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ABSTRACT

The variable magnetic field of the solar photosphere exhibits periodic reversals as a result of dynamo activity
occurring within the solar interior. We decompose the surface field as observed by both the Wilcox Solar Observatory
and the Michelson Doppler Imager into its harmonic constituents, and present the time evolution of the mode
coefficients for the past three sunspot cycles. The interplay between the various modes is then interpreted from the
perspective of general dynamo theory, where the coupling between the primary and secondary families of modes is
found to correlate with large-scale polarity reversals for many examples of cyclic dynamos. Mean-field dynamos
based on the solar parameter regime are then used to explore how such couplings may result in the various long-term
trends in the surface magnetic field observed to occur in the solar case.
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1. INTRODUCTION

The Sun is a dynamic star that possesses quasi-regular cycles
of magnetic activity having a mean period of about 22 years.
This period varies from cycle to cycle, and over the past several
centuries has ranged from 18 to 25 years (Weiss 1990; Beer
et al. 1998; Usoskin et al. 2007), as, for example, illustrated
by the unusual but not unprecedented length of the most
recently completed sunspot Cycle 23. During each sunspot
cycle (comprising half of a magnetic cycle), the Sun emerges
sunspot groups and active regions onto the photosphere, with
such features possessing characteristic latitudes, polarity, and
tilt angles. As with the period, the numbers and emergence
frequencies of active regions are observed to vary from cycle to
cycle.

At activity minima when few active regions are present,
the surface magnetic field is characterized by the presence
of two polar caps, i.e., largely unipolar patches of magnetic
flux dispersed across both polar regions with the northern
and southern caps possessing opposite polarities. Reversals of
this large-scale dipole represented by the polar-cap flux occur
during each sunspot cycle, allowing the subsequent sunspot
cycle to begin in the opposite configuration. After two sunspot
cycles, and thus after undergoing two polarity reversals, the
photospheric field will have returned to its starting configuration
so as to complete a full activity cycle.

In response to the photospheric flux associated with various
features, such as active regions and their decay products, the
coronal magnetic field possesses structures having a broad spec-
trum of sizes. These structures are both evident in observations
of coronal loops, as found in narrowband extreme ultraviolet or
soft X-ray imagery, and reproduced in models of the coronal
magnetic field (e.g., Schrijver & DeRosa 2003). In both venues,
the coronal magnetic field is seen to contain a rich and complex
geometry. Dynamical events originating from the corona, such
as eruptive flares and coronal mass ejections, are likely powered
by energy released by a reconfiguration of the coronal magnetic
field, which in turn is responding to changes and evolution of
photospheric fields.

Precise measurements of the time history of photospheric
magnetic field and the ability to determine the projection of this
field into its constituent multipole components are helpful in
investigating the physical processes thought to be responsible
for dynamo activity (Bullard & Gellman 1954; Moffatt 1978).
In cool stars similar to the Sun, the dynamo is presumed to be a
consequence of the nonlinear interactions between convection,
rotation, and large-scale flows, leading to the generation and
maintenance of magnetic field of various temporal and spatial
scales against Ohmic diffusion (Weiss 1987; Cattaneo 1999;
Ossendrijver 2003; Brun et al. 2004; Vögler & Schüssler
2007; Charbonneau 2010; Reiners 2012). In particular, the
dependence of dynamo activity upon rotation appears to be
well established (Noyes et al. 1984; Saar & Brandenburg 1999;
Pizzolato et al. 2003; Böhm-Vitense 2007; Reiners et al. 2009).
However, many details of the understanding of why many cool-
star dynamos excite waves of dynamo activity having a regular
period, specifically 22 years in the case of the Sun, remain
unclear.

To investigate these issues, it is useful to explore the be-
havior and evolution of the lowest-degree (i.e., largest-scale)
multipoles, their amplitudes and phases, and their correlations
with the solar photospheric magnetic field. Many earlier stud-
ies (e.g., Levine 1977; Hoeksema 1984; Gokhale et al. 1992;
Gokhale & Javaraiah 1992) have illustrated how power in these
modes ebbs and flows as a function of the activity level. In
particular, J. Stenflo and collaborators have performed thor-
ough spectral analyses on the temporal evolution of the various
spherical harmonic modes. Stenflo & Vogel (1986), Stenflo &
Weisenhorn (1987), and Stenflo & Güdel (1988), and more re-
cently Stenflo (1994) and Knaack & Stenflo (2005), base their
analysis on Mt. Wilson and Kitt Peak magnetic data spanning
the past few sunspot cycles. As one would expect, they find
that most of the power is contained in temporal modes having
a period of about 22 years, and especially in spherical harmon-
ics that are equatorially antisymmetric, such as the axial dipole
and octupole. However, they find that signatures of the activ-
ity cycle are present in all axisymmetric harmonics, as signifi-
cant power is present at temporal frequencies at or near integer
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multiples of the fundamental frequency of 1.44 nHz [equivalent
to (22 yr)−1].

In the current study, we focus on the coupling between
spherical harmonic modes, and what such coupling may indicate
about the operation of the interior dynamo. In particular,
reversals of the axial dipole mode may be viewed as a result
of continuous interactions between the poloidal and toroidal
components of the interior magnetic field, i.e., the so-called
dynamo loop. Currently, one type of solar dynamo model that
successfully reproduces many observed behaviors is the flux-
transport Babcock–Leighton (BL) type (e.g., Choudhuri et al.
1995; Dikpati et al. 2004; Jouve & Brun 2007; Yeates et al.
2008). A key ingredient in producing realistic activity cycles
using this type of model is found to be the amplitude and
profile of the meridional flow (Jouve & Brun 2007; Karak 2010;
Nandy et al. 2011; Dikpati 2011), which result in field reversals
progressing via the poleward advection across the surface of
trailing-polarity flux from emergent bipolar regions. During the
rising phase of each sunspot cycle, polar cap flux left over
from the previous cycle is canceled, after which new polar caps
having the opposite magnetic polarity form (Wang et al. 1989;
Benevolenskaya 2004; Dasi-Espuig et al. 2010).

Helioseismic analyses of solar oscillations have provided
measurements and inferences of key dynamo components, such
as the internal rotation profile and the near-surface meridional
circulation (Thompson et al. 2003; Basu & Antia 2010). Com-
plementing precise observations of the solar magnetic cycle
properties, these helioseismic inversions represent additional
strong constraints on theoretical solar dynamo models. Success-
ful solar dynamo models strive to reproduce as many empirical
features of solar magnetic activity as possible, including not only
cycle periods, but also parity, phase relation between poloidal
and toroidal components, and the phase relation between the
dipole and higher-degree harmonic modes.

Interestingly, a recent analysis of geomagnetic records has in-
dicated that the interplay between low-degree harmonic modes
during polarity reversals is one way to characterize both rever-
sals of the geomagnetic dynamo (which have a mean period of
about 300,000 years) as well as excursions, where the dipole
axis temporarily moves equatorward and thus away from its
usual position of being approximately aligned with the rotation
axis, followed by a return to its original position without having
crossed the equator (see Hulot et al. 2010 for a recent review on
Earth’s magnetic field). In particular, these studies have shown
that, during periods of geomagnetic reversals, the quadrupolar
component of the geomagnetic field is stronger than the dipolar
component, while during an excursion (which can be thought of
as a failed reversal), the dipole remains dominant (Amit et al.
2010; Leonhardt & Fabian 2007; Leonhardt et al. 2009). One
may thus ask: Is a similar behavior observed for the solar mag-
netic field?

In an attempt to address this question, we have performed a
systematic study of the temporal evolution of the solar photo-
spheric field by determining the spherical harmonic coefficients
for the photospheric magnetic field throughout the past three
sunspot cycles, focusing on low-degree modes and the relative
amplitude of dipolar and quadrupolar components. Following
the classification of McFadden et al. (1991), we have made
the distinction between primary and secondary families of har-
monic modes, a classification scheme that takes into account the
symmetry and parity of the spherical harmonic functions (see
Gubbins & Zhang 1993 for a detailed discussion on symmetry
and dynamo).

While we recognize that the solar dynamo operates in a more
turbulent parameter regime than the geodynamo, and is more
regular in its reversals, the presence of grand minima (such as
the Maunder Minimum) in the historical record indicates that the
solar dynamo can switch to a more intermittent state on longer-
term, secular timescales. In fact in the late stages of the Maunder
Minimum, the solar dynamo was apparently asymmetric, with
the southern hemisphere possessing more activity than the north
(Ribes & Nesme-Ribes 1993) for several decades, a magnetic
configuration that may have been achieved by having dipolar
and quadrupolar modes of similar amplitude (Tobias 1997;
Gallet & Pétrélis 2009). Additionally, recent spectopolarimetric
observations of solar-like stars now provide sufficient resolution
to characterize the magnetic field geometry in terms of its
multipolar decomposition (Petit et al. 2008). Furthermore, the
analysis of reduced dynamical systems developed over the last
20 years describing the geodynamo and solar dynamo have
emphasized the importance of the nonlinear coupling between
dipolar and quadrupolar components (Knobloch & Landsberg
1996; Weiss & Tobias 2000; Pétrélis et al. 2009).

This article is organized in the following manner. In
Section 2, we describe the data sets and the data analysis meth-
ods used to perform the spherical harmonic analysis, followed
in Section 3 with an explanation of the temporal evolution of the
various harmonic modes, the magnetic energy spectra, and the
decomposition in terms of primary and secondary families. We
interpret in Section 4 our results from a dynamical systems per-
spective and illustrate some of these concepts using mean-field
dynamo models. Concluding remarks are presented in Section 5.

