definition 3.1. In particular, such a solution does exist, as
claimed in Theorem 3.3.
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Proof. For lucidity, let us divide the proof into seven steps.
Step 1: Discrete variant of (3.18). Testing (4.1a) by some vk and using the discrete

“by-part” summation

Kτ∑
k=1

(uk−2uk−1+uk−2)·vk =
(
uKτ−uKτ−1

)·vKτ − (u0−u−1)·v1(4.47)

−
Kτ∑
k=2

(uk−1−uk−2)·(vk−vk−1),

we obtain the discrete variant of (3.18a), namely,∫
Q

(
ϕ′
e(e(ūτ ), z̄τ ) + T (w̄τ )φ

′(e(ūτ ))(4.48)

+ τ |e(ūτ )|γ−2e(ūτ ) + De

(
∂uτ
∂t

))
: e(v̄τ )− f̄τ ·v̄τ dxdt

−
∫ T

τ

∫
Ω

�
∂uτ
∂t

(· − τ)· ∂vτ
∂t

dxdt+

∫
Ω

�
∂uτ
∂t

(T ) · vτ (T ) dx =

∫
Ω

�u̇0,τ · vτ (τ) dx,

where v̄τ and vτ denote, respectively, the piecewise constant and the piecewise affine
interpolants of {vk}Kτ

k=0 on the equidistant partition of [0, T ] with the time step τ .
Like before in (4.47) but now for scalar-valued v’s, we use the discrete “by-part”

summation

Kτ∑
k=1

(wk−wk−1)vk = wKτ vKτ − w0v1 −
Kτ∑
k=2

wk−1(vk−vk−1),(4.49)

and get the discrete analogue of (3.18b) as∫
Ω

wτ (T )vτ (T ) dx+

∫
Q

K (e(ūτ ), z̄τ , w̄τ )∇w̄τ · ∇v̄τ − ξ̄τ v̄τ(4.50)

− T (w̄τ )φ
′(e(ūτ )) : e

(
∂uτ
∂t

)
v̄τ dxdt−

∫ T

τ

∫
Ω

wτ

∂vτ
∂t

dxdt =

∫
Ω

w0vτ (τ) dx

with v̄τ and vτ denoting again, respectively, the piecewise constant and the piecewise
affine interpolants of some {vk}Kτ

k=0 on the equidistant partition of [0, T ] and with the
dissipative heat

ξ̄τ := ζ1

(
∂zτ
∂t

)
+ 2
(
1−√

τ
)
ζ2

(
e

(
∂uτ
∂t

))
.(4.51)

Moreover, the discrete analogue of (3.18c) as an inequality can be got simply by
writing (4.7) for k = Kτ , which gives∫

Ω

�

2

∣∣∣∣∂uτ∂t (T )

∣∣∣∣2 + ϕ
(
e(uτ (T )), zτ (T ),∇zτ(T )

)
+ wτ (T ) dx+

∫
Σ

bT (w̄τ ) dSdt(4.52)

≤
∫
Q

f̄τ · ∂uτ
∂t

dxdt+

∫
Ω

�

2

∣∣u̇0∣∣2+ ϕ
(
e(u0,τ ), z0,∇z0

)
+ w0 +

τ

γ
|e(u0,τ)|γ dx+

∫
Σ

bθ̄ext,τ dSdt
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with w0 := h0(θ0); note that we simply forgot the nonnegative term τ |e(ukτ )|γ/γ in
(4.7), which would otherwise occur on the left-hand side of (4.52) as τ |e(uτ (T ))|γ/γ.

Eventually, summing (4.8) for k = 1, . . . ,Kτ , we obtain the discrete variant of
semistability (3.18d) integrated over I:∫

Q

ϕ
(
e(ūτ), z̄τ , ∇̄zτ

)
dxdt ≤

∫
Q

ϕ
(
e(ūτ ), v,∇v

)
+ ζ1

(
v−z̄τ

)
dxdt(4.53)

for any v ∈ L∞(I;W 1,q(Ω;Rm)).
Step 2: Selection of subsequences. By the Banach selection principle, in view of

the estimates (4.22a–4.22c) and (4.23), we take a weakly* convergent subsequence and
denote its limit by (u, z, w). More precisely, we should first embed L1(Ω) ⊂ M (Ω̄)
in (4.22c) because only then one can use the weakly* topology. Thus, in fact, w̄τ

converges in L∞
w∗(I;M (Ω̄)) ∩ Lr(I;W 1,r(Ω)) ∩ BV(Ī;W 1+n,2(Ω)∗). Here, we used

also that L∞
w∗(I;M (Ω̄)) is the dual to the separable space L1(I;C(Ω̄)). Since w is

also in Lr(I;Lr(Ω)), the mapping t 	→ w(t, ·) : I → M (Ω̄) is a.e. valued in, say, Lr(Ω)
and is Bochner measurable; thus even w ∈ L∞(I;L1(Ω)), as involved in (3.17d). On
top of it, due to the BV estimates in (4.22b, 4.22c), we can use the Helly selection
principle generalized for functions valued in Banach spaces with a separable predual
(cf., e.g., [44, 52]) so that the subsequence can be considered also to have

zτ (t, ·) → z(t, ·) weakly in W 1,q(Ω;Rm) and(4.54a)

wτ (t, ·) → w(t, ·) weakly* in M (Ω̄) for any t ∈ Ī .(4.54b)

Thus, in particular, we have also w ∈ Bw∗(Ī ;M (Ω̄)), as involved in (3.17d).
Standardly, one can also show that the limits of converging subsequences {uτ}τ>0

and {ūτ}τ>0 are the same and that { ∂
∂tuτ}τ>0 converges to

∂
∂tu weakly in the topology

indicated in (4.22a), and also { ∂2

∂t2 uτ}τ>0 converges to ∂2

∂t2u weakly in the topology
indicated in (4.23). Analogous facts are at disposal for zτ and wτ , too. In addition,

w̄τ → w strongly in L(n+2)/n−ε(Q) with ε > 0(4.55)

by the Aubin–Lions theorem (generalized for time-derivatives as measures as in [62,
Corollary 7.9]) and interpolated (as in [62, Corollary 7.8]) with the the first and the
second part of estimate (4.22c). The mentioned interpolation is due to Gagliardo–
Nirenberg inequality, and, in fact, we already made it when proving boundedness of
{w̄τ}τ>0 in L(n+2)/n−ε(Q); cf. (4.42) with p3

ω < n+2
μ(n+1) from (4.43) and realize the

previous choice μ = n
n+1 .

Step 3: Strong convergence of e(ūτ ). Let us take vτ and v̄τ , respectively, a piece-
wise affine approximation of u and the corresponding approximation piecewise con-
stant in time on the partition of [0, T ] such that vτ → u strongly in Lp(I;W 1,p

Γ0
(Ω;Rn))∩

W 1,2(I;W 1,2(Ω;Rn)) and v̄τ → u strongly in Lp(I;W 1,p
Γ0

(Ω;Rn)); such approximation
is always possible, since u lies in this space due to (4.22a). In addition, we can as-
sume {e(v̄τ )}τ>0 ⊂ Lγ(Q;Rn×n), although we cannot assume this sequence bounded
but only, say, ‖e(v̄τ )‖Lγ(Q;Rn×n) = O(τ−1/(γ+1)). Using the p-strong monotonicity
(3.8) of ϕ′

e(·, z) and the convexity (3.11a) of φ, we have p-strong monotonicity of
ψ′
e(·, z, θ) = ϕ′

e(·, z) + θφ′(·) uniformly for any z and θ ≥ 0. Moreover, we use mono-
tonicity of e 	→ τ |e|γ−2e. Using further the identity (4.48) with uτ−vτ and ūτ−v̄τ in
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place of vτ and v̄τ , respectively, we obtain

(4.56)

