
Copyright © 2009 by the Association for Computing Machinery, Inc. 
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full 
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior 
specific permission and/or a fee. Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org. 
Sketch-Based Interfaces and Modeling 2009, New Orleans, LA, August 1–2, 2009.  
© 2009 ACM 978-1-60558-602-1/09/0008 $10.00 

EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)
C. Grimm and J. J. LaViola Jr. (Editors)

A Sketch-based Interface for Photo Pop-up

J. Ventura,1 S. DiVerdi2 and T. Höllerer1

1Department of Computer Science, University of California, Santa Barbara
2Adobe Systems, Inc.

Abstract
We present sketch-based tools for single-view modeling which allow for quick 3D mark-up of a photograph. With
our interface, detailed 3D models can be produced quickly and easily. After establishing the background geometry,
foreground objects can be cut out using our novel sketch-based segmentation tools. These tools make use of the
stroke speed and length to help determine the user’s intentions. Depth detail is added to the scene by drawing
occlusion edges. Such edges play an important part in human scene understanding, and thus provide an intuitive
form of input to the modeling system. Initial results and evaluation show that our methods produce good 3D
results in a short amount of time and with little user effort, demonstrating the usefulness of an intelligent sketching
interface for this application domain.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Object Modeling—
Implicit surfaces I.3.6 [Computer Graphics]: Techniques—Sketch-based interfaces I.4.6 [Image Processing]:
Segmentation—Hierarchical segmentation

1. Introduction

The advent of digital photography has led to an explosion of
personal photograph collections. Websites such as Flickr and
Facebook allow for easy sharing of photographs with family
and friends. They also provide tools to annotate photographs
with extra information such as a caption, keywords, names of
people and their place in the photograph, and tagged objects
of interest.

Although much progress has been made in adding se-
mantic information to digital photographs, they remain two-
dimensional images which are generally viewed in the same
way as the always have been. If we can recover the depths in
an image, we can treat the photograph as a 3D scene. This
effect has been described as “photo pop-up” because it is
similar to creating a pop-up book out of a picture [HEH05].
This makes for a new kind of viewing experience where
the depth in an image can be perceived, for example using
stereoscopic or head-tracked rendering. Depth information is
also useful for image-editing operations, as has been shown
before [OCDD01]. 3D movies are also starting to make a
comeback, and many movie theaters are adding stereo pro-
jection technologies. The depth-enhanced image may be-
come a more commonplace form of media in the near future.

However, unless specialized equipment such as a stereo
camera or a laser scanner has been used to record depth
information at the time of image capture, existing images
have no depth information. We need interaction techniques
for adding this depth information easily and quickly, given
the great abundance of imagery in existence today.

Existing 3D modeling solutions require too much user ef-
fort to produce results, and have a steep learning curve. We
envision an interface which is simple enough to be embed-
ded into photo sharing websites such as those mentioned
above, for quick 3D markup of photographs by novice users.
Although automatic methods are being developed to turn 2D
images into 3D models, they cannot handle a wide range of
images, including many of the kinds of images commonly
found in personal photo collections.

In this paper we explore a sketch-based interface for
adding depth information to an image. We feel a sketch-
ing interface is appropriate to this task for several reasons.
Often we want to segment out organic shapes such as peo-
ple and trees, which can have a difficult contour to trace
manually. As an alternative, we introduce novel segmenta-
tion techniques which uses free-form strokes on the inte-
rior of foreground objects, taking advantage of the proper-
ties of pen-based input to improve the interface. We targeted



J. Ventura & S. DiVerdi & T. Höllerer / A Sketch-based Interface for Photo Pop-up

a system for producing visually compelling 3D photographs
rather than exactly accurate range images. Our sketch-based
interface for adding depth allows for easy interaction and en-
courages creativity, without requiring slow or overly precise
input.

Specifically, our contributions in this paper include
two sketch-based segmentation techniques with incremen-
tal feedback. These techniques make use of stroke proper-
ties to guide the segmentation, going beyond prior art which
uses only marked pixel sets to seed the segmentation. An-
other contribution is a depth refinement tool which lets users
draw depth edges rather than paint the depth at every pixel.
In a formative evaluation we observed participants using
these tools. Observed ease of use and feedback was positive
throughout, and specific suggestions indicate opportunities
for future work.