2. OBSERVATIONS AND DATA PROCESSING

We analyze time series of synoptic photospheric magnetic
field maps of the radial magnetic field Br derived from line-of-
sight magnetogram observations taken by both the Wilcox Solar
Observatory (WSO; Scherrer et al. 1977) at Stanford University
and by the Michelson Doppler Imager (MDI; Scherrer et al.
1995) on board the space-borne Solar and Heliospheric Obser-
vatory. The WSO data4 used in this study span the past 36 years,
commencing with Carrington rotation (CR) 1642 (which began
on 1976 May 27) and ending with CR 2123 (which ended on
2012 May 25). For MDI,5 we used data from much of its mission
lifetime, starting with CR 1910 (which began on 1996 July 1)
through CR 2104 (which ended on 2010 December 24). In both
data series, one map per CR was used, though maps with sig-
nificant amounts of missing data were excluded. The measured
line-of-sight component of the field is assumed to be the con-
sequence of a purely radial magnetic field when calculating the
harmonic coefficients. Additionally, for WSO, the synoptic map
data are known to be a factor of about 1.8 too low due to the
saturation of the instrument (Svalgaard et al. 1978). Lastly, the
MDI data have had corrections applied for the polar fields using
the interpolation scheme presented in Sun et al. (2011).

For each map, we perform harmonic analysis using the
Legendre-transform software provided by the “PFSS” package
available through SolarSoft. Using this software first entails
remapping the latitudinal dimension of the input data from
the sine-latitude format provided by the observatories onto a
Gauss–Legendre grid (cf., Section 25.4.29 of Abramowitz &
Stegun 1972). This regridding enables Gaussian quadrature to
be used when evaluating the sums needed to project the magnetic

4 Available at http://wso.stanford.edu/synopticl.html.
5 Available at http://soi.stanford.edu/magnetic/index6.html.
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maps onto the spherical harmonic functions. The end result is
a time-varying set of complex coefficients Bm

� (t) for a series of
modes spanning harmonic degrees � = 0, 1, . . ., �max, where
the truncation limit �max is equal to 60 for the WSO maps and
192 for MDI maps. The Bm

� coefficients are proportional to the
amplitude of each spherical harmonic mode Ym

� for degree � and
order m possessed by the time series of synoptic maps, so that

Br (θ, φ, t) =
�max∑
�=0

�∑
m=0

Bm
� (t) Ym

� (θ, φ), (1)

where θ is the colatitude, φ is the latitude, and t is time. We
note that because the coefficients Bm

� are complex numbers,
this naturally accounts for the rotational symmetry between
spherical harmonic modes with orders m and −m (for a given
value of �), with the amplitudes of modes for which m > 0
appearing in the real part of Bm

� , and the amplitudes of the
modes where m < 0 being contained in the imaginary part
of Bm

� . Consequently, the sum over m in Equation (1) starts at
m = 0 instead of at m = −�. The coefficients B0

� corresponding
to the axisymmetric modes (for which m = 0) are real for all �.

We use the convention that, for a particular spherical harmonic
degree � and order m,

Ym
� (θ, φ) = Cm

� P m
� (cos θ ) eimφ, (2)

where the functions P m
� (cos θ ) are the associated Legendre

polynomials, and where the coefficients Cm
� are defined

Cm
� = (−1)m

[
2� + 1

4π

(� − m)!

(� + m)!

]1/2

. (3)

With this normalization, the spherical harmonic functions sat-
isfy the orthogonality relationship

∫ 2π

0
dφ

∫ π

0
sin θ dθ Ym∗

� Ym′
�′ = δ��′ δmm′ . (4)

When comparing our coefficients with those from other stud-
ies, it is important to take the normalization into account. For
example, the complex Bm

� coefficients used here are different
from (albeit related to) the real-valued gm

� and hm
� coefficients

provided by the WSO team.6 This difference is due to their
use of spherical harmonics having the Schmidt normalization, a
convention that is commonly used by the geomagnetic commu-
nity as well as by earlier studies in the solar community such
as Altschuler & Newkirk (1969). For the WSO data used here,
we have verified that the values of Bm

� used in this study are
commensurate with the gm

� and hm
� coefficients provided by the

WSO team.
Because we possess perfect knowledge of Br neither over the

entire Sun nor at one instant in time, the monopole coefficient
function B0

0 (t) does not strictly vanish and instead fluctuates
around zero. In practice, we find that the magnitude of B0

0 (t) is
small, and thus feel justified in not considering it further. This
assumption effectively means that from each magnetic map we
are subtracting off any excess net flux,

∮
Br (θ, φ) sin θ dθ dφ,

a practice which leads to the introduction of small errors in
the resulting analysis. However, these errors are deemed to be

6 Tables of gm
� and hm

� are available from the WSO Web site at
http://wso.stanford.edu/Harmonic.rad/ghlist.html.

less important than the inaccuracies resulting from the less-
than-perfect knowledge of the radial magnetic flux on the
Sun, including effects due to evolution and temporal sampling
throughout each CR and due to the lack of good radial field
measurements of the flux in the polar regions of the Sun.

3. MULTIPOLAR EXPANSIONS AND THEIR
EVOLUTION AS A FUNCTION OF CYCLE

3.1. Dipole Field (Modes with � = 1)

The solar dipolar magnetic field can be analyzed in terms
of its axial and equatorial harmonic components. As has long
been known (Hoeksema 1984), the axial dipole component,
having a magnitude of |B0

1 |, is observed to be largest during
solar minimum when there is a significant amount of magnetic
flux located at high heliographic latitudes on the Sun. These
two so-called polar caps possess opposite polarity, and match
the polarity of the trailing flux within active regions located in
the corresponding hemisphere that emerged during the previous
sunspot cycle. Long-term observations of surface-flux evolution
indicate that a net residual amount of such trailing-polarity
flux breaks off from decaying active regions and is released
into the surrounding, mixed-polarity quiet-sun network. This
flux is observed to continually evolve as flux elements merge,
fragment, and move around in response to convective motions
(Schrijver et al. 1997), but the long-term effect is that the net
residual flux is slowly advected poleward by surface meridional
flows. Such poleward advection results in a net influx of
trailing-polarity flux into the higher latitudes. At the same
time, an equivalent amount of leading-polarity flux from each
hemisphere cancels across the equator, as is necessary to balance
the trailing-polarity flux advected poleward. Over the course of
a sunspot cycle, this process is repeated throughout subsequent
sunspot cycles, during which flux from the trailing polarities
of active regions eventually cancels out the polar-cap flux left
over from previous cycles. Once the leftover flux has fully
disappeared, the buildup of a new polar cap having the opposite
polarity occurs by the subsequent activity minimum.

In contrast to the axial dipole component, the equatorial
dipole components, having magnitudes |B−1

1 | and |B1
1 |, are

largest during maximum activity intervals and weakest during
activity minima. Individual active regions on the photosphere
each contribute a small dipole moment that, aside from the small
axial component arising from the Joy’s law tilt, is oriented in
the equatorial plane. Together the equatorial dipole moments
from the collection of active regions add vectorially to form the
overall dipole moment. When many active regions are on the
disk, it thus follows that the equatorial dipole mode is likely to
have a higher amplitude. During periods of quiet activity with
few active regions on disk, the equatorial dipole amplitude is
minimal.

Because the WSO data span three sunspot activity cycles, a
bit of historical perspective on the evolution of the dipole can be
gained, as shown in Figure 1. Figure 1(a) shows the amplitude
of the axial dipole moment since mid 1976 and its evolution
as a function of the activity level, represented in the figure by
the sunspot number7 (SSN). It is also evident that, during the
most recent minimum prior to Cycle 24, the magnitude of the

7 Sunspot numbers with slightly different calibrations are available from
various sources worldwide. In this article, we use the indices provided by the
Solar Influences Data Center at the Royal Observatory of Belgium, whose
sunspot index data are available online at http://www.sidc.be/sunspot-index-
graphics/sidc_graphics.php.
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Figure 1. Evolution of the dipole (� = 1) modes, as characterized by the
(a) axial dipole coefficient B0

1 , (b) equatorial dipole magnitude
√

(B−1
1 )2+(B1

1 )2,

and (c) the ratio of their energies [(B−1
1 )2 + (B1

1 )2]/(B0
1 )2 for the WSO (black)

and MDI polar-corrected (magenta) data sets. Panel (d) shows the monthly
smoothed sunspot number (SSN) from Solar Influences Data Center at the
Royal Observatory of Belgium. The WSO data have not been corrected for
known saturation effects that reduce the reported values by a factor of 1.8
(Svalgaard et al. 1978).

(A color version of this figure is available in the online journal.)

axial dipole component is much lower than during any of the
three previous minima (i.e., those preceding Cycles 21–23). The
connection between the axial dipole component and the flux in
the northern hemisphere is illustrated in the time history of the
mean flux density as integrated over the northern hemisphere,
shown in Figure 2. We observe a slight lag for the northern
hemisphere averaged magnetic flux with respect to the axial
dipole coefficient due to the contribution of other axisymmetric
modes possessing a different phase.

Figure 1(b) illustrates the magnitude of the equatorial dipole
since mid 1976. In step with the relatively lower number of active
regions during Cycle 23 when compared with the maxima for
Cycles 21 and 22, the equatorial dipole strength is found to be
lower during the most recent maximum than during the maxima
corresponding to Cycles 21 or 22.