α
(∥∥e(ūτ )∥∥p−1

Lp(Q;Rn×n)
− ∥∥e(v̄τ )∥∥p−1

Lp(Q;Rn×n)

)(∥∥e(ūτ )∥∥Lp(Q;Rn×n)
− ∥∥e(v̄τ )∥∥Lp(Q;Rn×n)

)
≤
∫
Q

α
(|e(ūτ )|p−2e(ūτ )− |e(v̄τ )|p−2e(v̄τ )

)
:e(ūτ − v̄τ ) dxdt

≤
∫
Q

(
ϕ′
e(e(ūτ ), z̄τ ) + T (w̄τ )φ

′(e(ūτ )) + τ |e(ūτ )|γ−2e(ūτ )

− ϕ′
e(e(v̄τ ), z̄τ )− T (w̄τ )φ

′(e(v̄τ ))− τ |e(v̄τ )|γ−2e(v̄τ )
)
: e(ūτ−v̄τ ) dxdt

=

∫
Q

f̄τ ·(ūτ−v̄τ )− De

(
∂uτ
∂t

)
: e(ūτ−v̄τ )

− (ϕ′
e(e(v̄τ ), z̄τ ) + T (w̄τ )φ

′(e(v̄τ )) + τ |e(v̄τ )|γ−2e(v̄τ )
)
: e(ūτ−v̄τ ) dxdt

+

∫ T

τ

∫
Ω

�
∂uτ
∂t

(· − τ)· ∂(uτ−vτ )
∂t

dxdt

−
∫
Ω

�
∂uτ
∂t

(T ) · [uτ−vτ ](T )− �u̇0 ·
[
uτ − vτ

]
(τ) dx → 0,

where we are still to prove the last convergence. In fact, it suffices to prove that the
limit superior is nonpositive. Obviously,

∫
Q
f̄τ ·(ūτ−v̄τ ) dxdt → 0. As for the D-term,

we have

lim sup
τ↓0

∫
Q

−De

(
∂uτ
∂t

)
: e(ūτ−v̄τ ) dxdt ≤ lim

τ↓0

∫
Ω

1

2
De(u0,τ ) : e(u0,τ ) dx(4.57)

− lim inf
τ↓0

∫
Ω

1

2
De(uτ (T )) : e(uτ (T )) dx− lim

τ↓0

∫
Q

De

(
∂uτ
∂t

)
: e(v̄τ ) dxdt

≤ 1

2

∫
Ω

De(u0) : e(u0)− De(u(T )) : e(u(T )) dx−
∫
Q

De

(
∂u

∂t

)
: e(u) dxdt = 0.

The first inequality in (4.57) used De(uk−uk−1) : e(uk)≥ 1
2De(u

k) : e(uk)− 1
2De(u

k−1) :

e(uk−1) so that
∫
Q
De(∂uτ

∂t ) : e(ūτ ) dxdt ≥ 1
2

∫
Ω
De(uτ (T )) : e(uτ (T )) − De(u0,τ ) :

e(u0,τ ) dx; note that the last difference is indeed in L1(Ω), although the particular
terms need not be if p < 2.

We use the Aubin–Lions theorem (again generalized as [62, Corollary 7.9]) so that

z̄τ → z strongly in Lq∗−ε(Q;Rm) with ε > 0;(4.58)

in fact, this convergence does not exploit any interpolation (unlike (4.55) before) and
holds even in a bit smaller space L1/ε(I;Lq∗−ε(Ω;Rm)). This gives ϕ′

e(e(v̄τ ), z̄τ ) :
e(ūτ − vτ ) → ϕ′

e(e(u), z) : e(u − u) = 0 weakly in L1(Q); here the growth (3.14a) of
ϕ′
e has been used. In (4.56), we also used that T (w̄τ )φ

′(e(v̄τ )) : e(ūτ−v̄τ ) converges
to 0 weakly in L1(Q) since (4.55). For both terms, we used also that e(v̄τ ) → e(u) by
assumption.
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Also we use ∂uτ

∂t → ∂u
∂t strongly in L2(Q;Rn), which can be proved by Aubin–

Lions theorem (again generalized as [62, Corollary 7.9]) based on the estimate of
∂uτ

∂t in L2(I;W 1,2(Ω;Rn)) ∩ BV(Ī;W 1,∞
Γ0

(Ω;Rn)∗) from (4.22a) and (4.23). Also,
∂uτ

∂t (· − τ) → ∂u
∂t weakly in L2(Q;Rn) due to the a priori estimate (4.22a) and

∥∥∥∥∂uτ∂t (· − τ)− ∂uτ
∂t

∥∥∥∥
M(Ī;W 1,∞

Γ0
(Ω;Rn)∗)

≤ τ

∥∥∥∥∂2uτ∂t2

∥∥∥∥
M(Ī;W 1,∞

Γ0
(Ω;Rn)∗)

→ 0,(4.59)

where M (Ī;X) denotes the space ofX-valued measures on Ī = [0, T ]. Thus
∫ T

τ

∫
Ω
�∂uτ

∂t

(· − τ)· ∂(uτ−vτ )
∂t dxdt→ ∫

Q
�∂u

∂t · ∂(u−u)
∂t dxdt = 0.

Also, we can limit our regularizing term
∫
Q τ |e(v̄τ )|γ−2e(v̄τ ) : e(ūτ−v̄τ ) dxdt

by using (4.22d) and our assumption ‖e(v̄τ )‖Lγ(Q;Rn×n) = O(τ−1/(γ+1)) so that

| ∫Q τ |e(v̄τ )|γ−2e(v̄τ ) : e(ūτ−v̄τ ) dxdt| ≤ τ‖e(v̄τ )‖γ−1
Lγ(Q;Rn×n)‖e(v̄τ−v̄τ )‖Lγ(Q;Rn×n) =

O(τ1−1/(γ+1)−1/γ) → 0.
Since

∂uτ
∂t

(T ) = u̇0 +

∫ T

0

∂2uτ
∂t2

dt → u̇0 +

∫ T

0

∂2u

∂t2
dt =

∂u

∂t
(T ) weakly in W 1,∞

Γ0
(Ω;Rn)∗,

(4.60)

by the a priori estimate of ∂uτ

∂t (T ) in L2(Ω;Rn), we have ∂uτ

∂t (T ) → ∂u
∂t (T ) weakly in

L2(Ω;Rn). Further we use also uτ (T ) → u(T ) weakly in W 1,p(Ω;Rn) and therefore
strongly in L2(Ω;Rn) (here p > 2n/(n+2) from (3.6a) is used to ensure W 1,p(Ω) �
L2(Ω)) so that we have

∫
Ω
�∂uτ

∂t (T ) · [uτ−vτ ](T ) dx→ ∫
Ω
�∂u

∂t (T ) · [u−u](T ) dx = 0.
Eventually, for limiting the last term in (4.56) we use uτ (τ) = u1τ → u0 weakly in

L2(Ω;Rn) and vτ (τ) → u0 in L2(Ω;Rn).
Altogether, from (4.56), we get ‖e(ūτ )‖Lp(Q;Rn×n) → ‖e(u)‖Lp(Q;Rn×n). As we

already know that e(ūτ ) → e(u) weakly in Lp(Q;Rn×n), by the well-known fact
that Lp(Q;Rn×n) is a uniformly convex space, we obtain e(ūτ ) → e(u) strongly in
Lp(Q;Rn×n).

Step 4: Limit passage in discrete momentum balance (4.48). We use the strong
convergence of e(ūτ ) in Lp(Q;Rn×n) already proved is Step 3 and also (4.55) and
(4.58). Also, employing (4.22d), we use

∣∣∣∣ ∫
Q

τ
∣∣e(ūτ )∣∣γ−2

e(ūτ ) : e(v) dxdt

∣∣∣∣≤ τ
∥∥e(ūτ )∥∥γ−1

Lγ(Q;Rn×n)

∥∥e(v)∥∥
Lγ(Q;Rn×n)

(4.61)

≤ τ

(
C

γ
√
τ

)γ−1∥∥e(v)∥∥
Lγ(Q;Rn×n)

=O
(

γ
√
τ
)→ 0.