We discuss previous work in single-image modeling in
Section 2. The workflow of our interface begins with setting
up the background geometry, which is described in Section
3. Then foreground objects are selected for pop-up, using the
tools presented in Section 4. Depth detail can then be added
using the edge brush, described in Section 5. Finally the full
3D model is generated and rendered, as described in Section
6. We discuss our informal evaluation of our techniques in
Section 7, and present conclusions in Section 8.

Figure 1: A synthesized rendering of the photograph in Fig-
ure 5 from a novel viewpoint. This model was made in forty-
five seconds using our techniques. Afterwards, hole filling
was used behind the elephant’s trunk [Vis09].

2. Related Work

Early user interface work for 3D modeling from images used
simple tools, but relied on complex external data sources.
The Tour into the Picture system by Horry, Arai and Anjyo
introduced a diorama-like interface for images with single-
point perspective and flat foreground objects [HAA97].
Foreground masks for pop-up layers have to be created exter-
nally and imported along with the image. Around the same
time, Debevec, Taylor and Malik created the Façade sys-
tem for image-based modeling. With this program, users can
register familiar geometric primitives to the input images to
build up a 3D model. However, the system relies on a large
amount of images from varying viewpoints to reconstruct the
complete structure.

Later, Oh et al. introduced an interface for single-view
modeling which can produce more detailed scenes than Tour
into the Picture [OCDD01]. This interface is similar to a
paint program for depth. They include a color-to-depth tool
which is useful when the source of light is close to the cam-
era (the dark-is-deep assumption). They also include a level
set method to specify objects that generally bulge in the mid-
dle, and a specialized tool for faces. However, their system
is not made for quick interaction. They report spending thir-
teen hours on a single picture, with ten of those hours spent
on separating out the layers in the image. Similarly, mesh-
based modeling systems such as that of Zhang et al. or Joshi
and Carr can be used to create a complex mesh from a pho-
tograph [ZDPSS01, JC08]. These interfaces involve setting
detailed constraint lines around and inside of objects, and
are not exactly suited to the pop-up scenario. Zhang et al. re-
port taking up to 1.5 hours on a single image. In our work we
present an interface for single-view modeling which only re-
quires a few minutes of interaction for acceptable results, by
making use of both sketch-based input and image features.

There also has been work in automatic systems for es-
timating the 3D scene in a photograph [HEH05, SSN09].
These systems have a low success rate on images with
prominent foreground objects such as people, and also fail
on uncommon images. The task of correctly identifying and
segmenting foreground objects is still outside the realm of
automatic methods. The LabelMe project provides a web in-
terface where users are asked to specify polygons around ob-
jects in images and supply tags for each object [RTMF08].
This database is being used to improve automatic object
segmentation and recognition systems. The authors of La-
belMe have also developed a set of heuristics to infer the 3D
scene from these polygons, without explicit 3D input from
the user [RT09]. However, the output doesn’t have the same
depth detail as can be achieved with some level of user in-
teraction.

Many image segmentation techniques require users to
draw curves inside and outside of the target object [RKB04,
LSTS04]. Then, a global integration technique such as graph
cut [BJ01] is employed to integrate the user input with the

22



J. Ventura & S. DiVerdi & T. Höllerer / A Sketch-based Interface for Photo Pop-up

image information and choose a boundary for the object.
Even more automatic techniques, such as GrabCut, require
the user to add foreground and background strokes when the
initial segmentation is incorrect [RKB04]. The recent work
of Olsen Jr. and Harris on edge-aware brushes provides a
good comparison of such techniques and an explanation of
their weaknesses [OH08]. In this work we explore using
sketch-based techniques for image segmentation, and take
advantage of the properties of the stroke itself (such as length
and speed) to make image segmentation more controllable.

In our work we adapt recent developments in gradient-
domain image editing to create a tool for editing depth detail.
Thanks to the emergence of fast GPU hardware for parallel
processing, an image gradient can be integrated at real-time
rates [GWL∗03]. Recent work has exploited such a gradient-
domain solver to create novel color painting and image edit-
ing systems [MP08, OBW∗08]. Our contribution is in the
adaptation of a gradient-domain solver to sketch-based 3D
object modeling.

3. Specifying background

Most pictures can be divided into background and fore-
ground, where the background has a simple geometry con-
sisting of planes. In single-point perspective, dominant lines
converge to a vanishing point lying on the horizon (vanishing
line). In two-point perspective, two sets of dominant lines
converge to separate vanishing points on the horizon. Previ-
ous systems have realized the usefulness of these geometric
primitives for scene modeling [HAA97,KPAS01]. By either
specifying the vanishing point, sets of converging lines, or
the vanishing line itself, we can estimate the pitch and roll of
the camera with respect to the ground plane. The other piece
of information needed is the camera’s focal length, which
can be provided either by EXIF tags or manual input.