Given the variation in sunspot cycle strengths throughout the
past few centuries, we suspect that cycle-to-cycle variations
in the magnitudes of the axial and equatorial modes are not
unusual. Proxies of the historical large-scale magnetic field,
such as cosmic-ray-induced variations of isotopic abundances
measured from ice-core data (Steinhilber et al. 2012), also show
such longer-term variation and thus seem to be consistent with
this view. Interestingly, the range over which the variation in
the ratio of the energies possessed by the equatorial versus the
axial dipole components is about the same for the three sunspot
cycles observed by WSO, as shown in Figure 1(c). Longer-term
measurements of this ratio unfortunately are not available due to
the lack of a sequence of long-term magnetogram maps to which
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Figure 2. Northern hemispheric mean flux density (magenta) and axial dipole
coefficient from WSO (black), illustrating the connection between the axial
dipole and the flux in each hemisphere. The downward spike in the mean
hemispheric flux density occurring in 2001 is likely related to WSO sensitivity
issues occurring during that time period, and may not be real.

(A color version of this figure is available in the online journal.)

the harmonic decomposition analysis outlined in Section 2 can
be applied.

3.2. Reversals of the Dipole

The process by which old polar caps are canceled out and
replaced with new, opposite-polarity polar caps, as described
in the previous section, manifests itself as a change in sign of
the axial dipole amplitude throughout the course of a sunspot
cycle. Such dipole reversals for the past three sunspot cycles
are shown in Figure 3, where the latitude and longitude of the
dipole axis are plotted with time. It is found that the dipole axis
spends much of its time in the polar regions, and for only about
12–18 months during these cycles it is located equatorward
of ±45◦.

During these reversals, which occur at or near maximal
activity intervals, the energy in the dipole never completely
disappears. We find that the reduction in the energy (B0

1 )2 in
the axial dipole is partially offset by an increase in the energy
(B−1

1 )2+(B1
1 )2 in the equatorial dipole. This results in a reduction

of the total energy
∑

m(Bm
1 )2 in all dipolar modes only by about

an order of magnitude from its axial-dipole-dominated value at
solar minimum, as shown in Figure 4(a).

Figure 3 indicates that, during a reversal when the axial dipo-
lar component is weak, the axis of the equatorial dipolar compo-
nent wanders in longitude. This seemingly aimless wandering
occurs because the longitude of the dipole axis is primarily deter-
mined by an interplay among the strongest active regions on the
photosphere at the time of observation. As older active regions
decay and newer active regions emerge onto the photosphere,
the equatorial-dipolar axis responds in kind.

3.3. Quadrupole Field (Modes with � = 2)

The evolution of the energy contained in the quadrupolar
(� = 2) modes exhibit much more variation than the dipole, as
shown in Figure 4. As with the equatorial dipole components,
all of the quadrupolar modes have more power during greater
activity intervals than during quieter periods, as illustrated in the
evolution of the various quadrupolar modes plotted in Figure 5.
Furthermore, when large amounts of activity occur, it is possible
for the total energy

∑
m(Bm

2 )2 in all quadrupolar modes to be
greater than the energy

∑
m(Bm

1 )2 in the dipolar modes at the
photosphere. The ratio between these two groups of modes is
shown in Figure 4(c), from which it is evident that during each

4
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Figure 3. (a)–(c) Mollweide projections of the location of the dipole axis for the
past three sunspot cycles (Cycles 21–23), as determined from WSO synoptic
charts. The solid circles indicate the longitude and latitude of the dipole axis
for each Carrington rotation, with every sixth Carrington rotation also indicated
by an open circle. Grid lines (dashed) are placed every 45◦ in latitude and
longitude for reference. The Carrington longitudes of the central meridians
of each projection are chosen to best illustrate the reversals, and differ in
each of the panels. Panel (d) illustrates the latitude of the dipole axis as a
function of time. The open circles in panel (d) correspond to same times as the
open circles in panels (a)–(c).

(A color version of this figure is available in the online journal.)

of the past three sunspot cycles there have been periods of
time when the quadrupolar energy exceeded the dipolar energy
by as much as a factor of 10. The corona, in turn, reflects
the relative strength of a strong quadrupolar configuration of
photospheric magnetic fields by creating complex sectors and
possibly multiple current sheets that extend into the heliosphere.
One example of such complex field geometry is suggested by
the potential-field source-surface model of Figure 6, where a
quadrupolar configuration having an axis of symmetry lying
almost in the equatorial plane is seen to predominate.

3.4. Octupole Field (Modes with � = 3)

As with the quadrupole, the octupolar modes contain more
power during periods of high activity and less power during
minimum conditions, as illustrated in Figure 7. The exception
is the axial octupolar coefficient B0

3 , plotted in panel (a) of
Figure 7, which is nonzero during solar minima and exhibits
sign reversals during sunspot maxima in a manner similar to
the axial dipole coefficient B0

1 .
The behavior of the various m = 0 modes can be understood

by considering their functional symmetry: the Y 0
� functions

are antisymmetric in θ (i.e., antisymmetric across the equator)
when the degree � is odd, whereas for even � the Y 0

� functions
are symmetric in θ . The presence of polar caps during solar
minimum, a highly antisymmetric configuration, is reflected
in the similar evolution of the B0

1 and B0
3 coefficients, which
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Figure 4. Total energy in (a) dipolar modes
∑

m(Bm
1 )2, (b) quadrupolar modes∑

m(Bm
2 )2, and (c) their ratio

∑
m(Bm

2 )2/
∑

m(Bm
1 )2 for the WSO (black) and

MDI polar-corrected (magenta) data sets. Panel (d) shows the monthly smoothed
SSN. The WSO data have not been corrected for known saturation effects that
reduce the reported values by a factor of 1.8 (Svalgaard et al. 1978).

(A color version of this figure is available in the online journal.)

correspond to the axial dipole (� = 1 and m = 0) and octupole
(� = 3 and m = 0) modes. The axial quadrupole (� = 2
and m = 0) mode does not share this behavior because, as a
symmetric mode, it is not sensitive to the presence of the polar
caps during solar minima.

The dependence of the B0
� coefficients on the degree � is

illustrated in Figure 8, where the time-averaged energies from
the MDI data (spanning solar Cycle 23) as a function of degree
� are plotted. Prior to averaging, the spectra were placed in two
classes: CRs for which the SSN is relatively large (defined as
when SSN > 100) and rotations for which the SSN is relatively
small (defined as when SSN < 50), thus capturing the state of the
Sun when it is either overtly active or overtly quiet. The figure
indicates that the even–odd behavior is more pronounced during
quiet periods, and these occur near and during solar minimum
when the polar-cap field is significant. During active periods the
even–odd trend is still recognizable, but because the polar caps
are weak and the active regions are primarily oriented east–west
(i.e., in the equatorial plane and thus contributing little power to
the axisymmetric modes) the even–odd trend is less pronounced.
We will further discuss the behavior of axisymmetric modes in
the context of BL dynamo models in Section 4.2.

3.5. Full Spectra and Most Energetic Modes

One property of the spherical harmonic functions Ym
� (θ, φ)

is that the degree � is equal to the number of node lines (i.e.,
contours in θ and φ, where Ym

� = 0). In other words, the spatial
scale represented by any harmonic mode (i.e., the distance
between neighboring node lines) is determined by its spherical
harmonic degree �. As a result, the range of � values containing
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Figure 5. Evolution of the quadrupolar (� = 2) modes, as characterized
by the (a) axial quadrupole coefficient B0

2 , along with higher-order magnitudes

of the (b) m = ±1 modes
√

(B−1
2 )2+(B1

2 )2 and (c) m = ±2 modes
√

(B−2
2 )2+(B2

2 )2, for
the WSO (black) and MDI polar-corrected (magenta) data sets. Panel (d) shows
the monthly smoothed SSN. The WSO data have not been corrected for known
saturation effects that reduce the reported values by a factor of 1.8 (Svalgaard
et al. 1978).

(A color version of this figure is available in the online journal.)

Figure 6. Representation of the coronal magnetic field in 2000 October for
which the large-scale field is predominantly quadrupolar. This field is the result
of a potential-field source-surface extrapolation (Schatten et al. 1969) with an
upper boundary of 2.5 R� at which the coronal field is assumed purely radial.
Both closed (black) and open (magenta and green, depending on polarity) field
lines are shown in the model. Also shown is the contour of Br = 0 at R = 2.5 R�
(thicker black line).

(A color version of this figure is available in the online journal.)
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Figure 7. Evolution of the octupolar (� = 3) modes, as characterized by the
(a) axial octupole coefficient B0

3 , along with higher-order magnitudes of the (b)

m = ±1 modes
√

(B−1
3 )2+(B1

3 )2, (c) m = ±2 modes
√

(B−2
3 )2+(B2

3 )2, and (d) m = ±3

modes
√

(B−3
3 )2+(B3

3 )2, for the WSO (black) and MDI polar-corrected (magenta)
data sets. Panel (e) shows the monthly smoothed SSN. The WSO data have not
been corrected for known saturation effects that reduce the reported values by a
factor of 1.8 (Svalgaard et al. 1978).

(A color version of this figure is available in the online journal.)
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Figure 8. Time-averaged energies in the axisymmetric modes (B0
� )2 as a function

of � for MDI original (black) and polar-corrected (magenta) data sets, for more
active conditions (solid lines; defined as when SSN > 100) and for quieter
periods (dashed lines; defined as when SSN < 50). The interpolation scheme
used to correct the MDI polar flux is described in Sun et al. (2011).

(A color version of this figure is available in the online journal.)
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Figure 9. Time-averaged energies in the non-axisymmetric modes
∑

m>0(Bm
� )2

as a function of � for MDI original (black) and polar-corrected (magenta) data
sets, for more active conditions (solid lines; defined as when SSN > 100) and
for quieter periods (dashed lines; defined as when SSN < 50). The interpolation
scheme used to correct the MDI polar flux is described in Sun et al. (2011).

