About
100
Publications
108,462
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
21,957
Citations
Introduction
Additional affiliations
May 2017 - present
January 2012 - present
January 2007 - December 2011
Publications
Publications (100)
The multispecies coalescent (MSC) model accommodates genealogical fluctuations across the genome and provides a natural framework for comparative analysis of genomic sequence data from closely related species to infer the history of species divergence and gene flow. Given a set of populations, hypotheses of species delimitation (and species phyloge...
Ancient DNA (aDNA) is increasingly being used to investigate questions such as the phylogenetic relationships and divergence times of extant and extinct species. If aDNA samples are sufficiently old, expected branch lengths (in units of nucleotide substitutions) are reduced relative to contemporary samples. This can be accounted for by incorporatin...
Gene flow between species is increasingly recognized as an important evolutionary process with potential adaptive consequences. Recent methodological advances make it possible to infer different modes of gene flow from genome-scale data, including pulse introgression at a specific time and continuous gene flow over an extended time period. However,...
The opposing forces of gene flow and isolation are two major processes shaping genetic diversity. Understanding how these vary across space and time is necessary to identify the environmental features that promote diversification. The detection of considerable geographic structure in taxa from the arid Nearctic has prompted research into the driver...
Analyses of genome sequence data have revealed pervasive interspecific gene flow and enriched our understanding of the role of gene flow in speciation and adaptation. Inference of gene flow using genomic data requires powerful statistical methods. Yet current likelihood-based methods involve heavy computation and are feasible for small datasets onl...
The multispecies coalescent (MSC) model accommodates genealogical fluctuations across the genome and provides a natural framework for comparative analysis of genomic sequence data to infer the history of species divergence and gene flow. Given a set of populations, hypotheses of species delimitation (and species phylogeny) may be formulated as inst...
Genomic data are informative about the history of species divergence and interspecific gene flow, including the direction, timing, and strength of gene flow. However, gene flow in opposite directions generates similar patterns in multilocus sequence data, such as reduced sequence divergence between the hybridizing species. As a result, inference of...
Genomic data are informative about the history of species divergence and interspecific gene flow, including the direction, timing, and strength of gene flow. However, gene flow in opposite directions generates similar patterns in multilocus sequence data, such as reduced sequence divergence between the hybridizing species. As a result, inference of...
Cross-species introgression can have significant impacts on phylogenomic reconstruction of species divergence events. Here, we used simulations to show how the presence of even a small amount of introgression can bias divergence time estimates when gene flow is ignored in the analysis. Using advances in analytical methods under the multispecies coa...
Genomic data are informative about the history of species divergence and interspecific gene flow, including the direction, timing, and strength of gene flow. Nevertheless, gene flow in opposite directions generates similar patterns in multilocus sequence data, such as reduced sequence divergence between the hybridizing species, and as a result, inf...
The multispecies coalescent (MSC) model accommodates both species divergences and within-species coalescent and provides a natural framework for phylogenetic analysis of genomic data when the gene trees vary across the genome. The MSC model implemented in the program BPP assumes a molecular clock and the Jukes-Cantor model, and is suitable for anal...
Full likelihood implementations of the multispecies coalescent with introgression (MSci) model treat genealogical fluctuations across the genome as a major source of information to infer the history of species divergence and gene flow using multilocus sequence data. However, MSci models are known to have unidentifiability issues, whereby different...
The southern US and northern Mexico serve as an ideal region to test alternative hypotheses regarding biotic diversification. Genomic data can now be combined with sophisticated computational models to quantify the impacts of paleoclimate change, geographic features, and habitat heterogeneity on spatial patterns of genetic diversity. In this study...
Phylogenomic analyses under the multispecies coalescent model assume no recombination within locus and free recombination among loci. Yet in real datasets intralocus recombination causes different sites of the same locus to have different genealogical histories, so that the model is misspecified. The impact of recombination on various coalescent-ba...
The southwestern and central US serve as an ideal region to test alternative hypotheses regarding biotic diversification. Genomic data can now be combined with sophisticated computational models to quantify the impacts of paleoclimate change, geographic features, and habitat heterogeneity on spatial patterns of genetic diversity. In this study we c...
The multispecies coalescent with introgression (MSci) model accommodates both the coalescent process and cross-species introgression/ hybridization events, two major processes that create genealogical fluctuations across the genome and gene-tree-species-tree discordance. Full likelihood implementations of the MSci model take such fluctuations as a...
Multispecies coalescent (MSC) is the extension of the single-population coalescent model to multiple species. It integrates the phylogenetic process of species divergences and the population genetic process of coalescent, and provides a powerful framework for a number of inference problems using genomic sequence data from multiple species, includin...