For our interface the height horizon is set by single click
on the image. We assume a flat horizon (no camera roll)
which is in the field of view of the camera. Other cases are
easily handled, but this was sufficient for our experiments.
Kang’s paper gives details on how to determine the back-
ground geometry once the horizon is set [KPAS01]. Once
we have the ground plane, the depth of objects which are
resting on the ground is easily determined by their point of
contact with the ground in the image. We leave out of con-
sideration pictures where this point of contact is not visi-
ble; for these, the depth would have to estimated by dead
reckoning or other means. We assume an object touches the
ground at its lowest contour point; alternately we could have
the user draw the line of contact as has been previously im-
plemented [OCDD01].

4. Labeling foreground objects

After the background geometry has been specified, the next
step is to label foreground objects which will be given depth

Figure 2: Image and segmentation pyramid. Small segments
in level zero (top left) are progressively joined together in
levels one (top right), two (bottom left), and three (bottom
right).

values based on their contact with the ground. Directly draw-
ing the contour of an object can be difficult, especially in the
case of organic forms. Instead, we created a image-based se-
lection tool for foreground objects. The user selects areas of
the image by drawing strokes inside and outside objects, and
uses properties of the stroke to control the selection.

As described in the following sections, this tool uses a pre-
segmentation of the image at several scales. Often the scale
parameter of a segmentation needs to be tuned for different
images, different objects in an image, or even different parts
of the same object. The advantage of a multi-scale segmen-
tation is that we can capture all of these different possible
segmentations, and then allow the user to guide the algo-
rithm in choosing the correct scale in different regions of the
image. Our sketch-based tools allow the user to collect to-
gether patches from different scales into a complete object
segmentation, in a quick and controllable manner.

23



J. Ventura & S. DiVerdi & T. Höllerer / A Sketch-based Interface for Photo Pop-up

Figure 3: Selection example. Here we are selecting a per-
son and starting with the face. This example uses the length-
based stroke method. As the stroke progresses, patches are
chosen from increasingly higher levels of the pyramid.

4.1. Scale-space segmentation pyramid

We use a graph-based, globally optimal segmentation
method [FH04]. The algorithm starts with one segment per
pixel, and iteratively joins neighbors with edge weight be-
low a threshold. A scale parameter k determines the strength
of boundaries between segments in relation to their similar-
ity. Increasing k allows lower contrast segments to be joined
together. We first set a small value of k0 = 40 and join all
possible segments. Then we increase k where ki = 4× ki−1
and, starting from the previous segmentation, join more seg-
ments as possible. This is repeated two more times to pro-
duce a four-level segmentation pyramid. Each segment in a
lower pyramid level is contained in a larger segment in a
higher level.

We generate the segmentation pyramid when the image is
loaded. Processing takes less than one second for a 512×
512 color image on a 2.16 GHz machine. Figure 2 shows
an example segmentation pyramid. The parameters of the
segmentation, such as the choice of k values and the number
of pyramid levels, could be changed depending on the image.
These issues will be discussed later in the evaluation section.

4.2. Two methods for object selection

To label a foreground object, the user needs to collect to-
gether appropriate patches from the segmentation pyramid.
We could allow for explicit selection of a segmentation scale,

but the scale may need to be changed in between every
stroke, or even during the stroke itself. Instead, we offer a
sketch-based interface for object selection, which uses prop-
erties of the stroke to determine an appropriate patch scale.

The basic assumption of our selection tools is that patches
under the stroke will be selected. These patches will be
added or removed from an object depending on the tool
mode. Intuitively, a longer stroke could be used to select
larger patches, and a shorter stroke for smaller patches. On
the other hand, we could argue that fast movements will be
used for larger patches, and slow movements for detailed
work. We implemented both ideas to compare them.

For the length-based stroke, a series of thresholds deter-
mines the patch scale. These thresholds are given in Table
4. Any patches in the chosen level touched by the stroke are
selected. As the user draws the stroke, the selection is re-
computed using the update stroke length and shown to the
user in a transparent overlay.