(A color version of this figure is available in the online journal.)

the greatest amount of energy indicates the dominant spatial
scales of the magnetic field.

To this end, we have averaged the non-axisymmetric power
spectra from each of the data sets both over time and over m, and
have displayed the result in Figure 9. As with Figure 8, we have
divided the spectra into active and quiet classes depending on
SSN. In the figure, it can be seen that the magnetic power spectra
form a broad peak with a maximum degree occurring at �Pmax ≈
25, corresponding to a size scale of about 360◦/�Pmax ≈ 15◦ in
heliographic coordinates. Stated another way, this indicates that
much of the magnetic energy can be found (not surprisingly) on
the spatial scales of solar active regions or their decay products.

Energy spectra determined from WSO charts (not shown) do
not show the same broad peak at �Pmax ≈ 25 as found in the curves
from the MDI-derived data shown in Figure 9. This is an effect
of the lower spatial resolution of the WSO magnetograph (which
has 180′′ pixels and is stepped by 90′′ in the east–west direction
and 180′′ in the north–south direction when constructing a
magnetogram) versus MDI (which has a plate scale of 2′′ pixel−1

in full-disk mode). The WSO magnetograph, as a result, does
not adequately resolve modes higher than about � = 15, creating
aliasing effects even at moderate values of � in the energy
spectra. Accordingly, as longer time series of data from newer,
higher-resolution magnetograph instrumentation are assembled,
the high-� behavior of the energy spectra (such as those shown
in Figures 8 and 9) may change due to better observations of
finer scales of magnetic field.

3.6. Primary and Secondary Families

The projection of the solar surface magnetic fields onto
spherical harmonic degrees allows us to delineate the main
symmetries of the magnetic field. As noted in Section 2,
the harmonic modes can be classified as either axisymmetric
(m = 0) or non-axisymmetric (m �= 0). Separately, the harmonic
modes can be either antisymmetric (odd �+m) or symmetric
(even �+m) with respect to the equator (Gubbins & Zhang 1993).
Some authors refer to antisymmetric modes as dipolar and
symmetric modes as quadrupolar (presumably because the axial
dipole and quadrupole modes usually possess the most power in
their respective categories), while others synonymously assign
these modes to either the primary and secondary family (e.g.,

Table 1
Ranking of the Most Positively Correlated Modes Within the Primary and

Secondary Families for Which � � 9 Most Correlated Modes

� = 1, m = 0 � = 2, m = 0

� m Primary � m Secondary

3 0 Y 4 0 Y
5 0 Y 4 1 N
2 0 N 9 9 Y

6 1 N
7 0 N
9 1 Y
5 1 Y
1 1 Y
7 7 Y
3 3 Y

Notes. The basis for comparison in each family is the lowest-degree axisym-
metric mode belonging to each family, specifically the axial dipole (� = 1 and
m = 0) and axial quadrupole (� = 2 and m = 0) modes for the primary and
secondary families, respectively. The most correlated mode is the next axisym-
metric mode in each family. The equatorial dipole mode (� = 1 and m = 1) is
more correlated with the axisymmetric quadrupole, as expected from its symme-
try properties. We note the presence of four sectoral modes (for which � = m)
in the list of the secondary family.

McFadden et al. 1991 when characterizing Earth’s magnetic
field geometry), respectively. In this article, we adopt the
primary- and secondary-family nomenclature when describing
the equatorial symmetry because this avoids the confusion that
may otherwise occur when, for example, it is realized that the
equatorial dipole mode (� = 1 and m = 1) formally belongs to
the “quadrupolar” family of modes (since � + m is even for this
mode).

One important result put forward by the geomagnetic com-
munity is that the relative strengths of the primary and sec-
ondary families are different during geomagnetic field reversals
and excursions. During reversals, the modes associated with
the secondary family predominate over primary-family modes,
and during excursions this is not the case (Leonhardt & Fabian
2007). We now investigate whether analogous behavior is occur-
ring in the solar setting, by determining which harmonic modes
are most correlated with the axial dipole and axial quadrupole.

When applied to two variables, the Spearman rank correlation
index ρ ∈ [−1, 1] indicates the degree to which two variables
are monotonically related. The index ρ is positive when both
variables tend to increase and decrease at the same points
in time. A rank correlation analysis is more general than a
more common Pearson correlation analysis, which specifically
measures how well two variables are linearly related, whereas
the rank correlation analysis enables a determination of whether
the time evolution of two mode amplitudes follow a similar
pattern in time without regard to their (unknown) functional
dependency.

In Table 1, we list the degrees � and orders m corresponding
to the harmonic coefficients Bm

� (t) that have the highest ρ
(positive correlation) when compared with the axial dipole
and axial quadrupole coefficients B0

1 (t) and B0
2 (t) (which peak

at different phases of the sunspot cycle). The corresponding
harmonic modes comprise the strongest modes in the primary
and secondary families, respectively. We find that, among the
mode amplitudes that are positively correlated with B0

1 , two out
of three belong to the primary family. Similarly, for B0

2 , 7 of the
10 most-correlated modes are members of the secondary family.
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Figure 10. (a)–(h) Coefficients B0
� for the axisymmetric modes of the first eight

degrees � as a function of time, as calculated from the WSO (black) and MDI
polar-corrected (magenta) synoptic maps and after boxcar smoothing with a
width of 1 year. Panel (i) shows the monthly smoothed SSN. The WSO data
have not been corrected for known saturation effects that reduce the reported
values by a factor of 1.8 (Svalgaard et al. 1978).

(A color version of this figure is available in the online journal.)

These correlations indicate a preference in the solar dynamo,
at least as inferred from its surface characteristics, for modes be-
longing to the same family and thus having the same north–south
symmetry characteristics to be excited nearly in phase. This pref-
erence is demonstrated further in Figures 10 and 11, in which
the long-term trends of the time evolution of the first several ax-
isymmetric mode coefficients are shown, after smoothing with
a boxcar filter having a width of 1 year. (We focus here on
the axisymmetric mode properties because these modes are the
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Figure 11. Overplotted coefficients B0
� from Figure 10 of the first 3 odd

(� = {1, 3, 5}; dark red, red, light red lines, respectively) and even (� = {2, 4, 6};
dark blue, blue, light blue, respectively) axisymmetric modes, as calculated from
WSO synoptic maps.

(A color version of this figure is available in the online journal.)

only ones considered in most mean-field dynamo models, as
discussed further in Section 4.2.) In Figure 10, there is a clear
correlation among the first few odd-� and among the first cou-
ple of even-� mode coefficients, a trend which is emphasized in
Figure 11 in which these same mode coefficients are overplot-
ted. We note that the mode groupings are not precisely in phase,
as evidenced, for example, by the lag in � = 3 and especially
the � = 5 modes reversing signs with respect to the � = 1 mode.
When � � 6 or so, these trends become much weaker among the
axisymmetric modes (although Table 1 indicates that this is not
necessarily true for the non-axisymmetric modes), presumably
because as smaller and smaller scales are considered the effects
of the global organization associated with the 11 year sunspot
cycle are less important in structuring the surface magnetic field.

Figure 11 additionally illustrates that the modes of the sec-
ondary family attain amplitudes of about 25% of the primary
mode amplitudes. Furthermore, the primary and secondary
mode families are out of phase: during reversals the primary
modes become weak at the same time as the amplitudes of
the modes associated with the secondary family become max-
imal, which was shown previously in Figure 4(c). This same
pattern is observed to occur during reversals of the axial dipole
field of the geodynamo. As in the geodynamo case, we ascribe
the relative amplitudes and phase relation between the primary
and secondary families observed during solar dipole reversals
as a strong indication that the interplay of the mode families
play a key role in the process by which the axial dipole reverses.
Hence, any realistic model of the solar dynamo must excite both
families of modes to similar amplitude levels, and must exhibit
similar coupling between modes belonging to the primary and
secondary families.

4. THEORETICAL IMPLICATIONS
FOR SOLAR DYNAMO

As demonstrated in previous sections, the amplitudes of the
various harmonic modes of the solar magnetic field are contin-
ually changing. During reversals, as the axial dipole necessarily
undergoes a change in sign, other modes predominate such that
the amplitude of the solar magnetic field never vanishes during
a reversal. As a result of such reversals occurring in the middle
of each 11 year sunspot cycle, during the rising phase of each
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cycle the polar fields and the emergent poloidal fields have op-
posite polarity (Babcock 1961; Benevolenskaya 2004), while in
the declining phase the polarity of sunspots and active regions
are aligned with the newly formed polar-cap field.

We have already noted how the temporal modulation of the
large-scale harmonic modes comprising the primary and sec-
ondary families during polarity reversals appears similar to
that of the magnetic field of the Earth (McFadden et al. 1991;
Leonhardt & Fabian 2007). We have illustrated that as the mag-
nitude of the primary-family mode amplitudes (primarily those
of the axisymmetric odd-� modes B0

� ) lessen, the secondary-
family mode amplitudes (particularly those of the equatorial
dipole B1

1 and axial quadrupole B0
2 ) simultaneously increase.

Once the secondary-family modes have peaked, the primary-
family modes grow as a result of the growing polar caps. Such
interplay between primary and secondary families provides in-
sight toward an understanding of the processes at play in the
solar dynamo that are assumed to be responsible for the occur-
rence of the observed cyclic activity (Tobias 2002).

