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Abstract

In this work we consider the problem of optimal cache placement in a D2D

enabled cellular network. There are a number of helper devices in the area,

which use their cached contents to help other users and offload traffic from

the base station. The goal of cache placement is maximizing the offloaded

traffic. We first formulate and optimally solve the cache placement problem as

a mixed integer linear program. Then we propose a distributively implementable

algorithm that clusters helpers. Helpers in each cluster collectively decide the

contents to be cached, based on the content popularity. Numerical evaluations

show that the proposed cache placement scheme always performs within 5% of

the optimal result and it is robust to popularity profile and cache capacity.
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1. Introduction1

Ongoing developments in the wireless communications technology have led2

to widespread use of smart devices. Apart from computers and cellular phones,3

tablets, wearable devices and even vehicles can be connected to the Internet.4

This variety results in an unprecedented increase in demand for enriched con-5

tent such as real time applications and video streaming. Excessive increase in6

demand may cause a considerable decrease in quality of service at the user side.7

IFully documented templates are available in the elsarticle package on CTAN.
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In order to avoid such an outcome, deploying more base stations, increasing8

the amount of allocated bandwidth and physical layer improvements in wireless9

communication technology can be proposed as solutions. However, for dense10

network scenarios, these solutions may be inadequate to alleviate high cellular11

load and alternative approaches are required such as Device-to-Device (D2D)12

communications.13

D2D communications is a technology that enables direct communication of14

nearby devices, without using the base station as a relay. This technology has15

a potential of significantly decreasing delay and increasing throughput. With16

these potentials, D2D communications is seen as one of the 10 enabling tech-17

nologies of 5G [1]. D2D technology will lead to several proximity based services18

(ProSe) such as Local Services, Emergency Communications, IoT enhancement,19

terminal relaying, indoor positioning [2]. Another promising application of D2D20

communications is content delivery. D2D technology allows content caching at21

the network edge such as user terminals and helpers. Caching popular contents22

at various nodes in the network is an attractive solution in order to alleviate the23

peak load [3]. With this solution nodes can directly supply the future demands24

of other users via D2D links without increasing the backhaul traffic. Of course,25

one of the challenging points in D2D caching is the limited cache capacity of26

mobile devices. An advantage is that D2D transmissions can be performed with27

low power within a short proximity. Moreover, as an advantage of short range,28

in D2D devices can reuse the cellular bandwidth which improves spectral ef-29

ficiency significantly. Taking these into account, fundamental problem is the30

cache placement (i.e. which device to cache which content).31

The works in [4] [5] and [6] are fundamental studies in wireless D2D/femtocell32

caching. In [4] the authors prove that a simple randomized device caching pol-33

icy (where the devices independently choose the file to cache, according to the34

popularity distribution) achieves the optimal scaling of behavior of D2D trans-35

mission opportunities in terms of total number of nodes. Note that, this is only36

a guarantee in terms of the scaling of expected number of D2D content deliveries37

with increasing number of users. However, actual performance can be very dif-38
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ferent in a given topology. In fact, we see in our simulations that our proposed39

clustering-based caching scheme outperforms such a popularity-based scheme.40

The authors in [5] proposed a femtocell cache placement algorithm based on41

bipartite matching. They prove that the proposed algorithm guarantees a de-42

lay performance within a factor 2 of the optimum. Although this is a valuable43

theoretical result, a factor of 2 is quite large. Moreover, the proposed algo-44

rithm is not distributed. Hence [4] and [5] only consider the throughput scaling45

laws and approximation ratios instead of the actual performances. Dissimilarly46

to the [5], in [6] authors introduced a coded caching solution, where rateless47

coded fragments of the contents are stored at distributed caches. However the48

proposed method is centralized. Moreover, throughput-outage trade of in D2D49

communications has been investigated in [7]. Authors define a cluster, which50

denotes the set of neighbors that a device asks for a content. The choice of the51

cluster size strikes a tradeoff between throughput and cache hit. As a result, the52

works [5], [6] and [7] find some fundamental performance results, however they53

do not propose a distributively implementable algorithm. On the other hand,54

our proposed algorithm is both amenable to distributed implementation, and it55

is tested by varying all parameters for robustness.56

In the presence of D2D caching, the number of devices is potentially very57

large. A centralized cache placement, scheduling and resource allocation by58

the base station would increase the control message overhead to prohibitive59

levels. Therefore distributed solutions are sought in the literature. In [8] au-60