A wide range of data types can be used to delimit species and various computer‐based tools dedicated to this task are now available. Although these formalized approaches have significantly contributed to increase the objectivity of species delimitation (SD) under different assumptions, they are not routinely used by alpha‐taxonomists. One obvious s...
Genome sequencing projects routinely generate haploid consensus sequences from diploid genomes, which are effectively chimeric sequences with the phase at heterozygous sites resolved at random. The impact of phasing errors on phylogenomic analyses under the multispecies coalescent (MSC) model is largely unknown. Here we conduct a computer simulatio...
Genome sequencing projects routinely generate haploid consensus sequences from diploid genomes, which are effectively chimeric sequences with the phase at heterozygous sites resolved at random. The impact of phasing errors on phylogenomic analyses under the multispecies coalescent (MSC) model is largely unknown. Here we conduct a computer simulatio...
A wide range of data types can be used to delimit species and various computer-based tools dedicated to this task are now available. Although these formalized approaches have significantly contributed to increase the objectivity of SD under different assumptions, they are not routinely used by alpha-taxonomists. One obvious shortcoming is the lack...
The effort to reconstruct the tree of life was revolutionized by the use of sequences of proteins and nucleic acids. Phylogenetic trees are now routinely inferred using hundreds of thousands of amino acid or nucleotide characters. It thus seems surprising that many aspects of the tree of life are still controversial; conflicting results between lar...
Background:
The latest advancements in DNA sequencing technologies have facilitated the resolution of the phylogeny of insects, yet parts of the tree of Holometabola remain unresolved. The phylogeny of Neuropterida has been extensively studied, but no strong consensus exists concerning the phylogenetic relationships within the order Neuroptera. He...
Following publication of the original article [1], the authors discovered that some pie charts had been misplaced in the tree of Fig. 2a, and in the trees of supplementary figures S16, S22, S24 (Additional file 3) due to incorrect visualization of the output of ASTRAL [2]. These quartet support values are, however, correctly provided in supplementa...
We use computer simulation to examine the information content in multilocus datasets for inference under the multispecies coalescent (MSC) model. Inference problems considered include estimation of evolutionary parameters (such as species divergence times, population sizes, and cross-species introgression probabilities), species tree estimation, an...
Recent analyses of genomic sequence data suggest cross-species gene flow is common in both plants and animals, posing challenges to species tree estimation. We examine the levels of gene flow needed to mislead species tree estimation with three species and either episodic introgressive hybridization or continuous migration between an outgroup and o...
BPP is a Bayesian Markov chain Monte Carlo program for analyzing multilocus sequence data under the multispecies coalescent (MSC) model with and without introgression. Among the analyses that can be conducted are estimation of population size and species divergence times, species tree estimation, species delimitation and estimation of cross-species...
Recent analyses suggest that cross-species gene flow or introgression is common in nature, especially during species divergences. Genomic sequence data can be used to infer introgression events and to estimate the timing and intensity of introgression, providing an important means to advance our understanding of the role of gene flow in speciation....
Recent analyses of genomic sequence data suggest cross-species gene flow is common in both plants and animals, posing challenges to species tree inference. We examine the levels of gene flow needed to mislead species tree estimation with three species and either episodic introgressive hybridization or continuous migration between an outgroup and on...
Recent analyses suggest that cross-species gene flow or introgression is common in nature, especially during species divergences. Genomic sequence data can be used to infer introgression events and to estimate the timing and intensity of introgression, providing an important means to advance our understanding of the role of gene flow in speciation....
ModelTest-NG is a re-implementation from scratch of jModelTest and ProtTest, two popular tools for selecting the best-fit nucleotide and amino acid substitution models, respectively. ModelTest-NG is one to two orders of magnitude faster than jModelTest and ProtTest but equally accurate, and introduces several new features, such as ascertainment bia...
Motivation:
Phylogenies are important for fundamental biological research, but also have numerous applications in biotechnology, agriculture, and medicine. Finding the optimal tree under the popular maximum likelihood (ML) criterion is known to be NP-hard. Thus, highly optimized and scalable codes are needed to analyze constantly growing empirical...
ModelTest-NG is a re-implementation from scratch of jModelTest and ProtTest, two popular tools for selecting the best-fit nucleotide and amino acid substitution models, respectively. ModelTest-NG is one to two orders of magnitude faster than jModelTest and ProtTest but equally accurate, and introduces several new features, such as ascertainment bia...