The presence of power in members of both the primary
and secondary families indicates that the solar dynamo excites
modes that are both symmetric and antisymmetric with respect
to the equator. As was demonstrated by Roberts & Stix (1972),
this cannot occur unless nonlinearities exist or unless basic
ingredients of the solar dynamo (such as, for example, the
α- and/or ω-effects, or the meridional flow) possess some degree
of north–south asymmetry. In light of the parameter regime in
which the solar dynamo is thought to operate, including large
fluid and magnetic Reynolds numbers Re and Rm believed to
characterize the solar convection zone (both of order 1012–1015;
Stix 2002; Ossendrijver 2003), one expects the Sun to possess a
nonlinear dynamo. Detailed observations of the magnetic field
in the solar interior where dynamo activity is thought to occur are
not available, but the observed magnetic patterns and evolution
provide circumstantial evidence of turbulent, highly nonlinear
processes that lead to complex local and nonlocal cascades
of energy and magnetic helicity (Alexakis et al. 2005, 2007;
Livermore et al. 2010; Strugarek et al. 2012). Yet, the presence
of regular patterns formed by the emergent flux on the solar
photosphere, as codified by Hale’s Polarity law, Joy’s law for
active-region tilts, and the approximately regular cycle lengths,
suggest that some ordering is indeed happening in the solar
interior.

With the aim of distilling the necessary elements of the vari-
ous nonlinear dynamos into a manageable framework, multiple
authors have created idealized models of the solar dynamo, in-
cluding (for example) Weiss et al. (1984), Feynman & Gabriel
(1990), Ruzmaikin et al. (1992), Knobloch & Landsberg (1996),
Tobias (1997), Knobloch et al. (1998), Melbourne et al. (2001),
Weiss & Tobias (2000), and Spiegel (2009). Similarly, for the
geodynamo there are many efforts, including Glatzmaier &
Roberts (1995), Heimpel et al. (2005), Christensen & Aubert
(2006), Busse & Simitev (2008), Nishikawa & Kusano (2008),
Takahashi et al. (2008), and Christensen et al. (2010). A com-
pletely different approach has been taken by Pétrélis & Fauve
(2008) and Pétrélis et al. (2009), who have developed simplified
models of the von Karman sodium (VKS) laboratory experi-
ment (Monchaux et al. 2007). In all of these idealized models,
the modulations resulting from the coupling between magnetic
modes from the different families, or between the magnetic field
and fluid motions (Tobias 2002) can be analyzed in terms of the
equations that describe the underlying systems. The variabil-
ity of the most prominent cycle period develops as a result of

Figure 12. Schematic diagrams (adapted from Pétrélis et al. 2009) of a magnetic
dynamo system on either side of a saddle-node bifurcation, with two distinct
polarity configurations represented by B and −B. The coordinate axes represent
states where the primary (as represented by the axial dipole D) or secondary (as
represented by the axial quadrupole Q) families are dominant. In the left-hand
diagram, stable (±Bs ) and unstable (±Bu) states present during the system’s
evolution are indicated by blue circles and red squares. Perturbations away
from a stable point can either cause the system to evolve to the opposite stable
configuration (if the perturbation is strong enough) or simply cause an excursion
in which the system returns to the same stable state. In the right-hand diagram,
corresponding to the same system at a higher magnetic Reynolds number Rm
the stable and unstable points have merged, and the system simply oscillates
between the two configurations in a limit cycle.

(A color version of this figure is available in the online journal.)

the coupling of modes introducing a second timescale into the
dynamo system, often leading to a quasi-periodic or chaotic
behavior of the magnetic field, cycle length, and/or dominant
parity. One can further understand via symmetry considerations
how reversals and excursions arise (Gubbins & Zhang 1993).

4.1. Reversals and Coupling between Modes

To illustrate such a dynamical system, following the work of
Pétrélis & Fauve (2008), we assume that the axial dipole and
quadrupole modes are nonlinearly coupled. We can then define
a variable A(t) = B0

1 (t) + iB0
2 (t), where we have used the time-

varying mode coefficients defined in Equation (1), and write an
evolution equation that satisfies the symmetry invariance found
in the induction equation, i.e., B → −B. It then follows that
the symmetry A → −A must also be satisfied, and that such an
equation to leading order is

dA

dt
= μ1A + μ2Ā + ν1A

3 + ν2A
2Ā + ν3AĀ2 + ν4Ā

3, (5)

where μi and νi are complex coefficients and Ā = B0
1 − iB0

2 is
the complex conjugate of A, and the quadratic terms have van-
ished due to symmetry considerations. As discussed in Pétrélis
& Fauve (2008) and Pétrélis et al. (2009), such dynamical sys-
tems are subject to bifurcations. In particular, they demonstrate
that this dynamical system can be characterized by a saddle-
node bifurcation when comparing its properties with so-called
normal form equations (Guckenheimer & Holmes 1982). In
such a bifurcated system, both stable and unstable equilibria
(fixed points) exist, as illustrated in the left panel of Figure 12.
For instance, if the solution lies at a stable point (for example,
where the dipole axis is oriented northward), fluctuations in the
system may disturb the equilibrium and push the magnetic axis
away from its stable location. If such fluctuations are not strong
enough, the evolution of the dynamical system resists the de-
terministic evolution of the system and the system returns to its
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Figure 13. Reversals, as defined by the magnitude of the axial dipole component
for WSO, for the past sunspot Cycles 21–23. The reversal for these three cycles
occurred in 1979 October, 1989 November, and 1999 July, respectively.

(A color version of this figure is available in the online journal.)

original configuration (in the example, resulting in an excursion
of the dipole), such as seen in the geomagnetic field (Leonhardt
& Fabian 2007). If instead the fluctuations are large enough
to push the system past the unstable point, the magnetic field
then evolves toward the opposite stable fixed point allowed by
B → −B (in the example, resulting in a reversal that changes
the dipole axis to a southward orientation). Such behavior is also
seen in the VKS experiment, from which is observed irregular
magnetic activity combined with both excursions and reversals.
Reversals result in an asymmetric temporal profile, with the
dipole evolving slowly away from its equilibrium followed by a
swift flip (cf., Figure 3 of Pétrélis et al. 2009).

In Figure 13, we have overplotted the last three sunspot
cycle reversals such that the zero crossings of the axial dipole
coefficients B0

1 for each cycle are aligned. It has been recently
shown that the 10 major geomagnetic reversals for which
detailed records exist occurring during the past 180 Myr possess
a characteristic shape upon suitable normalization (Valet &
Fournier 2012). This shape can be described as comprising a
precursory event lasting of order 2500 years, a quick reversal not
exceeding 1000 years, and a rebound event of order 2500 years.
Pétrélis et al. (2009) show that the magnetic field in a simplified
VKS laboratory experiment exhibits differing behavior during
reversals and excursions. During reversals, the magnetic field
has an asymmetric profile that contains a slow decrease in the
dipole, followed by a rapid change of polarity and buildup of
the opposite polarity, whereas excursions are more symmetric.
Additionally, after reversals the magnetic dipole overshoots its
eventual value before settling down, whereas during excursions
no such overshooting is measured (see Figure 3 of Pétrélis et al.
2009). For the solar cases displayed in Figure 13, we find that
only the (green) curve of the reversal of Cycle 22 exhibits an
overshoot, whereas the other two cycles do not. Further, the
rates at which the solar dynamo approaches and recovers from
the reversal appear to be equal, leading to a symmetric profile,
in contrast with the VKS results. Therefore, the Sun seems to
reverse its magnetic field in a less systematic way than other
systems that have shown such behavior.

Analyzing such systems from a dynamical systems perspec-
tive, when changing the control parameter (here, Rm) past the
bifurcation point, the stable and unstable points coalesce and
merge and the saddle nodes disappear, as shown in the right
panel of Figure 12. This act transforms the system from one

containing fixed points to one containing limit cycles with no
equilibria (e.g., Guckenheimer & Holmes 1982), yielding an
oscillatory solution that manifests itself as cyclic magnetic ac-
tivity. Typically, large fluctuations are required in order to put the
dynamical system above the saddle-node bifurcation threshold.

In the case of the Sun, both the primary and secondary families
are excited efficiently and a strong coupling between them
is exhibited. The model of Pétrélis & Fauve (2008), in spirit
very close to the studies of Knobloch & Landsberg (1996) or
Melbourne et al. (2001), may be used to guide our interpretation
of the solar data. As illustrated in Figure 11, the axisymmetric
dipole and quadrupole are out of phase, such that their coupling
may lead to global reversals of the solar poloidal field. To the
best of our knowledge, however, the solar dynamo does not
exhibit excursions of its magnetic field (unlike the geodynamo)
but instead undergoes fairly regular reversals that take about one
or two years to transpire (cf., Figure 3). The solar dynamo is thus
better approximated by a model in which a limit cycle is present.
One may presume that the difference between the geodynamo
and the solar dynamo may be a result of the large degree of
turbulence present in the solar convection zone, whereas the
mantle of the Earth has a more laminar convective flow and thus
is below the bifurcation threshold where fixed points are still
present.

It may be the case that the solar dynamo is better described
by a Hopf bifurcation, in which a limit cycle arises (branches
from a fixed point) as the bifurcation parameter is changed. The
dynamo instability that occurs as a result of the interaction of
magnetic fields and fluid flows (such as αω dynamos typically
used to model the Sun, as summarized in Tobias 2002) often
arises from a Hopf bifurcation. This allows the system to
pass through domains having different properties, such as the
aperiodic oscillations that characterize the grand minima and
nonuniform sunspot cycle strengths of the solar dynamo (e.g.,
Spiegel 2009 and references therein). The data analysis shown
here does not favor a particular type of bifurcation, but does
indicate efficient coupling between the primary and secondary
families.