Also, ∂
∂tuτ (· − τ) → u̇0 weakly in L2(Ω;Rn) because, like in (4.60), ∂

∂tuτ (· − τ) =

u̇0 +
∫ τ

0
∂2uτ

∂t2 dt → u̇0 +
∫ 0

0
∂2u
∂t2 dt = u̇0. Then the limit passage in (4.48) is easy, and

we thus obtain (3.18a).
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Step 5: Limit passage in discrete semistability (4.53). This must be excecuted
case by case to obtain the “integrated” semistability

∫
Q

ϕ
(
e(u), z,∇z)dxdt ≤ ∫

Q

ϕ
(
e(u), v,∇v)+ ζ1

(
v−z)dxdt(4.62)

for any v ∈ L∞(I;W 1,q(Ω;Rm)). Having obtained (4.62), we would like to see (3.18d)
for a.a. t ∈ I. Like in [64, Proof of Proposition 5.2], assuming it would not be true,
we could find ε > 0 and J ⊂ I with a positive measure such that

∀t∈J ∃v ∈W 1,q(Ω;Rm) :

∫
Ω

ϕ
(
e(u(t)), v,∇v)+ ζ1

(
v−z(t))dx+ ε(4.63)

≤
∫
Ω

ϕ
(
e(u(t)), z(t),∇z(t)) dx =: E(t).

Let M(t) denote the set of all v satisfying the inequality in (4.63). Each M(t) is
nonempty and closed, and the set-valued mapping t 	→ M(t) : I ⇒ W 1,q(Ω;Rm) is
measurable and bounded; note that the boundedness ofM(·) follows from the coerciv-
ity (3.6a, 3.6b) and from the boundedness of E(·), which is guaranteed by the estimate

E(t) ≤ ‖f‖L1(I;L2(Ω;Rn))‖∂u
∂t ‖L∞(I;L2(Ω;Rn)) + supτ>0

∫
Ω

�
2

∣∣u̇0∣∣2+ϕ
(
e(u0,τ ), z0,∇z0

)
+

w0 dx+
∫
Σbθ̄ext,τ dSdt; cf. (4.52). Then it is well known that there is a measurable se-

lection ofM ; let us denote it as ṽ. Considering v ∈ L∞(I;W 1,q(Ω;Rm)) as v(t) = ṽ(t)
for t ∈ J and v(t) = z(t) for t ∈ I \ J , we obtain

∫
Q

ϕ
(
e(u), z,∇z)dxdt=∫

J

∫
Ω

ϕ
(
e(u), z,∇z)dxdt+∫

I\J

∫
Ω

ϕ
(
e(u), v,∇v) dxdt(4.64)

≥
∫
J

(∫
Ω

ϕ
(
e(u), v,∇v)+ ζ1(v−z) dx+ ε

)
dt+

∫
I\J

∫
Ω

ϕ
(
e(u), v,∇v) dxdt

=

∫
Q

ϕ
(
e(u), v,∇v)+ ζ1(v−z) dxdt+ εmeas(J),

which would contradict (4.62), since εmeas(J) > 0.
To obtain (4.62), we may use methods as in the isothermal case [64] because, in

particular, φ is not involved in the discrete semistability (as φ does not depend on z).
Step 5a. Let us begin with the case (3.10a), which allows for the limit passage

in (4.53) to get (4.62) simply by continuity as far as φ1 and ζ1 concerns and by weak
lower semicontinuity as far as

∫
Q
φ2(z̄τ ,∇z̄τ ) dxdt concerns. Here we also use (4.58).

Step 5b. In case (3.10b), the limit passage in (4.53) can rely on the binomial
formula for the functional Φ(e, ·) from the proof of Proposition 3.2 which is now
assumed quadratic/affine so that

Φ(e, z)− Φ(e, z̃) =

〈
Φ′

z(e, ·)+
1

2

[
Φ′′

zz(e)
]
(z+z̃) , (z−z̃)

〉
.(4.65)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THERMODYNAMICS OF RATE-INDEPENDENT PROCESSES 283

Thus, for any test function ṽ ∈ L2(I;W 1,2(Ω;Rm)), we can use (4.8) with v := vτ =
ṽ− z+ z̄τ in place of v, use the binomial formula (4.65) with z̄τ instead of z, and also
use the assumed form ϕ(e, z, Z) = (A(e)(z, Z) + b(e)) : (z, Z) with a matrix A(e) and
a vector b(e), i.e.,

∫
Q

ϕ
(
e(ūτ ), z̄τ ,∇z̄τ

)
dxdt−

∫
Q

ϕ
(
e(ūτ), vτ ,∇vτ

)
dxdt(4.66)

=

∫
Q

(
A
(
e(ūτ )

)(
z̄τ+vτ ,∇(z̄τ+vτ )

)
+ b(e(ūτ )

))
:
(
z̄τ−vτ ,∇(z̄τ−vτ )

)
dxdt

=

∫
Q

(
A
(
e(ūτ )

)(
z̄τ+vτ ,∇(z̄τ+vτ )

)
+ b(e(ūτ )

))
:
(
z−ṽ,∇(z−ṽ)) dxdt.

This then converges to
∫
Q
(A(e(u))(z+v,∇(z+v)) + b(e(u))):(z−ṽ,∇(z−ṽ)) dxdt,

which equals
∫
Q
ϕ(e(u), z,∇z) dxdt− ∫

Q
ϕ(e(u), v,∇v) dxdt by (4.65). Here we used

the strong convergence e(ūτ ) → e(u) from Step 3 and the growth conditions for
ϕ′
(z,Z) in (3.10b) to guarantee continuity of the Nemytskĭı mapping induced by this

integrand. Moreover, we have simply ζ1(vτ−z̄τ ) = ζ1(ṽ−z) so that the limit passage
from (4.53) to (4.62) is proved in case (3.10b).

Step 6: Passage in the discrete energy inequality (4.52). It is just by weak lower
semicontinuity and the assumption (4.4a). Thus the inequality “≤” in the energy
balance (3.18c) is obtained.

Step 7: Passage in the enthalpy equation (4.50). It is highly nontrivial because
of the convergence of the dissipative heat ξ̄τ . For execution of this convergence, it
seems important (or rather necessary) to obtain inverse inequality for the mechanical
energy balance

(4.67)∫
Ω

�

2

∣∣∣∣∂u∂t (T )
∣∣∣∣2 + ϕ(u(T ), z(T ),∇z(T ))dx+VarS(z; 0, T ) + 2

∫
Q

ζ2

(
e

(
∂u

∂t

))
dxdt

≥
∫
Ω

�

2
|u̇0|2 + ϕ(e(u0), z0,∇z0) dx+

∫
Q

f · ∂u
∂t

− T (w)φ′
(
e(u)

)
:e

(
∂u

∂t

)
dxdt,

which is, under our assumptions and already proved results, further equivalent to
energy equality (3.18c).