In early testing, we noticed that sometimes the user might
extend the stroke too far, and select either unwanted patches
or too high of a pyramid level. Because of this, we added
an “undo” operation to the length-based selection tool. The
stroke is shown in white as it is drawn. If the pen stroke
goes back on itself, we shorten and redraw the stroke, and
recalculate the selection. This helps to make the tool more
controllable, without requiring extra strokes to remove un-
wanted patches.

The speed-based stroke similarly uses thresholds to de-
termine the patch scale, given in Table 4. The speed is cal-
culated by averaging over five consecutive segments of a
stroke. Unlike the length-based stroke, we do not choose
one pyramid level for the entire stroke. Since speed can vary
across the stroke, we instead choose a level for each chain of
five stroke segments.

Level Stroke length (px) Stroke speed (px/s)
0 0 0
1 50 50
2 100 100
3 150 150

Figure 4: Thresholds for length-based and speed-based se-
lection stroke. For example, a length-based stroke at least 50
pixels long but shorter than 100 pixels will choose patches
from pyramid level one.

We expected that the length-based tool would lend itself
to making several strokes to complete the segmentation, first
starting with longer strokes for larger patches, and smaller
strokes for cleanup work. As an alternative, the speed-based
tool allows for fewer, longer strokes to select an entire ob-
ject. The stroke speed can be changed as needed to select
larger or smaller patches, without lifting the pen. We tested
these hypotheses in our informal evaluation, described in

24



J. Ventura & S. DiVerdi & T. Höllerer / A Sketch-based Interface for Photo Pop-up

Figure 5: Selection example. Here the speed-based stroke
was used to select the elephant. Afterwards, small strokes
can be used to select the missing patch on the leg, and re-
move the patch of background that was mistakenly selected.

Section 7. Figures 3, 5 and 6 illustrate the length-based and
speed-based tools in use.

4.3. Setting initial object depth

Separate objects are selected using differently colored labels
from a palette. Figure 6 shows a completed segmentation
where all objects have been labeled with different colors.
Once all of the objects have been cut out, we use each ob-
ject’s lowest point in the image as the point of contact with
the ground. The depth value is read from the OpenGL depth
buffer, and applied to the object. At this point, we have a
complete scene with ground, background, and pop-up ob-
jects. However, the objects are flat, which may not be ap-
propriate for most images. Section 5 describes our drawing
tools for adding depth detail to the initially flat layers.

5. Adding depth detail

Prior work in editing depth maps has used tools for di-
rectly specifying depth values [OCDD01]. However, hu-
mans are better at estimating relative depth than absolute
depth [WH05]. Also, occlusion edges (which delineate a
overlapping relationship between two surfaces) have been
hypothesized to be one of the fundamental components of vi-
sual scene understanding [Gib68]. This motivated us to cre-
ate a tool for marking occlusion edges on the image, where
the system solves for the resulting depth map. Unmarked ar-
eas are assumed to be smooth. The simplifying assumption
of a smoothness prior has the potential to make depth editing
faster and easier than painting depth on a surface directly.

In a depth map, an occlusion edge is a line where the
depth gradient is non-zero. In our system, the user traces
occlusion edges for each foreground object directly on the

Figure 6: Completed segmentation example. The strokes
used to segment the boy are shown. The green strokes added
patches to the selection and the red strokes removed patches.
The length-based technique was used here.

image. Intermediate values are then computed automatically
by the Poisson solver, which is described in the following
section. By specifying the depth gradient completely, we can
recover the entire depth map (up to an additive constant). Re-
cent gradient-domain painting systems have shown that the
gradient can be interactively edited and integrated in real-
time [OBW∗08, MP08].

5.1. Gradient-domain depth editing

The output of our depth detail tool is a per-pixel offset map
which is added to the depth map acquired from the estab-
lished background and foreground geometry. For the offset
map u, we maintain Gx and Gy, the x and y components of
the gradient of u. We can solve for u from Gx and Gy by
solving Poisson’s equation:

∇2u = f (1)

where f is the divergence of the gradient, computed by:

fi, j = Gx
i+1, j−Gy

i−1, j +Gy
i, j+1−Gy

i, j−1 (2)

We set f = 0 at the edges of the image (Neumann boundary
condition). Initially, f = 0 inside the image as well. Through
our sketch interface (described below), the values of Gx and
Gy can be set by the user for input to the solver.

We solve the Poisson equation using standard multigrid
methods implemented on the GPU. We achieve performance
of about 30 frames per second on a GeForce 8600M card,
sufficient for real-time interaction with the system. The Nu-
merical Recipes book gives a good explanation of the basics
of a multigrid solver for Poisson’s equation [PTVF07]. De-
tails on the GPU implementation can be found in McCann’s
paper [MP08].