Yet another approach toward investigating magnetic rever-
sals is to develop detailed numerical simulations solving the
full set of MHD equations. Such three-dimensional numeri-
cal simulations in spherical geometry of Earth’s geodynamo
(Glatzmaier & Roberts 1995; Li et al. 2002; Nishikawa &
Kusano 2008; Olson et al. 2011) or of the solar global dynamo
(Brun et al. 2004; Browning et al. 2006; Racine et al. 2011)
have looked at the behavior of the polar dipole versus multi-
polar modes. Even though such models have large numerical
resolution and thus possess a large number of modes, all have
the property that the dominant polarity of the magnetic field
follows the temporal evolution of a few low-order modes, even
if in some cases the magnetic energy spectrum peaks at higher
angular degree �. These findings suggest that the coupling be-
tween the primary and secondary family remains an important
factor in characterizing polarity reversals for these simulations
and is thought to be linked to a symmetry breaking of the con-
vective flow (Nishikawa & Kusano 2008; Olson et al. 2011).
Some studies of the geomagnetic field (e.g., Clement 2004)
even advocate for a coupling between two modes of the same
primary family, such as the axial dipole and octupole. While
in the solar data these modes are well correlated, the coupling
between the primary and secondary families of modes seems
more likely to be at the origin of the reversal, as demonstrated in
Section 3.6.
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Figure 14. Latitude–time plots of Bφ (at the tachocline) and Br (at the surface)
produced by a mean-field BL dynamo model that uses empirical guidance for
the solar differential rotation and meridional flow profiles, and that is initialized
with a dipolar magnetic field. The lower panel is analogous to the standard solar
butterfly diagram.

(A color version of this figure is available in the online journal.)

4.2. Mean-field Dynamo Models and the Axisymmetric Modes

Mean-field dynamo models are found to capture the essence
of the large-scale solar dynamo (Moffatt 1978; Ossendrijver
2003; Dikpati et al. 2004; Charbonneau 2010). At present, the
most favored model is the mean-field BL dynamo model (e.g.,
Dikpati et al. 2004), in which the mean magnetic induction
equation is solved using empirical guidance for both the dif-
ferential rotation and meridional circulation profiles, as well as
for parameterizations of the α-effect and poloidal-field source
terms. In this section, we use the Stellar Elements (STELEM; T.
Emonet & P. Charbonneau 1998, private communication) code
(see Appendix A of Jouve & Brun 2007 for more details) to
solve the axisymmetric BL dynamo equations, and investigate
some of the consequences of the coupling between modes from
the primary and secondary families. In the interest of brevity,
we refer interested readers to Appendix A.1 for a listing of the
governing equations associated with BL dynamos.

In many BL solar dynamo models, the parameters govern-
ing the imposed flows and the poloidal-field source terms are
chosen based on their solar counterparts. When carefully cho-
sen, these terms favor modes from the primary family and thus
antisymmetric field configurations, since this is what the Sun
apparently favors much of the time. This is a result of the com-
monly used latitudinal profiles of the key dynamo ingredients
(symmetric large-scale flows and antisymmetric alpha effect)
combined with the parity in the BL mean-field dynamo equa-
tions, leading to a situation where modes of the primary family
remain uncoupled to modes of the secondary family that al-
lows both dynamo families to coexist without much interaction.
We consider the symmetry of the BL equations used here in
Appendix A.2 (see also Roberts & Stix 1972; Gubbins & Zhang
1993 for broader discussions on this topic).

To demonstrate these characteristics, we now consider a
typical solution of the standard BL mean-field dynamo as
calculated by STELEM. Figure 14 presents the time evolution
of the resulting magnetic field patterns and is thus analogous
to the standard solar butterfly diagram. Performing a Legendre
transform on the magnetic field reveals the degrees � of the
dominant axisymmetric modes. Figure 15 illustrates that the
odd � modes from the primary family dominate over the even
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Figure 15. Time evolution of the coefficients of the lowest-order harmonic
functions of the surface magnetic field (as grouped by primary and secondary
families) from the same BL dynamo model as shown in Figure 14. In panel (a)
are shown the evolution of the first several primary-family coefficients B0

� with
� =1, 3, 5, and 7 in black, blue, green, and red, respectively. In panel (b) are
shown the evolution of the secondary-family coefficients B0

� with � =2, 4, 6, and
8, respectively, in black, blue, green, and red. Panels (c) and (d) show zoomed-in
sections of panels (a) and (b).

(A color version of this figure is available in the online journal.)

ones by about 5 orders of magnitude in this model. This differs
significantly from what is observed on the Sun, where the
amplitude of the quadrupole is measured to be about 25% of
the dipole amplitude for most of the time, becoming dominant
only during reversals (cf., Figure 4(c)). The behavior of the
standard BL model of Figure 15 arises because of the symmetry
characteristics of the BL dynamo equations. Because the model
was initialized with a dipolar field, no modes from the secondary
family are excited in the standard BL model shown in Figure 15
because no coupling exists between the primary and secondary
families.

If instead the calculation were initialized with a quadrupolar
field (belonging to the secondary family), we find that the system
eventually transitions to a state in which the primary-family
modes predominate, as shown in Figure 16. The growth of the
primary-family modes is due to the presence of a very weak
dipole (likely of numerical origin) at the onset of the simulations.
In these models, the BL source term of Equation (A8) quenches
the growth of the magnetic field once a certain threshold is
passed, and as a result the maximum total amplitude of the
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Figure 16. Time evolution of the same BL model as shown Figure 15 (and using
the same color scheme), but initialized with a quadrupolar magnetic field.

(A color version of this figure is available in the online journal.)

magnetic field is capped. The reason why the primary-family
modes are preferred stems from the fact that the thresholds for
dynamo action (based on the parameter Cs in Equation (A4))
are found empirically to be lower for the dipole than for the
quadrupole (Cs ∼ 6.12 versus Cs ∼ 6.25), meaning the dipole-
like modes have a higher growth rate than the quadrupole-like
modes. In this model, only briefly during the transition phase
does the model possess a quadrupole of order 25% of the dipole,
as in the Sun.

Observations of solar photospheric fields, however, indicate
that the Sun excites both families and does not strongly favor
members of one family over the other, a situation that has ap-
parently existed over many centuries. Even during the Maunder
minimum, evidence suggests that this interval may have been
dominated by a hemispherical dynamo with magnetic activity
located primarily in the southern hemisphere (Ribes & Nesme-
Ribes 1993), which can only be formed by a state in which
primary- and secondary-family modes possess nearly equal am-
plitudes (Tobias 1997; Gallet & Pétrélis 2009). Consequently,
the solutions presented in Figures 15 and 16, in which modes
from only one family are preferred, are thus not a satisfactory
model of the Sun.
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Figure 17. Time evolution of the same BL model as shown in Figure 15 (and
using the same color scheme), but with an asymmetric BL source term as
implemented in Equation (A9) by setting ε = 10−3.

(A color version of this figure is available in the online journal.)

As advocated by Roberts & Stix (1972) and Gubbins &
Zhang (1993) following their symmetry-based study of the
solar dynamo and the induction equation, and more recently by
Nishikawa & Kusano (2008) in their geodynamo simulations,
a north–south asymmetry of the flow field specified in the BL
dynamo, or alternatively an asymmetric poloidal-field source
term, may allow the coexistence of both the primary and
secondary families. To investigate this effect we have performed
two additional BL dynamo calculations, one with a BL source
term and one with a meridional circulation that each generate
both symmetric and antisymmetric fields (introduced via the
parameter ε of Equations (A9) and (A13) of Appendix A.1),
the combination of which yields asymmetric magnetic field
patterns.

We have run several dynamo cases, with the antisymmetry
arising either in the BL source term or in the meridional flow
profile, and with a range of amplitudes for the ε parameter from
10−4 to 10−1. All cases were initialized with a dipolar field.
We find that when ε is about 10−3, the modes in secondary
family grow until they reach about 35% of the dominant dipolar
mode, as illustrated in Figures 17 and 18. This result holds true
regardless of whether the antisymmetry is introduced in the BL
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Figure 18. Time evolution of the same BL model as shown in Figure 15 (and
using the same color scheme), but with an asymmetric meridional flow profile
as implemented in Equation (A13) by setting ε = 10−3.

(A color version of this figure is available in the online journal.)

source term or in the meridional circulation profile, with very
little difference in the resulting mode amplitudes. As expected,
using a smaller ε results in solutions where the primary-family
modes dominate, while using a larger ε yields a state where the
secondary-family modes are comparable to the primary-family
modes. Such results may indicate that the Sun need only possess
a weak degree of north–south asymmetry in order to behave as
it does.

5. CONCLUSIONS

Cycles of magnetic activity in many astrophysical bodies,
including the Sun, Earth, and other stars, are thought to be
excited by nonlinear interactions occurring in their interiors. Yet
in some cases, such as the Sun, the cycles have approximately
regular periods and in others, such as the Earth, there is no
apparent periodicity. Dynamo theory indicates that such a range
of behaviors is expected, and whether the cycles are regular
depends on magnetohydrodynamic parameters that characterize
the system, including fluid and magnetic Reynolds and Rayleigh
numbers. As a consequence, the large-scale appearance of the
magnetic field may provide clues toward the type of dynamo
that may be operating.