The most essential trick is to use the already proved “integral” semistability
(3.18d); cf. [22, 27, 44, 45, 50] for this technique in a mere rate-independent context
or in the viscous context [64, Proposition 5.4]. We consider now ε > 0 and a partition
0 = tε0 < tε1 < · · · < tεkε

= T with maxi=1,...,kε(t
ε
i − tεi−1) ≤ ε. Moreover, as (3.18d)

holds a.e. t ∈ I and also at t = 0 due to (3.16), we can consider the above partition so
that the semistability holds at tεi for each i = 0, . . . , kε − 1. Using this semistability
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of z at time tεi−1 gives, when tested by v := z(tεi ), the estimate∫
Ω

ϕ
(
e(u(tεi−1)),z(t

ε
i−1),∇z(tεi−1)

)
dx(4.68)

≤
∫
Ω

ϕ
(
e(u(tεi−1)), z(t

ε
i ),∇z(tεi )

)
+ ζ1

(
z(tεi )−z(tεi−1)

)
dx

=

∫
Ω

(
ϕ
(
e(u(tεi )), z(t

ε
i ),∇z(tεi )

)
+ ζ1

(
z(tεi )− z(tεi−1)

)
−
∫ tεi

tεi−1

ϕ′
e

(
e(u(t)), z(tεi )

)
: e
(∂u
∂t

)
dt

)
dx ;

again we used that ϕ′
e depends only on (e, z) due to (3.7). Summing (4.68) for

i = 1, . . . , kε and assuming that {tεi}kε−1
i=1 are chosen so that ∂

∂tu(t
ε
i ) ∈ W 1,2(Ω;Rn)

are well defined, we obtain

(4.69)∫
Ω

ϕ
(
e(u(T )), z(T ),∇z(T ))− ∫

Ω

ϕ
(
e(u0), z0,∇z0

)
dx+VarS(z; 0, T )

≥
kε∑
i=1

∫ tεi

tεi−1

∫
Ω

ϕ′
e

(
e(u(t)), z(tεi )

)
: e

(
∂u

∂t

)
dxdt

≥
kε−1∑
i=1

∫ tεi

tεi−1

∫
Ω

ϕ′
e

(
e(u(t)), z(tεi )

)
: e

(
∂u

∂t

)
dxdt− δε

=

kε−1∑
i=1

(tεi − tεi−1)

∫
Ω

ϕ′
e

(
e(u(tεi )), z(t

ε
i )
)
: e

(
∂u

∂t
(tεi )

)
dx

+

kε−1∑
i=1

∫ tεi

tεi−1

∫
Ω

(
ϕ′
e

(
e(u(t)), z(tεi )

)−ϕ′
e

(
e(u(tεi )), z(t

ε
i )
))

:e

(
∂u

∂t

)
dxdt

+

kε−1∑
i=1

∫ tεi

tεi−1

∫
Ω

ϕ′
e

(
e(u(tεi )), z(t

ε
i )
)
: e

(
∂u

∂t
−
[
∂u

∂t

]
(tεi )

)
dxdt− δε

=: Sε
1 + Sε

2 + Sε
3 − δε,

where

δε :=

∣∣∣∣∣
∫ T

tεkε−1

∫
Ω

ϕ′
e

(
e(u(t)), z(T )

)
: e

(
∂u

∂t

)
dxdt

∣∣∣∣∣ .(4.70)

As to Sε
2 , using the Lipschitz continuity of ϕ′

e(·, z) : Rn×n
sym → Rn×n

sym assumed in (3.14b)
with � denoting here the Lipschitz constant, we can estimate

|Sε
2 | ≤

kε∑
i=1

∫ tεi

tεi−1

�
∥∥e(u(t)− u(tεi )

)∥∥
L2(Ω;Rn×n)

∥∥∥∥e(∂u∂t
)∥∥∥∥

L2(Ω;Rn×n)

dt(4.71)

≤ � max
i=1,...,kε

max
t∈[tεi−1,t

ε
i ]

∥∥e(u(t)−u(tεi ))∥∥L2(Ω;Rn×n)

∥∥e(u)∥∥
W 1,1(I;L2(Ω;Rn×n))

.
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Since certainly e(u) ∈W 1,1(I;L2(Ω;Rn×n)), the “maxmax”-term tends to zero with
ε↓0; hence limε↓0 Sε

2 = 0. As to Sε
3 , by Fubini’s theorem, we can estimate

|Sε
3 | =

∣∣∣∣∣
kε∑
i=1

∫
Ω

ϕ′
e

(
e(u(tεi )), z(t

ε
i )
)
: e

(
u(tεi )− u(tεi−1)− (tεi−tεi−1)

[
∂u

∂t

]
(tεi )

)
dx

∣∣∣∣∣(4.72)

≤ ∥∥ϕ′
e

(
e(u), z

)∥∥
L∞(I;L2(Ω;Rn×n))

kε∑
i=1

∥∥∥∥∥e
(
u(tεi )− u(tεi−1)

− (tεi−tεi−1)

[
∂u

∂t

]
(tεi )

)∥∥∥∥∥
L2(Ω;Rn×n)

.

Note that u(tεi )−u(tεi−1) ∈W 1,2(Ω;Rn), although particular terms are inW 1,p(Ω;Rn)
and need not belong to W 1,2(Ω;Rn) if p < 2 and that the assumed growth (3.14a) of
ϕ′
e together with (4.22a, 4.22b) indeed guarantees ϕ′

e(e(u), z) ∈ L∞(I;L2(Ω;Rn×n)).
We have still a freedom to choose the partition {tεi}kε

i=1 in such a way that both
limε↓0 Sε

3 = 0 and that the Riemann sum Sε
1 approaches the corresponding Lebesgue

integral, namely,

lim
ε↓0

Sε
1 =

∫ T

0

∫
Ω

ϕ′
e

(
e(u(t)), z(t)

)
: e

(
∂u

∂t

)
dxdt ;(4.73)

cf. [22, Lemma 4.12] or [27, Lemma 4.5], following the idea of Hahn [31]. Eventually,
limε↓0 δε = 0 because the integrand in (4.70) is absolutely continuous and tεkε−1↑T for
ε↓0. This allows for a limit passage in (4.69) for ε↓0, which gives the desired opposite
inequality ∫

Ω

ϕ
(
e(u(T )), z(T ),∇z(T ))− ∫

Ω

ϕ
(
e(u0), z0,∇z0

)
dx(4.74)

+ VarS(z; 0, T ) ≥
∫ T

0

∫
Ω

ϕ′
e

(
e(u(t)), z(t)

)
: e

(
∂u

∂t

)
dxdt .

Further, we have also to prove ∂2u
∂t2 ∈ L2(I;W 1,2

Γ0
(Ω;Rn)∗) + L1(I;L2(Ω;Rn)), which

follows from f ∈ L1(I;L2(Ω;Rn)) and from the identity∥∥∥∥∂2u∂t2 − f

∥∥∥∥
L2(I;W 1,2

Γ0
(Ω;Rn)∗)

= sup
‖v‖

L2(I;W
1,2
Γ0

(Ω;Rn))
≤1

〈
∂2u

∂t2
− f, v

〉

= sup
‖v‖

L2(I;W
1,2
Γ0

(Ω;Rn))
≤1

∫
Q

1

�

(
De

(
∂u

∂t

)
+ ϕ′

e(e(u), z) + T (w)φ′(e(u))
)

: e(v) dxdt

from the estimate (4.22a, 4.22b) inherited for the limit (u, z) combined with (3.14a)
and also by using

∫
Q

T (w)φ′(e(u)) : e(v)dxdt ≤ C‖T (w)φ′(e(u))‖L2(Q;Rn×n)

‖e(v)‖L2(Q;Rn×n). Hence ∂u
∂t ∈ L2(I;W 1,2

Γ0
(Ω;Rn)) ∩ L∞(I;L2(Ω;Rn)) is a legal test

function for (3.18a) obtained already in Step 4. In particular, as ∂2u
∂t2 and ∂u

∂t in mu-
tually dual spaces, we can perform the by-part integration in time (3.21), and we
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obtain ∫
Ω

�

2

∣∣∣∣∂u∂t (T )
∣∣∣∣2 dx+ 2

∫
Q

ζ2

(
e

(
∂u

∂t

))
+ ϕ′

e(e(u(t)), z(t)) : e

(
∂u

∂t

)
dxdt(4.75)

=

∫
Ω

�

2
|u̇0|2 dx+

∫
Q

f · ∂u
∂t

− T (w)φ′
(
e(u)

)
:e

(
∂u

∂t

)
dxdt.