Although the majority of cichlid diversity occurs in the African Great Lakes, these fish have also diversified across the African continent. Such continental radiations, occurring in both rivers and lakes have received far less attention than lacustrine radiations despite some members, such as the oreochromine cichlids (commonly referred to as ‘til...
Motivation
Phylogenies are important for fundamental biological research, but also have numerous applications in biotechnology, agriculture, and medicine. Finding the optimal tree under the popular maximum like-lihood (ML) criterion is known to be NP-hard. Thus, highly optimized and scalable codes are needed to analyze constantly growing empirical...
Next Generation Sequencing (NGS) technologies have led to a ubiquity of molecular sequence data. This data avalanche is particularly challenging in metagenetics, which focuses on taxonomic identification of sequences obtained from diverse microbial environments. Phylogenetic placement methods determine how these sequences fit into an evolutionary c...
The multispecies coalescent (MSC) provides a natural framework for accommodating ancestral genetic polymorphism and coalescent processes that can cause different genomic regions to have different genealogical histories. The Bayesian program bpp includes a full-likelihood implementation of the MSC, using trans-model Markov chain Monte Carlo (MCMC) t...
Next Generation Sequencing (NGS) technologies have led to a ubiquity of molecular sequence data. This data avalanche is particularly challenging in metagenetics, which focuses on taxonomic identification of sequences obtained from diverse microbial environments. To achieve this, phylogenetic placement methods determine how these sequences fit into...
Background:
The nonparametric bootstrap is widely used to measure the branch support of phylogenetic trees. However, bootstrapping is computationally expensive and remains a bottleneck in phylogenetic analyses. Recently, an ultrafast bootstrap approximation (UFBoot) approach was proposed for maximum likelihood analyses. However, such an approach i...
With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequent...
Next-Generation Sequencing (NGS) technologies have reshaped the landscape of life sciences. The massive amount of data generated by NGS is rapidly transforming biological research from traditional wet-lab work into a data- intensive analytical discipline (Koboldt et al., Cell 155(1):27–38, 2013). The Illumina “sequencing by synthesis” technique (Ma...
Motivation:
In recent years, molecular species delimitation has become a routine approach for quantifying and classifying biodiversity. Barcoding methods are of particular importance in large-scale surveys as they promote fast species discovery and biodiversity estimates. Among those, distance-based methods are the most common choice as they scale...
Background
VSEARCH is an open source and free of charge multithreaded 64-bit tool for processing and preparing metagenomics, genomics and population genomics nucleotide sequence data. It is designed as an alternative to the widely used USEARCH tool (Edgar, 2010) for which the source code is not publicly available, algorithm details are only rudimen...
Background. VSEARCH is an open source and free of charge multithreaded 64-bit tool for processing metagenomics nucleotide sequence data. It is designed as an alternative to the widely used USEARCH tool (Edgar 2010) for which the source code is not publicly available, algorithm details are only rudimentarily described, and only a memory-confined 32-...
Background. VSEARCH is an open source and free of charge multithreaded 64-bit tool for processing metagenomics nucleotide sequence data. It is designed as an alternative to the widely used USEARCH tool (Edgar 2010) for which the source code is not publicly available, algorithm details are only rudimentarily described, and only a memory-confined 32-...
The phylogenetic likelihood function is the major computational bottleneck in several applications of evolutionary biology such as phylogenetic inference, species delimitation, model selection and divergence times estimation. Given the alignment, a tree and the evolutionary model parameters, the likelihood function computes the conditional likeliho...
Motivation
In recent years, molecular species delimitation has become a routine approach for quantifying and classifying biodiversity. Barcoding methods are of particular importance in large-scale surveys as they promote fast species discovery and biodiversity estimates. Among those, distance-based methods are the most common choice as they scale w...
The phylogenetic likelihood function is the major computational bottleneck in several applications of evolutionary biology such as phylogenetic inference, species delimitation, model selection and divergence times estimation. Given the alignment, a tree and the evolutionary model parameters, the likelihood function computes the conditional likeliho...
Motivated by load balance issues in parallel calculations of the phylogenetic likelihood function, we recently introduced an approximation algorithm for efficiently distributing partitioned alignment data to a given number of CPUs. The goal is to balance the accumulated number of sites per CPU, and, at the same time, to minimize the maximum number...
Alignments are a commonly used technique to compare strings and are based on notions of distance or of similarity between strings; for example, similarities among biological sequences. Alignments are often computed by dynamic programming. This chapter presents GapMis and GapsMis, two algorithms for pairwise global sequence alignment with a variable...
