
Todd Davidson- University of Texas at Austin
Todd Davidson
- University of Texas at Austin
About
20
Publications
6,431
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
740
Citations
Current institution
Publications
Publications (20)
This work shares a model that was developed to compare the energy requirements of meal-kit delivery systems to conventional grocery shopping. Meal-kit services can reduce food waste because the kits pre-portion ingredients for each recipe, thereby saving energy. However, the supply chain and packaging requirements of meal-kit delivery are different...
This work developed two methods to investigate the technical and economic potential of hydrogen demand and production: (1) estimating potential hydrogen demand for light-duty vehicles (LDVs) at the county-level using a first-order engineering model, and (2) quantifying temporal renewable hydrogen production from wind energy using a linear programmi...
Hydrogen as an energy carrier allows the decarbonization of transport, industry, and space heating as well as storage for intermittent renewable energy. The objective of this paper is to assess the future engineering potential for hydrogen and provide insight to areas of research to help lower economic barriers for hydrogen adoption. This assessmen...
Water is essential to human health and economic development due to its utilization in sanitation, agriculture, and energy. Supplying water to an expanding world population requires simultaneous consideration of multiple societal sectors competing for limited resources. Water conservation, supply augmentation, distribution, and treatment of contamin...
Wind and solar energy can potentially be used to power desalination facilities to sustainably meet growing water demands with a smaller carbon footprint than conventional approaches. This work presents a detailed method for assessing the technical and economic viability of using these renewable forms of energy to power desalination facilities. The...
Purpose of Review
In this study, we compile and curate data from 2012, 2013, and 2014 on flared gas and generated wastewater associated with hydraulic fracturing operations in seven major shale regions of the USA. In the process, we provide an historical perspective of the management practices of flared gas and wastewater prior to the decline in oi...
This paper assesses the environmental impacts of the average American's diet and food loss and waste (FLW) habits through an analysis of energy, water, land, and fertilizer requirements (inputs) and greenhouse gas (GHG) emissions (outputs). We synthesized existing datasets to determine the ramifications of the typical American adult's food habits,...
Hydrocarbon fuel production and utilization are considered water intensive processes due to the high volumes of water used in source development and fuel processing. At the same time, there is significant water formed during combustion. However, this water is not currently widely harvested at the site of production. Instead, it is added to the hydr...
This article explains the need for producing synthetic fuels in support of making a clean and reliable energy system. This production process is expected to solve several problems at once: stabilizing intermittent electricity supply while creating renewable fuels for use in power generation, transportation, and industry. The large-scale introductio...
Recent droughts and heat waves have revealed the vulnerability of some power plants to effects from higher temperature intake water for cooling. In this evaluation, we develop a methodology for predicting whether power plants are at risk of violating thermal pollution limits. We begin by developing a regression model of average monthly intake tempe...
Thermal barrier coatings (TBC’s) see extensive use in high temperature gas turbines. However, little work has been done to experimentally characterize the combination of TBC and film cooling. The purpose of this study is to investigate the cooling performance of a thermally conducting turbine vane with a realistic film cooling trench geometry embed...
Little work has been done to understand the interconnected nature of film cooling and thermal barrier coatings (TBC’s) on protecting high temperature turbine components. With increasing demands for improved engine performance it is vital that a greater understanding of the thermal behavior of turbine components is achieved. The purpose of this stud...
Recent interest has been shown in using synthetic gaseous (syngas) fuels to power gas turbine engines. An important issue concerning these fuels is the potential for increased contaminate deposition that can inhibit cooling designs and expedite the material degradation of vital turbine components. The purpose of this study was to provide a detailed...
This study investigated the interaction of thermal barrier coatings (TBC) and various film cooling configurations to provide a detailed assessment of the thermal protection on a first stage turbine vane. The internally cooled, scaled-up turbine vane used for this study was designed to properly model the conjugate heat transfer effects found in a re...
Turbine component film cooling is most effective when using a continuous slot to introduce coolant to the surface. However, this is not practical due to the structural weakness that would be inherent with a continuous slot. In this study, several slot-like designs are investigated to establish the film cooling effectiveness. These slot configuratio...
The effects on film cooling performance due to the use of angled slots with impinging cylindrical holes were studied on the suction side of a scaled-up turbine vane. Various configurations were explored to fully characterize the effects of varying the depth of the slot and the pitch between the impinging feed holes within the slot. Experiments were...