Summing (4.75) with (4.74) then gives (4.67).
Now, referring to the measure hz from Definition 3.1(ii), we have

(4.76)∫
Q̄

hz(dxdt) + 2

∫
Q

ζ2

(
e

(
∂u

∂t

))
dxdt = VarS(z; 0, T ) + 2

∫
Q

ζ2

(
e

(
∂u

∂t

))
dxdt

≤ lim inf
τ↓0

∫
Q

ζ1

(
∂zτ
∂t

)
+
(
2−√

τ
)
ζ2

(
e

(
∂uτ
∂t

))
dxdt

≤ lim sup
τ↓0

∫
Q

ζ1

(
∂zτ
∂t

)
+
(
2−√

τ
)
ζ2

(
e

(
∂uτ
∂t

))
dxdt

≤ lim sup
τ↓0

(∫
Ω

�

2
|u̇0|2+ ϕ(u0,τ , z0,∇z0) + τ

γ
|e(u0,τ )|γ dx

−
∫
Ω

�

2

∣∣∣∣∂uτ∂t (T )

∣∣∣∣2 + ϕ(uτ (T ), zτ (T ),∇zτ(T )) + τ

γ
|e(uτ (T ))|γdx

+

∫
Q

T (w̄τ )φ
′(e(ūτ )):e(∂uτ

∂t

)
− f̄τ ·∂uτ

∂t
dxdt

)

≤
∫
Ω

�

2
|u̇0|2 − �

2

∣∣∣∣∂u∂t (T )
∣∣∣∣2 + ϕ(e(u0), z0,∇z0)− ϕ(u(T ), z(T ),∇z(T )) dx

+

∫
Q

T (w)φ′
(
e(u)

)
:e

(
∂u

∂t

)
− f · ∂u

∂t
dxdt

≤ VarS(z; 0, T ) + 2

∫
Q

ζ2

(
e

(
∂u

∂t

))
dxdt.

The inequalities in (4.76) are successively by the lower weak* semicontinuity, by
general comparison “liminf≤limsup”, by the discrete mechanical-energy inequality
(4.6) for k = Kτ , by the upper weak* semicontinuity and the obvious nonnegativity
τ
γ |e(uτ (T ))|γ ≥ 0 and the convergence

T (w̄τ )φ
′(e(ūτ )) : e(∂uτ

∂t

)
→ T (w)φ′

(
e(u)

)
: e

(
∂u

∂t

)
weakly in L1(Q)(4.77)

because of (4.55) and of the strong convergence of e(ūτ ) proved in Step 3, and finally
by (4.67). Thus we have equality in the above chain of inequalities (4.76).
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Realizing the weak* lower-semicontinuity of both parts of the dissipation energy
separately, this implies both the convergence∫

Q

ζ1

(
∂zτ
∂t

)
dxdt → VarS(z; 0, T ) =

∫
Q̄

hz(dxdt)(4.78)

and the convergence∫
Q

ζ2

(
e

(
∂uτ
∂t

))
dxdt →

∫
Q

ζ2

(
e

(
∂u

∂t

))
dxdt.(4.79)

Further, we show that (4.78) implies the convergence

ζ1

(
∂zτ
∂t

)
∗⇀ hz weakly* in M (Q̄) ∼= C(Q̄)∗.(4.80)

We use the a priori estimate (4.22b) and, for a moment, assume that (in terms of a sub-
sequence) w*-limτ↓0ζ1(∂zτ∂t ) = μ �= hz and define the Borel set B := supp(hz−μ)+ ⊂
Q̄, where (·)+ denotes the positive variation. The convergence (4.78) would imply
[hz−μ](B) > 0 because otherwise if [hz−μ](B) = 0 and μ �= hz, [μ−hz ](Q̄) > 0, which
would contradict (4.78). Thus limτ↓0

∫
B
ζ1(

∂zτ
∂t )dxdt =

∫
B
μdxdt <

∫
B
hzdxdt, which

would contradict the weak* lower-semicontinuity of z 	→ ∫
B hzdxdt. Thus (4.80) is

proved.
Also, (4.79) implies ζ2(e(

∂uτ

∂t )) → ζ2(e(
∂u
∂t )) in L1(Q) because, having assumed

ζ2 coercive by (3.6c), we can renorm L2(Q;Rn×n) suitably so that its norm is just
(
∫
Q
ζ2(·)dxdt)1/2 and obtain strong convergence of e(∂uτ

∂t ) in L2(Q;Rn×n) by usual

arguments; note that we proved that, in fact, the convergence in (4.77) is strong.
Limit passage in the enthalpy equation (4.50) is by the strong convergence (4.55)

of w̄τ → w and similarly also of wτ → w and by the weak* convergence of the dissi-
pative heat already discussed. As for the adiabatic term T (w̄τ )φ

′(e(ūτ )) : ∂
∂te(uτ ),

we use again (4.77).
Remark 4.4 (more general heat production). The dissipation rate ξ in (2.4) may

easily involve a more general nonlocal contribution of the type ξnonloc = ξnonloc(t, z, θ)
with ξnonloc : I × Lq∗−ε(Ω;Rm) × L(n+2)/n−ε(Ω) → L1(Ω) bounded and such that
ξnonloc(t, ·, ·, ·) is continuous and ξnonloc(·, u, z, θ) is measurable. Let us outline the
modifications. Due to the assumed boundedness, we can easily use a semi-implicit time
discretization, i.e., augmentation of the right-hand side of (4.1c) by ξnonloc(t, z

k−1
τ ,T

(wk−1
τ )) and then converge the corresponding term ξnonloc(zτ ,T (wτ )) by using the

strong convergence zτ → z in Lq∗−ε(Q;Rm) and wτ → w in L(n+2)/n−ε(Q) like (4.58)
and (4.55) at the very end of Step 7 of the proof of Proposition 4.3.

Remark 4.5 (modification for omitting gradient theory for z). In special cases
when ϕ = ϕ(e, z) is quadratic and φ linear in (1.1), one can avoid gradient theory
for z-variable. Then, in particular, one must avoid Step 3 as (4.56), which relies on
a strong convergence z̄τ → z, does not work now. Yet, on the other hand, the weak
convergence suffices for other limit passages, in particular (4.77), for which φ′ constant
is now needed. We refer to Example 5.1 with [9].

Remark 4.6 (weakening kinetic effects). Omitting kinetic effects (i.e., � = 0)
brings just routine modifications and simplifications. Likewise, splitting the inertial
variable u into two components, one still subjected to inertia and the other not, is
just an obvious compromise. For applications see Examples 5.2 and 5.3 below.
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Remark 4.7 (modification for ψ(·, z, Z, θ) nonconvex: higher-gradient theory for
u). The (e)-semiconvexity still cannot avoid convexity of ψ(·, z, Z, θ) due to the as-
sumptions (3.8) and (3.11a). Anyhow, some applications are ultimately based on
nonconvexity of ψ(·, z, Z, θ); cf. Example 5.5 and, in fact, also Example 5.3. Cor-
responding modification relies on introducing a gradient theory (also) for strains,
augmenting of ψ by “bending” (or “capillarity”) terms like 1

2 |∇e|2 or 1
2 |∇2u|2, and

assuming p < 2∗ =: 2n/(n−2) (or just p < ∞ if d ≤ 2). The viscosity poten-
tial ζ2 should then involve also terms like 1