thors evaluated a distributed caching mechanism in order to maximize data61

offloading in an interference aware network. Proposed algorithm is based on62

the receiver-transmitter matching subject to interference constraint and com-63

pared to optimal solution which is derived based on known network information.64

Users try to find out the most valuable partner in order to match and become a65

transmitter-receiver pair. This scheme is based on the one-to-one matching and66

does not allow multiple access. In other words, users cannot request contents67

from the other users in their neighborhood unless they are matched. Such a68

constraint hampers the content diversity which improves the offloading rate of69
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the network. Benefits of the content diversity are explained in the following sec-70

tions. Besides, in [8] a device does not proactively cache a content just to help71

others. It only caches a content that it previously requested and obtained for72

itself. The authors in [9] devise a random access policy to maximize the cache-73

hit. However, they assume that the cache placement as given. In [10] optimal74

cache placement problem with different user mobilities, cache sizes and content75

popularities are considered. The authors proved that optimization problem is76

NP-hard and proposed an infrastructure-aided and distributed data offloading77

algorithm. The main assumption here is that the devices are mobile and D2D78

transmission can happen when the two devices are in content. In our work we79

assume fixed devices, or devices with intermittent mobility. Algorithms and80

solutions for a mobile network case is a direction for future research.81

Game theoretical approaches that give caching decisions in a decentralized82

manner also take place in literature. Works in [11],[12], [13] and [14] propose83

cache placement algorithms using Stackelberg game model. In [11] and [13] D2D84

caching is not considered. In [12] Stackelberg framework provides an incentive85

mechanism in order to overcome the unwilling and selfish nature of D2D users86

and lead them to cache content and help others. In a previous work [14] we87

have implemented the algorithm in [12]. Simulation results have shown that for88

a realistic number of devices and contents Stackelberg-based algorithms require89

hundreds of iterations for convergence or an acceptable performance. On the90

other hand in our algorithm, once the clusters are formed, cache placement is91

easily performed.92

There is also a group of works on reducing latency. In [5] authors focused on93

the cache placement problem, aiming at minimization of average download time.94

Assuming known content popularities, coded and uncoded caching schemes are95

considered. Authors in [15] analyze the average network delay minimization.96

In this work, the nearby devices form a cluster and cache contents in a disjoint97

manner. That is, the same content is not cached twice in a cluster. Our ap-98

proach, as will be explained in the subsequent sections, has some similarities.99

However, we assume the existence of a set of designated helper nodes and per-100
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form clustering on the helpers. As opposed to [15], in our case caching popular101

contents more than once in a cluster significantly improves the performance. In102

[15] users in the same cluster can exchange cached contents via D2D links, inter103

cluster cooperation is also possible between users via cellular links. Similar to104

these works, optimal caching decision is found centrally in a way that minimizes105

latency in [16].106

A group of works in the literature use stochastic geometry in finding some107

fundamental results on cache placement. The work in [17] uses stochastic ge-108

ometry and proposes a low-complexity random cache placement and scheduling109

algorithm. Authors in [18] prove that spatially correlated caching improves the110

hit probability. In these works the main assumption is a Poisson Point Process111

(i.e. uniform) user distribution. This technique can be used to mathematically112

derive the cache hit probability averaged over all possible topologies. They de-113

fine an exclusion region, wherein if a user caches a content, then other users in114

close proximity do not cache that content. This exclusion region avoids redun-115

dant caching and provides content diversity. They [18] optimize the performance116

with respect to only the exclusion region. However, this is a very simplistic ap-117

proach and there is room for significant improvement. As will be seen in the118

following sections, we also utilize spatially correlated caching. However, in real-119

ity, only a fraction of cellular users would be eager to participate in caching and120

content delivery. We call these users as helpers and helpers from clusters. Clus-121

tering helpers is crucial since it provides content diversity and avoids duplicate122

caching of less popular contents at helpers that serve common users. However,123

contrary to [18] close helpers can still cache the same content if that content is124

very popular. The reason is that these helpers do not serve exactly the same125

set of users. Clustering approach reveals the advantages when proposed algo-126

rithm is compared to conventional caching schemes and the optimal solution.127

Meanwhile, clustering was also chosen as a method in [19], [20], [21]. However,128