In the context of a master level programming practical at the computer science department of the Karlsruhe Institute of Technology, we developed and make available two independent and highly optimized open-source implementations for the pair-wise statistical alignment model, also known as TKF91, that was developed by Thorne, Kishino, and Felsenstei...
With Next Generation Sequencing Data (NGS) coming off age and being routinely used, evolutionary biology is transforming into a data-driven science.
As a consequence, researchers have to rely on a growing number of increasingly complex software. All widely used tools in our field have grown considerably, in terms of the number of features as well a...
Pairwise sequence alignment is perhaps the most fundamental bioinformatics operation. An optimal global alignment algorithm was described in 1970 by Needleman and Wunsch. In 1982 Gotoh presented an improved algorithm with lower time complexity. Gotoh's algorithm is frequently cited (1447 citations, Google Scholar, May 2015), taught and, most import...
Tong et al. comment on the accuracy of the dating analysis presented in our work on the phylogeny of insects and provide a reanalysis of our data. They replace log-normal priors with uniform priors and add a "roachoid" fossil as a calibration point. Although the reanalysis provides an interesting alternative viewpoint, we maintain that our choices...
Pairwise sequence alignment techniques have gained renewed interest in recent years, primarily due to their applications in re-sequencing—the assembly of a genome directed by a reference sequence.
In this article, we show that adding the flexibility of bounding the number of gaps inserted in an alignment strengthens the classical sequence alignment...
Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved.
We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences,
with site-specific nucleotide or domain-specific amino acid substitution models, produced stat...
We introduce the Phylogenetic Likelihood Library (PLL), a highly optimized application programming interface for developing
likelihood-based phylogenetic inference and postanalysis software. The PLL implements appropriate data structures and functions
that allow users to quickly implement common, error-prone, and labor-intensive tasks, such as like...
Motivated by load balance issues in parallel calculations of the phylogenetic likelihood function we address the problem of distributing divisible items to a given number of bins. The task is to balance the overall sum of (fractional) item sizes per bin, while keeping the maximum number of unique elements in any bin to a minimum. We show that this...
The longest common substring with $k$-mismatches problem is to find, given
two strings $S_1$ and $S_2$, a longest substring $A_1$ of $S_1$ and $A_2$ of
$S_2$ such that the Hamming distance between $A_1$ and $A_2$ is $\le k$. We
introduce a practical $O(nm)$ time and $O(1)$ space solution for this problem,
where $n$ and $m$ are the length of $S_1$ a...
Constant advances in DNA sequencing technologies are turning whole-genome sequencing into a routine procedure, resulting in massive amounts of data that need to be processed. Tens of gigabytes of data, in the form of short sequences (reads), need to be mapped back onto reference sequences, a few gigabases long. A first generation of short-read alig...
Given a labelled tree T, our goal is to group repeating subtrees of T into equivalence classes with respect to their topologies and the node labels. We present an explicit, simple and time-optimal algorithm for solving this problem for unrooted unordered labelled trees and show that the running time of our method is linear with respect to the size...
A wide variety of short-read alignment programmes have been published recently to tackle the problem of mapping millions of short reads to a reference genome, focusing on different aspects of the procedure such as time and memory efficiency, sensitivity, and accuracy. These tools allow for a small number of mismatches in the alignment; however, the...
The Illumina paired-end sequencing technology can generate reads from both ends of target DNA fragments, which can subsequently be merged to increase the overall read length. There already exist tools for merging these paired-end reads when the target fragments are equally long. However, when fragment lengths vary and, in particular, when either th...
Motivation: Recent developments in next-generation sequencing technologies have renewed interest in pairwise sequence alignment techniques, particularly so for the application of re-sequencing---the assembly of a genome directed by a reference sequence. After the fast alignment between a factor of the reference sequence and the high-quality fragmen...
A factor u of a string y is a cover of y if every letter of y lies within some occurrence of u in y; thus every cover u is also a border-both prefix and suffix-of y. If u is a cover of a superstring of y then u is a seed of y. Covers and seeds are two formalisations of quasiperiodicity, and there exist linear-time algorithms for computing all the c...
We consider the problem of tree template matching, a type of tree pattern matching, where the tree templates have some of their leaves denoted as ''don@?t care'', and propose a solution based on the bottom-up technique. Specifically, we transform the tree pattern matching problem for unranked ordered trees to a string matching problem, by transform...
We present a substantially improved and parallelized version of DPPDiv, a software tool for estimating species divergence times and lineage-specific substitution rates on a fixed tree topology. The improvement is achieved by integrating the DPPDiv code with the Phylogenetic Likelihood Library (PLL), a fast, optimized, and parallelized collection of...