2 |∇e(∂u∂t )|2 or 1
2 |∇2 ∂u

∂t |2, while the term
1
2De(

∂u
∂t ) : e(∂u∂t ) either can or need not be involved. Then both ϕ(·, z, Z) and φ(·)

in (1.1) may be nonconvex. The respective modification would then be in replacing
W 1,p(Ω) by W 2,2(Ω) in the corresponding modification of the boundary conditions
(2.17), and in (4.56) which would use uniform monotonicity of the new higher-order
terms in (4.56), while ψ′

e(e(ūτ ), z̄τ ,T (w̄τ )) would be in the position of a lower-order
term and converge by Aubin–Lions’ compact-embedding theorem. The higher-order
term involved in viscosity causes that the interpolation (4.37) can be performed more
gently to weaken (3.13) (cf. also [63, Remark 4.10]), and even (4.56) itself is not needed
because the convergence in (4.77) would be via compactness, although, like in (4.76)
and (4.79), we would get the strong convergence in ∇2 ∂uτ

∂t anyhow.
An important fact is that the relation between (4.1a, 4.1b) and (4.14) through

(4.13) is based on semiconvexity of ϕ only, while φ is eliminated from (4.16). Especially
in the case when 1

2D
∂e
∂t : ∂e

∂t is omitted, then the convexity of the functionals in the
auxiliary minimization problem (4.13) and in (4.16) is to be proved in the integral
form rather than pointwise, using that the pointwise (e)-semiconvexity (3.9) yields
some � and a possibility to take τ > 0 so small that, instead of (4.5), it satisfies

∀u ∈ W 2,2(Ω;Rn), u|Γ0 = 0 :

∫
Ω

c2
τ
|∇e(u)|2 − �|e(u)|2dx ≥ 0(4.81)

or alternatively
∫
Ω

1
τ |∇2u|2 − �|e(u)|2dx > 0. Furthermore, the condition (3.14) re-

quiring so far essentially p ≤ 2 can now be weakened to∣∣ϕ′
e(e, z)

∣∣ ≤ C
(
1 + |e|5 + |z|5q∗/6),(4.82a) ∣∣ϕ′

e(e, z)− ϕ′
e(ẽ, z)

∣∣ ≤ �
(
1 + |e|4 + |ẽ|4 + |z|2q∗/3)|e − ẽ|(4.82b)

to be used for (4.71)–(4.73) modified by replacing e(u) ∈ L2(Ω;Rn×n) by ∇u ∈
L6(Ω;R3×3); here for simplicity we consider only the physically relevant case n = 3.

Such a modification would obviously allow for large strains by replacing the small-
strain tensor e(u) by ∇u; cf. Example 5.5 below.

Remark 4.8 (omitting gradient theory for z once again). An alternative to Re-
mark 4.5 in the situation of Remark 4.7 may rely on affinity of ϕ′

e(e, ·), i.e., the ansatz
ϕ(e, z) = ϕ0(e) + ϕ1(e)z + ϕ2(z), together with the assumption ϕ2 quadratic to use
the binomial trick like (5.11) or (5.14) below. Then (4.48) and (4.56) work under only
weak convergence zτ → z, too. We refer to Examples 5.3 and 5.5.

Remark 4.9 (general difficulties). More general coupling with φ = φ(e, z) in
(1.1) would yield the adiabatic term θφ(e, z) which, however, seems very difficult
because it would lead to the term T (w)φ′z(e, z)

∂z
∂t . Yet, the L

1-character of ∂z
∂t would

ultimately need L∞-estimates (or even compactness) for w, which does not seem not
realistic, however. For the same reason, also temperature dependence in ζ1 seems very
difficult. Altogether, the flow rule (2.15b) for z had to be considered as temperature
independent. Also temperature-dependent viscosity (i.e., D = D(θ)) seems to bring
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serious troubles because (4.57) would not work. More general coupling of the type
φ(e, θ) instead of θφ(e) − φ0(θ) in (1.1) would lead to cv = cv(e, θ) = θφ′′θθ(e, θ)
and too high-order adiabatic terms θ

(
φ′e(e(u), θ)− φ′′eθ(e(u), θ)

)
: e(∂u∂t ), and also the

enthalpy transformation does not seem to work in the term div(K(e, z, θ)∇θ). On the
other hand, if rate-independent rule for z were combined with a quadratic “viscous-
like” term by ζ1(ż) = δ∗S(ż) + |ż|2, then ∂z

∂t would get an L2-character, and both
temperature dependence of ζ1 and adiabatic coupling θφ(e, z) would become possible;
cf. [8] for the former option in the context of plasticity.

5. Examples. We illustrate the presented general theory for system (1.2) and
(2.13) by several nontrivial examples of rate-independent processes in the bulk. Other
examples could involve rate-independent processes on the boundary, like adhesive
contacts or debonding, but this would require, however, a modification of the general
framework (1.2), and thus we will not present it here.

Example 5.1 (thermoplasticity with hardening). The internal variable z =
(π, η) ∈ R

n×n
sym,0×R has now the meaning of the plastic deformation π and the harden-

ing parameter η, where R
n×n
sym,0 :=

{
A∈Rn×n

sym ; tr(A) = 0
}
. In the linearized version,

we can apply Remark 4.5 and consider

ψ(e, π, η, θ) =
1

2
C
(
e−π−Eθ

)
:
(
e−π−Eθ

)
+
b

2
η2 − θ2

2
CE : E− φ0(θ),(5.1)

where C is the positive-definite elasticity tensor exhibiting the usual symmetries
Cijkl = Cjikl = Cklij , b > 0 a hardening parameter and E a matrix of thermal-
expansion coefficients. It is important that it complies with (1.1), provided the ma-
terial is isotropic, i.e.,

Cijkl = λδijδkl + μ
(
δikδjl + δilδjk

)
, Eij = αδij ,(5.2)

with δ denoting here the Kronecker symbol, λ > −2μ/n and μ > 0 the Lamé constants,
and α the thermal-expansion coefficient, because then one has the orthogonality

Cπ : E = α
(
λtr(π)I+ 2μπ

)
: I = α

(
nλ+2μ

)
tr(π) = 0,(5.3)

where I = [δij ] denotes the unit matrix. Then, obviously, φ(e) = C(π−e) : E = Ce : E
in (1.1). Note also that the linearity of φ is important, as emphasized in Remark 4.5.

Let S1 ⊂ R
n×n
sym,0 be a convex closed neighborhood of the origin, δS1 is its indicator

function, and δ∗S1
the conjugate functional to δS1 with respect to the duality pairing

σ : e =
∑n

i,j=1 σijeij . Then we consider the cone K := {z = (π, η); η ≥ δ∗S1
(π)}. The

degree-1 homogeneous dissipation potential is

ζ1(π̇, η̇) := δ∗S1
(π̇) + δK(π̇, η̇).(5.4)

Choosing the initial conditions η0 = 1 makes S1 the initial elasticity domain that may
be “inflated” within evolution of the hardening. Then the initial condition π0 such
that z0 := (π0, η0) ∈ K a.e. on Ω ensures that z ∈ K holds also during the evolution
a.e. on Q. Then we can consider ϕ restricted on K, which makes it coercive as (3.6a).
Note that ζ1 is not continuous and even does not satisfy (3.6b), but (4.22b) still holds
with the help of coercivity of ϕ. Altogether, (5.1)–(5.4) fits with the ansatz (3.10b),
and since ψ(·, ·, ·, w) is convex and quadratic, with Remark 4.5, as already said. For
the linearized plasticity in the isothermal case, see, e.g., [1, 18, 19, 33, 44, 57].
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Example 5.2 (shape-memory alloys). A popular simple model of so-called shape-
memory alloys takes a “mixture” of quadratic energies with equal the elastic-moduli
tensors in the form

ψ(e, z,∇z, θ) = 1

2
C
(
e−etr(z)

)
:
(
e−etr(z)

)
+ δK(z) +

κ

2
|∇z|2 + ψ0(z, θ)(5.5)

with etr(z) =
m∑
�=1

z�e�, where e� :=
U�
� +U�

2
,

where etr(z) is the so-called transformation strain with the prescribed distortion ma-
trices U� of particular pure phases (or phase variants) and K := {z ∈ R

m; z� ≥
0 &

∑m
�=1 z� = 1}. For models of this type we refer to [2, 3, 4, 5, 17, 34, 40, 42, 43,