in these works there are no helpers and only the users are clustered. Therefore,129

these works significantly differ from our work. The contributions of this paper130

are summarized as follows,131
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• We propose a distributed cache placement algorithm for D2D enabled132

cellular networks in order to maximize the network’s average offloading.133

Optimization problem is modeled as Mixed Integer Linear Programming134

(MILP) and optimal solution is provided.135

• The derived optimal solution is centralized and expected to be handled by136

BS, requiring knowledge about network topology. Such kind of solutions137

cause computational complexities and signaling overhead. In order to138

obviate these drawbacks we concentrated on distributed cache placement139

approaches since they provide scalable and practical solutions. For this140

purpose, we proposed a clustering-based cache placement algorithm.141

• We have analyzed the performance of the proposed algorithm in the pres-142

ence of varying cache size, number of network elements, skewness pa-143

rameter of Zipf distribution and number of contents. Results of these144

extensive simulations reveal that the proposed algorithm is robust with145

reasonable performance compared to conventional caching schemes and146

optimal caching.147

The rest of the paper is organized as follows. Section 2 presents the system148

model. Section 3 formulates the optimal caching problem. Section 4 provides149

details of the proposed Clustering and Cache Placement Algorithms. Section150

5 includes simulations with the varying parameters. Section 6 concludes the151

paper and Section 7 mentions the issues that can be considered as future work.152

2. System Model153

We assume an LTE cell containing a base station that serves U + H users,154

which are composed of U ordinary users and H helper users. Helpers are able155

to cache contents and serve neighboring users, using device-to-device (D2D)156

communications. In D2D communications , two users that are closer than a157

range RD are able to communicate directly. We assume there are C cacheable158

contents. Each helper can store Cc contents. We assume a uniform content159
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popularity profile throughout the network. Content popularities are Zipf dis-160

tributed. Without loss of generality the contents are ordered in decreasing order161

of popularity. Let puc be the probability that user u requests content c. Zipf rule162

suggests that puc is proportional to 1
cα for all users u. Here, α is the skewness163

exponent for the Zipf distribution. A higher α means a more imbalanced pop-164

ularity. We assume that when a content is requested by an ordinary user, this165

request can be heard by a helper. If the content is available at the helper, then166

a D2D transmission starts for content retrieval. If the requested content is not167

available at any helper, then it is obtained from the base station. In this system168

model, we aim to maximize the ratio of contents obtained from the helpers (i.e.169

offloading). A helper can help an ordinary user, only if they are neighbors. Let170

binary parameter ahu be the neighborhood parameter, which takes value one if171

helper h and user u are neighbors, zero otherwise. In the proposed solutions,172

we implicitly assume that the base station is able to measure the popularity of173

contents and regularly inform the helpers about the content popularity profiles.174

We assume that D2D transmissions do not create interference to the actual175

cellular transmissions. This can be possible by D2D overlay, where D2D trans-176

missions use a separate frequency band. We assume that sufficient bandwidth177

is allocated to D2D transmissions.178

Another possibility of implementing D2D transmissions is using a different179

technology. For example, WiFi-Direct is an extension of the classical WiFi tech-180

nology for D2D transmissions. This technology enables short range, low power,181

high bandwidth communications, even in the absence of Internet connection.182

WiFi-direct can be implemented on top of the LTE cellular infrastructure, with-183

out any major change in LTE protocols [22]. With this technology, neighboring184

users can form groups and perform direct communication.185

3. Problem Formulation186

We define two sets of binary variables. Let xhc be the binary variable that187

takes value 1 if content c is cached by helper h. Let yhuc be the binary variable188

7



that takes value 1 if helper h is authorized to help ordinary user u if it requests189

content c. We define the following optimization problem,190

max
x,y

{
U∑

u=1

C∑
c=1

puc

H∑
h=1

yhuc

}
(1)

s.t.191

C∑
c=1

xhc ≤ Cc,∀h = 1, . . . ,H (2)

H∑
h=1

yhuc ≤ 1,∀u = 1, . . . , U, c = 1, . . . , C (3)

yhuc ≤ ahuxhc,∀u = 1, . . . , U, c = 1, . . . , C, h = 1, . . . ,H (4)