In this article, long-term measurements of the solar photo-
spheric magnetic field are utilized to characterize the waves of
dynamo activity that exist within the interior of the Sun. Synop-
tic maps from WSO (dating back to 1976) and MDI (spanning
1995–2010) are used to determine the spherical harmonic coef-
ficients of the surface magnetic field for the past three sunspot
cycles. We focus on the apparent interactions between various
low-order modes throughout the past three sunspot cycles and
interpret these trends in the context of dynamo theory.

The multipolar expansions of the solar field as deduced from
WSO and MDI data indicate that the axial and equatorial dipole
modes are out of phase. During activity minima, the dipole
component of the solar field is generally aligned with the axis of
solar rotation, while the quadrupole component is much weaker.
During activity maxima, the dipole reverses its polarity with
respect to the rotation axis, and throughout the reversal process
there is more energy in quadrupolar modes than in dipole modes.
During the past three cycles, these reversals have taken place
over a time interval of about 2–3 years on average. More indirect
measures of solar activity, such as the SSN and proxies of the
heliospheric field, seem to indicate that such regular activity
cycles have persisted for at least hundreds of years with a period
of approximately 11 years. The most recently completed solar
cycle (Cycle 23) lasted for about 13 years and while unusual, is
not unprecedented. We note in passing that such modulations of
the solar dynamo may be interpreted as a type of nonlinear
interaction between the turbulent alpha effect and the field
and/or flows (Tobias 2002).

The harmonic modes can also be grouped into primary and
secondary families, a distinction that depends on the north–south
symmetry of the various modes. For example, the axial dipole
harmonic is antisymmetric and is a member of the primary
family. Alternatively, the equatorial dipole and axial quadrupole
modes are both symmetric with respect to the equator and
thus are grouped together in the secondary family. When the
evolution of the mode coefficients are analyzed in this way, we
find that there is a trend for members of the same family to
possess the same phasing, suggesting that modes in the same
family are either excited together and/or are more coupled when
compared with modes of different families. This coupling is
noticeable during reversals of the solar dipole, as less energy
is present in primary-family modes than in secondary-family
modes during these intervals.

The historical record indicates that the geodynamo also
undergoes reversals of its dipole axis (with respect to the rotation
axis), but these reversals occur much more irregularly than in
the solar case. Additionally, the dipole axis of the terrestrial
magnetic field occasionally makes excursions away from the
axis of rotation of the Earth, only to later return without actually
reversing. An examination of the large-scale harmonic modes
of the geomagnetic field during these intervals indicates that the
energy contained in secondary-family modes was significantly
smaller during excursions than during reversals. A strong
quadrupole during geodynamo reversals is in line with the solar
behavior; there is no parallel with excursions as excursions in
the solar case have not been observed. Analogous behavior is
observed to occur in the VKS laboratory dynamo with respect
to the relative strengths of the primary and secondary families.

We also examined the coupling of the mode families using a
BL mean-field dynamo model computed using the STELEM
code. Because of the symmetries in the magnetic induction
and in the assumed profiles of the large-scale flow fields and
BL source term, we find that the standard mean-field solar
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dynamo model results in a state containing largely members
of the primary family. This is a result of the dipole (a primary-
family mode) being more unstable to dynamo action than the
quadrupole. With a modest amount of asymmetry, implemented
here either in the meridional flow profile or in the BL source
term, we find from the models that both the primary and
secondary families can coexist in the same model and in the
same proportions as in the solar dynamo. This can lead to a
small lag between the northern and southern hemispheres as is
actually observed on the Sun (Dikpati et al. 2007).
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APPENDIX

MEAN-FIELD DYNAMO FORMALISM

In this Appendix, we provide details regarding the BL mean-
field dynamo models discussed in Section 4.2. The pertinent
equations are listed in Appendix A.1 and their symmetry
properties are discussed in Appendix A.2.

A.1. Mean-field Equations

Here, we briefly list the equations governing the axisymmetric
mean-field dynamo models calculated in Section 4.2. A more
detailed explanation can be found in, e.g., Jouve et al. (2008).
Following Moffatt (1978), the mean-field induction equation is

∂〈B〉
∂t

= ∇ × (〈V 〉 × 〈B〉)
+ ∇ × 〈v′ × b′〉 − ∇ × (η∇ × 〈B〉) , (A1)

where the variables 〈B〉 and 〈V 〉 refer to the mean parts of the
magnetic and velocity fields, and v′ and b′ to their respective
fluctuating components. The function η is the magnetic diffu-
sivity and is not necessarily a constant. The terms “mean” and
“fluctuating” refer to the fact that a separation of scales has been
performed, such that the mean quantities are computed by av-
eraging over some appropriate intermediate size scale and the
fluctuating quantities are the residuals.

Working in spherical coordinates (r, θ, φ) and under the
assumption of axisymmetry, we perform a poloidal–toroidal
decomposition and write the mean magnetic field B and mean
velocity field V (for clarity the angle brackets 〈 and 〉 are omitted
going forward) as

B(r, θ, t) = ∇ × (Aφ êφ) + Bφ êφ (A2)

V (r, θ ) = v p + Ω r sin θ êφ, (A3)

where the poloidal stream function Aφ(r, θ, t) and toroidal field
Bφ(r, θ, t) are used to generate B. The velocity field is time-
independent and is prescribed by profiles for the meridional
circulation v p(r, θ ) and differential rotation Ω(r, θ ).

Rewriting the mean induction Equation (A1) in terms of Aφ

and Bφ , we arrive at two coupled partial differential equations
for Aφ and Bφ ,

∂Aφ

∂t
= η

ηt

(
∇2 − 1

� 2

)
Aφ − Re

v p

�
· ∇(�Aφ) + CsS

(A4)

∂Bφ

∂t
= η

ηt

(
∇2 − 1

� 2

)
Bφ +

1

�

∂(�Bφ)

∂r

∂(η/ηt )

∂r

− Re�v p · ∇
(

Bφ

�

)
− ReBφ∇ · v p

+ CΩ� [∇ × (Aφ êφ)] · ∇Ω, (A5)

where � = r sin θ . The contribution to the transport term in the
mean induction Equation (A1) that arises from the fluctuating
fields, namely, the ∇ × 〈v′ × b′〉 term, is present in the Aφ

equation above and in general is assumed to take a specific form
in terms of the mean magnetic field (cf., Babcock 1961; Leighton
1969; Wang & Sheeley 1991; Dikpati & Charbonneau 1999;
Jouve & Brun 2007). Here, we use a surface BL term S(r, θ, Bφ)
for this purpose which serves to generate new poloidal field.

Additionally, Equations (A4) and (A5) have been nondimen-
sionalized by using R� as the characteristic length scale and
R2

�/ηt as the characteristic timescale, where ηt = 1011 cm2 s−1

is representative of the turbulent magnetic diffusivity in the
convective zone. This rescaling leads to the appearance of
three dimensionless control parameters CΩ = Ω0R

2
�/ηt , Cs =

s0R�/ηt , and the Reynolds number Re = v0R�/ηt , where Ω0,
s0, and v0 are, respectively, the rotation rate and the typical
amplitude of the surface source term and of the meridional flow.

Equations (A4) and (A5) are solved with the STELEM
(T. Emonet & P. Charbonneau 1998, private communication)
code (see Appendix A of Jouve & Brun 2007 for more details)
in an annular meridional plane with the colatitude θ ∈ [0, π ]
and the dimensionless radius r ∈ [0.6, 1], i.e., from slightly
below the tachocline (r ≈ 0.7) up to the solar surface R�.
The STELEM code has been thoroughly tested and validated
via an international mean-field dynamo benchmarking process
involving eight different codes (Jouve et al. 2008). At the
latitudinal boundaries at θ = 0 and θ = π , and at the lower
radial boundary at r = 0.6, both Aφ and Bφ vanish. At the
upper radial boundary at r = 1, the solution is matched
to an external potential field. Usual initial conditions involve
setting a confined dipolar field configuration, i.e., Aφ is set to
(sin θ )/r2 in the convective zone and to 0 below the tachocline.
To create the simulation shown in Figure 16, the simulation
was initialized using a quadrupolar configuration with an Aφ of
(3 cos θ sin θ )/(2r3) in the convection zone. In both cases, the
toroidal field is initialized to 0 everywhere.

The rotation profile used in the series of models discussed
in this work captures many aspects of the true solar angular
velocity profile, such as deduced from helioseismic inversions
(Thompson et al. 2003). We thus assume solid-body rotation
below r = 0.66 and a differential rotation above this tachocline
interface as given by the following rotation profile:

Ω(r, θ ) = Ωc +
1

2

[
1 + erf

(
2(r − rc)

d1

)]
× (Ωeq + a2 cos2 θ + a4 cos4 θ − Ωc). (A6)

The parameters Ωeq = 1, Ωc = 0.93944, rc = 0.7, d1 = 0.05,
a2 = −0.136076, and a4 = −0.145713. With this profile for Ω,
the radial shear is maximal at the tachocline.
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We assume that the diffusivity in the envelope η is dominated
by its turbulent contribution, whereas in the stable interior
ηc � ηt . We smoothly match the two different constant
values with an error function which enables us to continuously
transition from ηc to ηt ,

η(r) = ηc +
(ηt − ηc)

2

[
1 + erf

(
r − rc

d

)]
, (A7)

with ηc = 109 cm2 s−1 and d = 0.03.
In BL flux-transport dynamo models, the poloidal field owes

its origin to the tilt of magnetic loops emerging at the solar
surface. Thus, the source has to be confined to a thin layer just
below the surface and since the process is fundamentally non-
local, the source term depends on the variation of Bφ at the base
of the convection zone. We use the following expression (which
is a slightly modified version of that used in Jouve & Brun 2007)
in order to better confine the activity belt to low latitudes:

S(r, θ, Bφ) = 1

2

[
1 + erf

(
r − r2

d2

)] [
1 − erf

(
r − 1

d2

)]

×
[

1 +

(
Bφ(rc, θ, t)

B0

)2
]−1

× cos θ sin3 θ Bφ(rc, θ, t), (A8)

where r2 = 0.95, d2 = 0.01, and B0 = 105 G. In the particular
case of an imposed asymmetry between the north and southern
hemisphere (Figure 17) we introduce a modified source term,
modulated by the parameter ε, as follows:

Sasym(r, θ, Bφ) = 1

2

[
1 + erf

(
r − r2

d2

)] [
1 − erf

(
r − 1

d2

)]

×
[

1 +

(
Bφ(rc, θ, t)

B0

)2
]−1

× (cos θ + ε sin θ ) sin3 θ Bφ(rc, θ, t). (A9)

In BL flux-transport dynamo models, meridional circulation
is used to link the two sources of the magnetic field, namely, the
base of the convection zone (where toroidal field is created via
the latitudinal shear) and the solar surface (where poloidal field
is introduced via the BL source term). In the series of models
discussed in this paper, the meridional circulation is equatorially
symmetric, having one large single cell per hemisphere. Flows
are directed poleward at the surface and equatorward at depth (as
in the Sun), vanishing at the bottom boundary at r = 0.6. The
equatorward branch penetrates slightly beneath the tachocline.
To model the single cell meridional circulation, we consider
a stream function with the following expression (Jouve et al.
2008):

ψ(r, θ ) = −2(r − rb)2

π (1 − rb)
sin

(
π (r − rb)

1 − rb

)
cos θ sin θ, (A10)

which gives, through the relation v p = ∇×(ψ êφ), the following
components of the meridional flow,

vr = −2(1 − rb)

πr

(r − rb)2

(1 − rb)2
sin

(
π (r − rb)

1 − rb

)
(3 cos2 θ − 1)

(A11)

vθ =
[

3r − rb

1 − rb

sin

(
π (r − rb)

1 − rb

)
+

rπ

1 − rb

(r − rb)

(1 − rb)

× cos

(
π (r − rb)

1 − rb

)]
2(1 − rb)

πr

(r − rb)

(1 − rb)
cos θ sin θ,

(A12)

with rb = 0.6.
To introduce asymmetry into the model, an alternative to using

the asymmetric source term of Equation (A9) is to introduce an
asymmetry into the meridional flow profile. Such an asymmetric
meridional flow profile can be constructed using the following
stream function:

ψasym(r, θ ) = − 2(r − rb)2

π (1 − rb)
sin

(
π (r − rb)

1 − rb

)
× (cos θ + ε sin θ ) sin θ, (A13)

which leads to the following components of the meridional flow,

vr,asym = − 2(1 − rb)

πr

(r − rb)2

(1 − rb)2
sin

(
π (r − rb)

1 − rb

)
× (3ε sin θ cos θ + 3 cos2 θ − 1) (A14)

vθ,asym =
[

3r − rb

1 − rb

sin

(
π (r − rb)

1 − rb

)
+

rπ

1 − rb

(r − rb)

(1 − rb)

× cos

(
π (r − rb)

1 − rb

)]
2(1 − rb)

πr

(r − rb)

(1 − rb)
× (cos θ + ε sin θ ) sin θ, (A15)

again with rb = 0.6.

A.2. Symmetry Considerations

Following Gubbins & Zhang (1993) it is straightforward to
assess symmetry properties of various mathematical operators
and equations. We adopt the superscripts A and S to indicate
whether the scalars or vectors are antisymmetric or symmetric
across the equator, respectively. For example, products between
a scalar and a vector of the form aF = G, where a and F
are of like symmetry, yield a symmetric result (aS FS → GS

and aA FA → GS), whereas products between quantities of
differing symmetries are antisymmetric (aA FS → GA and
aS FA → GA). For the vector cross product F × G = H ,
when the two vectors F and G have the same symmetry
properties, the result will be antisymmetric (FS × GS → HA

and FA × GA → HA), while the cross product between two
vectors having opposing symmetries will yield a symmetric
result (FA × GS → HS). Additionally, the curl operator
reverses symmetry (∇×GA → HS and ∇×GS → HA), while
the Laplacian operator preserves symmetry (∇2 FS → HS and
∇2 FA → HA).

With these properties established, the analysis of the symme-
try properties of the magnetic induction equation,

∂ B
∂t

= ∇ × (V × B) + η∇2 B, (A16)

follows in a straightforward manner. For cases possessing a sym-
metric velocity field V S with respect to the equator, both terms
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on the right-hand side of Equation (A16) preserve the symmetry
of B. Thus, a dynamo having only a symmetric field BS will re-
main symmetric over time, since both the transport term and the
diffusion term of Equation (A16) generate symmetric field only.
Likewise, a dynamo possessing an antisymmetric field BA will
preserve its antisymmetry over time. Because Equation (A16)
is linear in B, it follows that a magnetic field possessing mixed
symmetry in the midst of a symmetric velocity field can be
considered to be operating two independent, noninteracting dy-
namos: one that is symmetric and one that is antisymmetric.

However, in cases with an antisymmetric velocity field V A,
the transport term on the right-hand side of Equation (A16) pro-
vides a mechanism by which the symmetric and antisymmetric
modes of B can couple. This coupling arises because an initially
symmetric field BS will first generate an antisymmetric field that
in turn leads to the presence of both antisymmetric and symmet-
ric fields, according to the right-hand side of Equation (A16).
Analogously, initializing with a purely antisymmetric field BA

will generate fields of mixed symmetry over time.
This analysis procedure can further be applied to the

mean-field induction equation. For example, an analysis of
Equation (A1) with an α–ω dynamo (i.e., where

〈
v′ × b′〉 is

set to α 〈B〉),
∂〈B〉
∂t

= ∇ × (〈V 〉 × 〈B〉 + α 〈B〉) − η∇2 (〈B〉) (A17)

indicates that, for an assumed symmetric mean velocity field
〈V 〉S and an antisymmetric alpha effect αA (which is the natural
outcome of helical turbulence in a rotating fluid), such a mean-
field dynamo will preserve the symmetry (or antisymmetry)
of the initial fields. Hence, as pointed out by Roberts & Stix
(1972) and McFadden et al. (1991), a symmetric mean velocity
field and an antisymmetric alpha effect do not couple magnetic
field modes belonging to different families. Alternatively, if
instead an antisymmetric mean flow 〈V 〉A or a symmetric alpha
effect αS are considered, this now enables a coupling between
symmetric and antisymmetric mean fields.

In a similar vein, the BL Equations (A4) and (A5), which are
determined by performing the poloidal–toroidal decomposition
on Equation (A17), can also be analyzed for symmetry. It
is important to note that, by Equation (A2), the poloidal
stream function 〈Aφ〉 has a symmetry opposite to that of the
mean magnetic field 〈B〉 it generates (and thus also to the
corresponding toroidal field 〈Bφ〉). We established above that
the diffusion term in the mean-field Equation (A17) preserves
the symmetry of 〈B〉, and so it follows that the corresponding
diffusion terms in the BL dynamo Equations (A4) and (A5)
will serve to preserve the symmetries Aφ and Bφ . Likewise,
because the large-scale transport term ∇ × (〈V 〉 × 〈B〉) term
in Equation (A17) preserves the symmetry of 〈B〉 whenever
〈V 〉 is symmetric, it follows that the analogous terms in the
Equations (A4) and (A5) also preserve the symmetry of the
system as long as the imposed velocity field is symmetric. For
the BL dynamo considered here, an antisymmetric poloidal
velocity stream function ψA, as in Equation (A10), yields a
symmetric meridional flow profile v p

S , since v p = ∇ × (ψ êφ),
which in turn gives a symmetric mean velocity 〈V 〉S from
Equation (A3). Therefore, the imposed velocity field as defined
by Equations (A3) and (A10) will preserve the symmetries of Aφ

and Bφ . Lastly, the source term S as defined by Equation (A8)
also preserves the symmetry of Aφ , since it is comprised
of a series of symmetric coefficients multiplied by cos θ Bφ .
Therefore, an antisymmetric toroidal field implies a symmetric

source term that in turn serves to preserve the symmetry of Aφ

(and thus 〈B〉), and the same is true when the toroidal field is
symmetric.

For these reasons, the dynamo whose characteristics are
illustrated in Figure 15, which was initialized with a dipolar
field (which is antisymmetric), preserves its antisymmetry
with time since all of the terms in Equations (A4) and (A5)
preserve the initial symmetry. Indeed, the amplitude of the
secondary-family modes (which are symmetric) remain low
in this model, as shown in Figures 15(b) and (d). In the
dynamos whose characteristics are displayed in Figures 17 or 18,
this effect is responsible for the growth of symmetric mean
fields, even though both models were initialized with the same
antisymmetric mean magnetic field.

It is therefore a direct outcome of symmetry considerations
that in standard mean-field dynamo models, either one or the
other families of magnetic fields is excited. In the experiments
discussed earlier in Section 4.2, we controlled the degree to
which the symmetries were mixed via the parameter ε in
Equation (A9) and in Equations (A14) and (A15), which led
to the dynamos illustrated in Figures 17 or 18, respectively.
In both cases, ε was chosen to yield a dynamo where the end
state contained secondary-family amplitudes of about 25%, as
is observed on the Sun; other choices of ε will lead to end states
with different ratios.
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Pétrélis, F., & Fauve, S. 2008, J. Phys.: Condens. Matter, 20, 4203
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