60, 66]. The dissipation usually involves volume fractions z’s, sometimes in a rate-
independent manner (though in an isothermal case); see [4, 17, 30, 34, 37, 75]. This
is rather an example of how our structure qualification is unpleasantly strong because
the ansatz (1.1) would require ψ0(z, θ) = φ1(z) + φ0(θ), but then the mechanical and
the thermal parts would be completely decoupled one from each other. Therefore,
we apply a regularization by introducing an auxiliary “phase field” λ subjected to (at
least small) viscous dissipation εΔ∂λ

∂t and then we consider the free energy

ψ(e, z,∇z, λ, θ) = 1

2
C
(
e−etr(z)

)
:
(
e−etr(z)

)
+ φ1(z) + δK(z)(5.6)

+
κ

2

∣∣∇z∣∣2 + ψ0(λ, θ) +
1

2ε

∣∣z−λ∣∣2 + ε

2

∣∣∇λ∣∣2.
The ansatz (1.1) then requires ψ0(λ, θ) = θφ(λ) − φ0(θ). For such a linearized term
θφ(λ) we refer, e.g., to [30, 37, 58, 67, 69, 70]. Thus we eventually come to a regularized
model that fits with (3.10a), namely,

�
∂2u

∂t2
− divDe

(
∂u

∂t

)
− divC

(
e−etr(z)

)
= f,

(5.7a)

− εΔ
∂λ

∂t
− εΔλ+

1

ε
(λ−z) + θφ′(λ) = 0,

(5.7b)

∂ζ1

(
∂z

∂t

)
− Ce′tr(z):

(
e−etr(z)

)
+ φ′1(z)− κ∇z + 1

ε
(z−λ) +NK(z) � 0,

(5.7c)

cv(θ)
∂θ

∂t
− div

(
K(θ)∇θ) = ζ1

(
∂z

∂t

)
+ De

(
∂u

∂t

)
:e

(
∂u

∂t

)
+ ε

∣∣∣∣∇∂λ

∂t

∣∣∣∣2 + θφ′(λ)·∂λ
∂t
,

(5.7d)

where NK(z) stands for the normal cone to the convex set K at z.
Example 5.3 (magnetostriction: a phase-field type model). Beside small strains,

in magnetostrictive materials the state involves also the magnetization vector �m ∈ Rn

which has partly a viscous and partly a rate-independent character. A peculiarity is
that �m does not exhibit any inertia but is involved in a nonpotential nondissipative
gyroscopic term, causing a precession movement within evolving �m. In view of Re-
mark 4.9, we adopt the concept of a phase-field parameter z ∈ Rm that is related only
rather vaguely with L (�m) with L : Rn → Rm a continuous mapping that allows us
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to distinguish particular “phases,” i.e., here directions of easy magnetizations. We
consider a so-called anisotropic energy ϕan : Rm → R and a function ep : Rn → Rn×n

sym

describing dependence of the preferred strain ep on magnetization. In contrast to
most of mathematical literature, we do not count exactly with the so-called Heisen-
berg constraint |�m| = ms with ms ≥ 0 being the temperature-dependent saturation
magnetization, which is relevant rather for temperatures close to absolute zero while
for temperatures around the Curie point (where ms falls to zero and ferro-to-para-
magnetic transition occurs), this constraint is substantially deviated in external fields
(cf. [11, Fig. 5.4]) and is rather to be involved in ϕan; cf. [61]. The free energy in
magnetostriction (with a demagnetizing field neglected) is then considered as

ψ(e, �m,∇�m, z, θ) :=
1

2
C(e−ep(�m)):(e−ep(�m))(5.8)

+ ϕan(�m) + θφ(e, �m) +
1

2
L
∣∣z−L (�m)

∣∣2 + κ

2

∣∣∇�m
∣∣2 − φ0(θ),

where the κ-term is the so-called exchange energy (cf., e.g., [36, 72] or also [44])
and where L is assumed large so that practically z ∼ L (�m). The evolution is here
governed by the system

�
∂2u

∂t2
− div

(
De

(
∂u

∂t

)
+ C(e−ep(�m)) + θφ′e(e, �m)

)
= f,

(5.9a)

α0
∂ �m

∂t
− α1Δ

∂ �m

∂t
+

�m

γ(|�m|) ×
∂ �m

∂t
+ ψ′

�m

(
e(u), �m, z, θ

)− κΔ�m = hext,

(5.9b)

∂ζ1

(
∂z

∂t

)
+ L
(
z − L (�m)

) � 0,

(5.9c)

cv(θ)
∂θ

∂t
− div

(
K(θ)∇θ) = ζ1

(
∂z

∂t

)
+ De

(
∂u

∂t

)
: e

(
∂u

∂t

)
+ α0

∣∣∣∣∂ �m∂t
∣∣∣∣2 + α1

∣∣∣∣∇∂ �m

∂t

∣∣∣∣2
(5.9d)

+ θφ′e(e(u), �m) :
∂e(u)

∂t
+ θφ′�m(e(u), �m) · ∂ �m

∂t
,

where α0, α1 > 0 are constants determining attenuation of the magnetization oscilla-
tions (for α1-term see [12]), γ is a so-called gyromagnetic moment (depending on |�m|),
hext is the external magnetic field; cf. [61] for details in the rigid case u = 0, z = 0.
The potential ζ1 may describe activation energy for remagnetization, which is related
in particular to the so-called pinning effect within domain-wall evolution and which
contributes to hysteretic response of the ferromagnet due to, e.g., various impurities
that can phenomenologically be described just by ζ1; a similar rate-independent con-
tribution has been proposed in [6, 10, 73]. This energy is finite, i.e., S is bounded and
hence ζ1 continuous.

The system (5.9) fits with the presented theory with p = 2 = q only through
suitable combination of Remarks 4.6, 4.7, and 4.8. The (e, �m)-semiconvexity of
ϕ(e, �m, z) := 1

2C(e−ep(�m)):(e−ep(�m)) + ϕan(�m) + 1
2L|z−L (�m)|2 is easily guaran-

teed if ep and L are Lipschitz continuous and ϕan is semiconvex in the usual sense.
The peculiarity is also in time-discretization of the gyroscopic term �m

γ(|�m|)× ∂ �m
∂t , which
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must be done by a semi-implicit way as
�mk−1

τ

γ(|�mk−1
τ |)×

�mk
τ−�mk−1

τ

τ so that it will not destroy

the convexity of the incremental problem corresponding to (4.13) in this special case.
The limit passage in semistability without any gradient term like ∇z (indeed omitted
in (5.9c)), i.e., here

∀v∈L2(Q;Rm) :

∫
Q

1

2
L
∣∣z − L (�m)

∣∣2 dxdt ≤ ∫
Q

1

2
L
∣∣v − L (�m)

∣∣2 + ζ1(v − z) dxdt

(5.10)

can rely on the quadratic form of ψ(e, �m,∇�m, ·, θ) in (5.8) and be done by the binomial
trick (4.66) modified to result in

(5.11)∫
Q

∣∣z−L (�m)
∣∣2 dxdt− ∫

Q

∣∣v−L (�m)
∣∣2 dxdt = ∫

Q

|z|2 − |v|2 − 2(z−v) · L (�m) dxdt

=

∫
Q

(z−v) · (z+v−2L (�m)
)
dxdt.

The strong convergence in ep(�m), guaranteed through Aubin–Lions’ theorem, is then
used both for the strong convergence (4.56) as well as for the gyroscopic term �m

γ(|�m|) ×
∂ �m
∂t . Of course, instead of balancing mechanical energy in (4.67), one must balance

the magneto-mechanical energy for which it is important that ( �m
γ(|�m|) × ∂ �m

∂t ) · ∂ �m
∂t = 0

as well as (
�mk−1

τ

γ(|�mk−1
τ |) ×

�mk
τ−�mk−1

τ

τ ) · �mk
τ−�mk−1

τ

τ = 0.