Objective in (1) is the average received help (i.e. offloading) throughout192

the cellular area. Constraint (2) is the cache capacity of each helper node.193

Constraint (3) enforces that each node can only get help from at most one194

node, for each content. Therefore the quantity
∑H

h=1 yhuc is a binary quantity.195

It becomes one, if node u receives the content from any helper and becomes196

zero, otherwise. Finally, constraint (4) enforces that an ordinary node u can197

receive help from helper h, in terms of content c, only if helper h caches that198

content and is a neighbor of node u.199

The proposed problem and its constraints are all linear in terms of the deci-200

sion variables. Moreover, the variables are all binary. Therefore this is a mixed-201

integer linear program (MILP). It can be solved using off-the shelf solvers such202

as CPLEX.203

4. Proposed Algorithm204

Maximizing the traffic offloading is directly related to maximizing the hit205

probability. This is the probability of a user finding a requested content from206

a neighboring helper. A very simple cache placement solution would be each207

helper caching the most popular contents. Although this solution will be a208

benchmark in our simulations, it is certainly not the best solution. Consider209
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two helpers located very close to each other. In this case it would be better to210

cache different contents at these nodes. Caching this way improves the chance211

of an ordinary node to find a requested content at a helper neighbor. There-212

fore, we propose a clustering-based cache placement solution. In our solution,213

helpers form cliques. Helpers in a clique are in direct communication range with214

each other. After clusters are formed, each cluster will independently perform215

cache placement in a way that provides content diversity and maximizes hit216

probability.217

The reason of using cliques (clusters) is to facilitate collaboration of helpers218

and provide content diversity in a cluster. There are vast number of clustering219

methods developed for wireless ad hoc and sensor networks [23]. Our definition220

of clique is a set of helpers all having one hop distance between each other.221

This choice of single hop is for the following reasons: 1) Helpers in a clique222

can communicate directly with each other and hierarchically allocate contents223

to their cache. For example helpers in a clique can send the popularity and224

cache capacity information to a designated clusterhead, and the clusterhead225

can perform cluster cache allocation. 2) Helpers are very close to each other, so226

that they serve mostly common users. A user can easily find a proximate helper227

that caches a desired popular content.228

Algorithm 1 shows the pseudocode of the clustering algorithm. Algorithm229

accepts the neighborhood and distance information as inputs. Channel gains230

can also be used instead of distances. Algorithm consists of two nested loops. In231

each outer loop, a separate clique is formed. Set H is initialized as all helpers.232

Each time a helper joins a cluster, it is excluded from H. Line 4 finds the helper233

pair with minimum distance, among the remaining helpers. If these helpers are234

neighbors, then a new cluster is initialized (Lines 6,7). Inner loop (Lines 9-18)235

tries to add as many helpers to this cluster as possible. Line 10 finds the set of236

helpers that can directly communicate (i.e. neighbors) to each existing helpers237

in the cluster. If there are no such helpers, then the cluster is finalized (Line238

16). If there are such helpers, then the algorithm finds the one with least total239

distance to the existing helpers and adds it to the cluster (Lines 12,13). In other240
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Algorithm 1 Clustering Algorithm

1: Initialize H = {1, 2, ...,H}, loop1 = 0, loop2 = 0, g = 0;

2: Input: Neighborhood information and distances ahh′ , dhh′∀h, h′ ∈ H.

3: while loop1 = 0 do

4: Find minh,h′∈H{dh,h′}

5: if ahh′ = 1 then

6: g = g + 1

7: New clique: Gg = {h, h′}

8: Update: H = H \ {h, h′}

9: while loop2=0 do

10: Find set: N = {i|i ∈ H, aih = 1,∀h ∈ Gg}

11: if N 6= ∅ then

12: Find i∗ = mini∈N {
∑

h∈Gg dih}

13: Add Gg = Gg ∪ {i∗}

14: Update: H = H \ {i∗}

15: else

16: loop2=1;