Augmenting of the stored energy by the demagnetizing-field energy, which is
a nonlocal but quadratic term of the form

∫
Rn |∇Δ−1div(χΩ �m)|2 dx with χΩ the

characteristic function of Ω, does not bring any essential problems into the above
presented theory.

Example 5.4 (damage). Our assumptions allow for a rather special situation in
damaging materials, namely a “mixture” of two materials, one with the elastic moduli
C1 undergoing (for simplicity isotropical) damage described by a scalar parameter z
valued in [0, 1] (i.e., m = 1), the other one with the elastic moduli C2 undergoing
thermal expansion. Thus we consider

ψ(e, z,∇z, θ) :=1−z
2

C1e : e+
1

2
C2(e−θE) : (e−θE)(5.12)

− a0z + δ[0,1](z) +
κ

2
|∇z|2 − C2E : E

2
θ2 − φ0(θ),

where E is the matrix of thermal-expansion coefficients and a0 > 0 is the part of the
energy deposited through the damage into the change of structure of the material
(not dissipated into the heat). We consider damage with a possible “healing,” i.e.,
S := [−a1, a2], where a1 > 0 and a2 > a0 so that a1+a0 is an activation threshold for
damage evolution and a2 − a0 an activation threshold for healing of damage. Certain
healing may indeed occur in various biomaterials or polymer adhesives; cf. [7, 41, 76].
Mathematically, healing was used, e.g., in [46, 68]. Usually, a2 � a1, and if a2 =
+∞, damage becomes a unidirectional process without any healing possible and then
S := [−a1,+∞) and ζ1(ż) = δ∗S(ż) = −a1ż + δ(−∞,0](ż). Natural initial condition is
z0 = 1, i.e., undamaged material. The so-called factor of influence κ > 0 is related with
certain “hardening” effects: activation threshold a is effectively increased/decreased
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at a given point if its surrounding is less/more damaged, respectively; cf. also [16,
28, 29, 46, 50, 53]. We assume here C2 positive definite so that the material cannot
completely disintegrate even for z = 0; we just remark that complete damage is very
difficult even in the isothermal case; see [16, 53].

Since z ranges a bounded interval [0, 1] only, the nonconvex term 1−z
2 C1e:e is (e)-

semiconvex, as required in (3.9). Note also that ϕ is not convex, but ϕ(·, z, ·) is convex
quadratic and complies with (3.8) and (3.10a) for p = 2 = q, provided the healing
threshold a2 is finite. Without healing, the unidirectional damage with a2 = +∞ is,
unfortunately, not covered by any of the previous results because both ζ1 and ϕ are
simultaneously discontinuous. For some special techniques in the isothermal case, we
refer to [16, 50, 53].

Example 5.5 (shape-memory alloys at large strains). Shape-memory alloys typ-
ically have multiwell nonconvex stored energy which, however, requires further reg-
ularizing gradient theory like in Remark 4.7. Then we can work in terms of large
strains, adopting also the concept of the phase-field model with the vectorial or-
der parameter z being related with particular phases identified through a mapping
L : Rn×n → {z ∈ (R+)m;

∑m
i=1 zi = 1}. The free energy can then be considered as

ψ(∇u, z, θ) = ϕ0(∇u) + θφ(∇u)− φ0(θ) + L
∣∣z−L (∇u)∣∣2 + ε

∣∣∇2u
∣∣2.(5.13)

Note that it complies with Remark 4.8. For particular examples for ϕ0 and φ and
a construction method based on cubic C2-splines fitted with experimentally mea-
sured wells and elastic moduli in specific shape-memory materials we refer to [35].
It is assumed that L is large so that z is presumably mostly close to L (∇u), while
ε > 0 is small, determining rather some internal scale than influencing a macroscop-
ical response itself. Note also that |∇z|2 is not involved in (5.13), similarly like in
Example 5.1. We also need (e)-semiconvexity (or, here, rather ∇u-semiconvexity) of
the term L(|z|2−2z·L (∇u)) for which it suffices to assume L ′ bounded. Like (5.11),
limit passage in semistability can rely on the quadratic form of ψ(∇u, ·, θ) in (5.13)
and the identity

(5.14)∫
Q

∣∣z−L (∇u)∣∣2 dxdt−∫
Q

∣∣v−L (∇u)∣∣2 dxdt = ∫
Q

|z|2 − |v|2 − 2(z−v) · L (∇u) dxdt

=

∫
Q

(z−v) · (z+v−2L (∇u)) dxdt
and then we can use the trick like in (4.66). Further, we employ Remark 4.7 with
(4.82), in which q∗ is replaced by 2, however.

Remark 5.6 (heat production in electric conductors). Electrically conductive
materials under external voltage may produce Joule heat that serves as an example
of ξnonloc from Remark 4.4. More specifically, ξnonloc(t, z, θ) := �j · ∇φ induced by the
electric current �j = S(z, θ)∇φ, where S = S(z, θ) is the electric-conductivity tensor
with φ ∈ W 1,2(Ω) solving the boundary-value problem for the equation div(j) = 0,
with the boundary conditions j · �n = 0 on the electrically isolated part of Γ and
φ = φext,i(t) on the parts Γi of Γ that are electrodes with a prescribed external
potential φext,i. Even more realistically, conditions like φ − φext,i(t) =

1
R

∫
Γi
j · �ndS,

where R denotes the internal resistance of the external voltage source. Assuming
S : Rm × R → Rn×n continuous, bounded, and uniformly positive definite, we obtain
(z, θ) → φ : Lq(Ω;Rm) × L1(Ω) → W 1,2(Ω) continuous, which follows from the
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estimate

α
∥∥∇(φk−φ)

∥∥2
L2(Ω;Rn)

≤
∫
Ω

S(zk, θk)∇(φk−φ)·∇(φk−φ) dx

=

∫
Ω

S(zk, θk)φ·∇(φ−φk) dx→ 0

with α := inf |g|=1,z,θ S(z, θ)g · g, advancing thus the weak convergence of φk → φ
to the desired strong convergence with φk corresponding to (zk, θk) with a sequence
{(zk, θk)}k∈N converging to (z, θ). In particular, in shape-memory alloys or magne-
tostrictive materials, S may depend on volume fraction and temperature (cf. [59] or
also [65]) and thus, in particular, may be different in austenite and in martensite.
Dependence of S on the damage parameter is natural, as damaged material conducts
electric current harder than if it is nondamaged.

Remark 5.7 (growth of cv(·) and K(e, z, ·)). Comparing our results with a con-
ventional thermo-visco-elasticity in thermally expanding materials (using p1 = 0 and
p2 = 2 and z avoided in Example 5.1) in the case n = 3, we can see that (3.13) yields
ω > 6/5, i.e., a polynomial growth of cv of order > 1/6 only. On the other hand,
in case of K constant, the condition ω > 3/2 is obtained [13, 63]. To explain this
“optical” discrepancy, let us mention some other results showing that if the heat ca-
pacity cv is constant (i.e., ω = 1 in (3.12b)), a polynomial growth of θ 	→ K(θ) bigger
than 1/3 helps; see [23] or also [24, section 5.4.2.1]. Our condition (3.12d) requires,
in view of the definition (3.3), a certain growth of K(e, z, ·), as T must inevitably
decay if ω > 1 (cf. the formula (4.12)); here the growth of K(e, z, ·) should be bigger
than the decay of the factor 1/(cv◦T ) (cf. the definition (3.3) of K), i.e., 1−1/ω. In
the three-dimensional case, both cv(·) and K(e, z, ·) should thus grow polynomially
at least as > 1/6. In view of this, the enthalpy-transformation results in a certain
compromise between growth of cv(·) and of K(e, z, ·), which both are thus allowed to
be relatively mild.
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