17: end if

18: end while

19: else

20: loop1=0

21: end if

22: end while

23: Return: All cliques G1,G2, ...,Gg.
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words, this algorithm attempts to find maximal cliques. Algorithm returns the241

set of helpers in each cluster. The remaining helpers cannot form any cliques,242

since they are isolated.243

Our clustering algorithm addresses the “maximal clique” problem in the lit-244

erature, where we form cliques that can not be enlarged. Forming maximal245

cliques facilitates allocating as many different contents as possible to a helper246

cluster, which facilitates content diversity. This provides great benefits espe-247

cially in the case of low Zipf skewness α. This way, less popular contents can248

also be cached in a cluster. Our simulations verify the success of this approach,249

wherein the proposed algorithm performs almost as good as the MILP-based250

optimal solution. The maximal clique problem is NP-complete [24], [25]. How-251

ever we need a easy-to-implement clustering algorithm that forms clusters as252

large as possible, in order to provide content diversity in cache placement.253

We did not include a fully-described distributed clustering protocol in this254

paper. However such a clustering algorithm can be approximately implemented255

in a distributed manner. For example, the authors in [26] also used the idea256

of maximal cliques and proposed a distributed clustering algorithm. The nodes257

first collect the connectivity information with their neighbors. Each node waits258

a random amount of time before starting a cluster advertisement. This time259

duration is inversely proportional to the number of neighbors. Hence the node260

with highes number of neighbors advertises first as a cluster head. A node261

receiving an advertisement joins in a cluster if it satisfies the single-hop condition262

with every existing node in the cluster. The helper that has the most number263

of ordinary user neighbors becomes the clusterhead.264

Algorithm 2 presents the pseudocode of the cache placement algorithm. Al-265

gorithm consists of a for loop (Lines 3-21), where cache placement of cluster266

occurs in each turn. Let Nh be the number of helpers in cluster g (Line 4).267

The total cache capacity in this cluster is denoted by total. The for loop in268

Lines 6-11 determines of how many copies of each content will be cached in the269

cluster. Line 7 finds an integer number for each content. The sum of these270

numbers barely exceeds the total cache capacity. Line 12 sorts helpers in the271

11



Algorithm 2 Cache Placement Algorithm

1: Initialize xhc = 0,∀h = 1, ...,H, c = 1, ..., C

2: Input: All cliques G1,G2, ...,Gg, Content popularity: puc, Number of con-

tents C, Cache capacity Cc

3: for all clusters g do

4: Number of helpers in the cluster Nh = |Gg|

5: total=Nh × Cc

6: for i=1:C do

7: tc = min
(
Nh, round

(
puc
pui

))
,∀c

8: if then
∑C

c=1 tc ≥ total

9: Exit loop

10: end if

11: end for

12: Sort helpers in cluster g as (1), (2), ..., (Nh), according to number of

neighboring ordinary users

13: for (h) = (1) : (Nh) do

14: for c do=1:C

15: if tc > 0 then

16: Set x(h),c = 1

17: tc = tc − 1

18: end if

19: end for

20: end for

21: end for

22: for all helpers h /∈
⋃g

i=1 Gi do

23: Set xhc = 1 for c = 1, 2, ..., Cc

24: end for

25: Return: xhc,∀h = 1, ...,H, c = 1, ..., C
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cluster, where the helpers with more ordinary neighbors gain priority. The loop272

in Lines 13-20 scans the helpers according to their priority. This loop fills the273

caches of the helpers starting from the most popular content. Finally the loop274

in line 22-24 fills the helpers that are not included in any cluster (i.e. isolated275

helpers). Each of these isolated helpers cache the most popular contents. The276

content popularity information can be obtained from a centralized server, or it277

can be estimated by the base station and informed to the helpers.278

The following examples shows the main loop of the algorithm (Lines 3-21)279

in action:280

Suppose that there are C = 10 contents with popularities (skewness α = 1)281

puc = [0.341, 0.171, 0.114, 0.085, 0.068, 0.057, 0.049, 0.043, 0.038, 0.034]. Let us282

consider a cluster of 3 users, {1, 2, 3} where each user can cache Cc = 2 contents.283

So total cache capacity of this cluster is 3×2 = 6 contents and tc stands for the284

temporary cached contents by the corresponding cluster.285

• We first divide puc by 0.341 and round. The results becomes tc =286

[1100000000]. The sum is smaller than 6.287

• We then divide puc by 0.171 and round. The results becomes tc =288

[2111000000]. The sum is smaller than 6.289

• We then divide puc by 0.114 and round. The results becomes tc =290

[3211110000]. The sum is greater than 6. We exit the loop in Lines291

6-11.292

• Assume that, after performing the operation in Line 12, the order does293

not change.294

• Node 1 caches contents 1,2. Update tc as tc = [2111110000].295

• Node 2 caches contents 1,2. Update tc as tc = [1011110000].296

• Node 3 caches contents 1,3. Update tc as tc = [0001110000].297

• All the capacity in the cluster is filled. The algorithm passes to the next298

cluster.299
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Table 1: Simulation Parameters

Simulation Parameters Value

Number of contents (C) [30, 40]

Number of ordinary users (U) [300,1000]

Number of helper users (H) [40, 45, 50, 55, 60]

Zipf Skewness Parameter (α) [0.6, 1, 1.5]

D2D Maximum Range (RD) 50 meters

Cache capacity (Cc) [2, 4, 6, 8] contents

Radius of cellular area (Rmax) 250 meters

Content Size (Sc) 1 unit

As seen in this example, content 1, which is very popular, is cached at each300

helper in the cluster. Content 2 is cached in two helpers and content 3 is cached301

in only one helper. Other contents are not cached. This method both maximizes302

hit probability and provides content diversity.303

5. Simulation Results304

In this section we will compare the performances of the proposed algorithm305

with that of the optimal solution, along with some benchmarks. Table 1 shows306

the simulation parameters. We will compare the following methods,307

• MILP-based optimal solution.308

• Proposed clustering-based algorithm.309

• Popularity based caching: This is a simple scheme, where each helper310

independently caches the most popular contents.311

• One Copy: This is a hybrid scheme, where helpers are clustered using the312

proposed clustering method. However any content is cached by at most313

one helper in a cluster.314
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Figure 1: Cumulative Distribution Function for Total Offloading (U=300, C=30, Cc=4,

α=0.6)

Figure 1 shows the empirical cumulative distribution function (CDF) of the315

total offloading for 300 ordinary users, 50 helpers, 30 contents where α = 0.6.316

Median offloading results show that our proposed method provides an offload317

within 7% of the optimal.This is a very promising result. Moreover, the offload-318

ing provided by the popularity based caching method is only one third of the319

optimal. This shows the importance of clustering. One Copy algorithm is some-320

where in between, but it can still provide only 70% of the optimal offloading.321

This shows the success of our proposed cache placement algorithm in providing322

high hit probability.323

Figure 2 shows the performance for higher skewness of content popularities324

where α = 1.5. This points to a more imbalanced popularity profile. In this325

case a small fraction of contents occupy a large fraction of total popularity. Our326

algorithm performs even better in this case, within 5% of the optimal perfor-327

mance. Popularity based caching can only provide half of the optimal offloading.328
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Figure 2: Cumulative Distribution Function for Total Offloading (U=300, C=30, Cc=4,

α=1.5)

Relative performance of One Copy method is worse (64% of the optimal median329

offloading). This is because One Copy method caches unnecessary contents,330

that have low popularity.331

Figures 3 and 4 show the empirical CDF of the offloading for the case of332

higher (U = 1000) ordinary users. As expected, this results in increased total333

offloading for all compared methods. Our proposed algorithm approaches even334

closer to the optimum, with a median offloading performance within 4% and335

2.5% of the optimal for α = 0.6 and 1.5.336

In order to form Table 2, we ran the simulations for our proposed algo-337

rithm and optimal MILP solution for 100 uniformly distributed random topol-338

ogy which includes helpers and ordinary users. Then divided the total offloading339

of the proposed algorithm to that of the optimal. Table shows the value of this340

obtained quantity for different cache capacities and number of helpers. Here341

max, denotes the 95th percentile of the considered topologies, while min de-342
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notes the 5th percentile. The results in the Table indicate that for all cache343

sizes and number of helpers, the proposed algorithm almost always perform344

within 10% of the optimal. Our algorithm especially approaches the optimal for345

lower number of helpers and a larger cache capacity.346

6. Conclusions347

In this work we consider the problem of optimal cache placement using D2D348

communications in a cellular system. We propose a cache placement scheme,349

where the helper nodes are first clustered and then the caches in a cluster are350

collectively utilized in order to provide higher hit probability and content diver-351

sity. The results clearly show that our algorithm is very successful and provides352

close-to-optimal offloading uniformly for all values of simulation parameters.353

The proposed algorithm has two main advantages. First of all it is robust,354

meaning that it performs close to optimal for various values of number of users,355
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helper, Zipf skewness parameter and cache sizes. Secondly it is amenable to dis-356

tributed implementation. There are various distributed clustering algorithms in357

the literature, which can be applied in order to form helper cliques.358

7. Extensions and Future Work359

There are number of issues that can be considered as future work,360

7.1. Jointly Optimal Cache Placement and Resource Allocation for Helpers361

In this work we assumed that D2D transmissions do not cause interference362

to cellular transmissions. This can be possible either by using an orthogonal363

frequency resources (overlay) or using a different technology (e.g. WiFi). In364

future we plan to consider a D2D underlay, where D2D transmissions interfere365

with the cellular transmissions [14].366
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Table 2: Proposed Algorithm vs. MILP for U=1000, C=40, α=1

Number of Helpers H

40 45 50 55 60

Cache Size

Cc

2
max: 99.39%

min: 90.55%

max: 98.13%

min: 89.32%

max: 96.39%

min: 89.26%

max: 97.62%

min: 88.78%

max: 95.82%

min: 87.43%

4
max: 99.77%

min: 93.68%

max: 99.66%

min: 93.17%

max: 99.19%

min: 92.98%

max: 98.77%

min: 92.36%

max: 98.42%

min: 91.63%

6
max: 99.66%

min: 94.77%

max: 99.58%

min: 94.01%

max: 99.60%

min: 94.32%

max: 99.41%

min: 93.32%

max: 98.92%

min: 92.65%

8
max: 99.60%

min: 95.24%

max: 99.57%

min: 94.81%

max: 99.39%

min: 94.73%

max: 96.65%

min: 93.99%

max: 99.09%

min: 93.16%

7.2. Estimating the Content Popularities367

In this work we assume that the base station perfectly knows the content368

popularities and feeds it back to the helpers. However, our proposed algorithm369

is also able to work in case of estimated probabilities. Moreover, content pop-370

ularity can also be measured by the helpers. Helpers in a cluster can collect371

content requests and share their statistics with their cluster head. Cluster head372

then perform content placement and tell the other cluster members about which373

content to cache.374

Online stochastic learning can also be used in order to implement and online375

and adaptive caching mechanism. This method has been recently used as a376

channel and power allocation mechanism in D2D transmissions [27]. Online377

stochastic learning can be implemented as follows: The helper first randomly378

caches a content, then measures the request rate and resulting offloading. The379

probability of caching of a content increases in the next stage depending on its380

request rate. After some iterations, caching probability of a content approaches381

1, which ends the iterations. Although such algorithms require a high number382

of iterations to converge, they can be preferred for a distributed mechanism,383

which requires no intervention from the base station.384

In real applications content popularity can also be geographically varying.385

In such a case, estimating the popularity centrally by the base station will be386
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suboptimal. In this case estimation of popularity separately at each cluster is387

a good choice. Since the helpers in a cluster are geographically close, content388

popularity in their region should be similar. Our proposed algorithm is also389

applicable in case of geographically varying content popularity.390

7.3. Distributed Clustering391

With its current form our proposed clustering algorithm for helpers is a392

centralized algorithm. However it can be modified as a distributed algorithm.393

In [22] an architecture is proposed that uses WiFi-Direct jointly with LTE for394

D2D communications. In their architecture, cellular users build a WiFi-Direct395

cluster and the clusterhead serves as a bridge between LTE and WiFi Direct396

networks [28]. In [28] an architecture is proposed, where a device can be in397

more than one group as a client or group owner. This way a helper clique can398

create a separate group for content placement. Each helper can also create their399

own group with neighboring ordinary users. Besides, an ordinary user can be in400

all groups of neighboring helpers. When a user requests a content, the closest401

helper that has the content serves the user. Since WiFi-direct uses a separate402

and unlicensed frequency band, this would result in significant reduction in LTE403

bandwidth demand.404

7.4. Time Varying User Location and Content Popularity Profiles405

In this work we consider a single-shot scenario, where clustering and cache406

placement is performed for a given set of user locations and content popularity407

profile. In reality , location of mobile users and helpers would change frequently,408

which requires cluster maintenance and cache content replacement. Developing409

cache placement methods for mobile users and time varying content profiles is410

a subject of future work.411
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