25



J. Ventura & S. DiVerdi & T. Höllerer / A Sketch-based Interface for Photo Pop-up

5.2. The depth refinement tool

We developed an edge “brush” that specifies occlusion edges
by setting the gradient to non-zero values. The edge brush is
directional, so that by default the depth will decrease from
left to right across the stroke. This means that clockwise and
counterclockwise strokes have opposite effects. If the depth
change is in the wrong direction, a single click will flip the
sign of the gradient, so that the stroke will have the correct
effect. The magnitude of the depth change across the stroke
can be varied to create larger or smaller edges.

Example interactions on a face might be to give a con-
tour to the nose or bring out the chin from the neck. On the
front of a house, we may want to mark the windowsills or
the doorknob on a door. These edits are local to the object’s
surface, and represent relatively small changes in depth com-
pared to the background and foreground geometry specified
in earlier steps. Thus achieving the correct gradient magni-
tude along internal edges is usually not as important as it is
for the contour between foreground and background.

An interesting feature of the edge brush is it allows for
incremental edits to the depth map. Because we are setting
relative as opposed to absolute depth values, edges added
later in the process will properly affect areas edited earlier.
This behavior is illustrated in Figure 7, which shows a spiral
being drawn with the edge tool. As the stroke progresses, the
added layers of depth edges push the interior region of spiral
higher.

The incremental nature of this tool is useful when building
up a depth map. For example, in Figure 8 we show the edges
drawn on a picture of the buildings on a rocky slope. The
edges on the buildings serve to cut them out from the side
of the hill. However, the series of strokes on the rocks below
ensures that the hill is pushed back from the cliff.

Figure 7: Edge brush example. Lighter pixels are closer,
and the stroke is drawn in white. As the stroke spirals on
itself, the depth of the interior regions is progressively de-
creased.

Another important quality of the edge brush is that par-
tial occlusions in the interior of objects can be specified.
For example, the line between the arm and the torso can be
drawn, although at the shoulder the two surfaces are con-
nected. Thus the system will put the arm in front of the torso,
but will smoothly connect them at the shoulder. This is a nice
property that would be difficult to achieve without a system
for automatically interpolating depth values.

We also include an eraser which returns the gradients un-
der the stroke to zero, removing constraints set by the edge
brush.

Occlusion edges are only added to the area of the currently
selected object, which prevents edges from crossing the ob-
ject boundary. As occlusion edges are drawn on the image,
the display can be switched between the image and the offset
map. The offset map is tone mapped by adding a constant so
that the average display value is half of the maximum inten-
sity. Edge strokes are overlaid in white.

Figure 8: Edge strokes applied to a picture. The yellow
overlay shows the segmentation result. Note the composite
effect of the layered horizontal edges.

6. Meshing and rendering

After the segmentation and occlusion edges have been com-
pletely specified, we convert the depth map to a triangle strip
mesh. We use the TriMesh2 software library by Szymon
Rusinkiewicz, which is intended for meshing laser scanner
output [Rus09]. Neighboring pixels separated by a distance
greater than a threshold are not joined in the mesh. Each
pixel is assigned its corresponding color from the image. The
textured mesh model can be rendered from novel viewpoints
using any 3D model viewer. Refer to Figure 1 for an example
synthesized image.

7. Evaluation

We ran an informal evaluation to test the effectiveness of our
sketch interface for photo pop-up. We wanted to explore the
different options for the selection tool, and see which design
users preferred. We also wanted to test whether users would
understand the edge brush and how to use it to add depth
detail, and see what accuracy they would achieve.

We asked three participants to test the system with the im-
age shown in Figure 2. We used a small Wacom tablet for in-
put, with the eraser tip used for the erasing technique in both
the selection and depth edge mode. One participant was an
expert in sketch-based interfaces and had significant experi-
ence using a pen and tablet. For the other two participants,
this was their first time using a tablet, which they reported
made the interface slightly uncomfortable at first.

26



J. Ventura & S. DiVerdi & T. Höllerer / A Sketch-based Interface for Photo Pop-up

For each participant, first the general goals of the system
was explained and demonstrated. Then, before each brush
was used, the mechanics of the brush was explained and
demonstrated to the participant.

Participants were shown the length-based selection tool,
and asked to try segmenting out the boy in the picture with
it. With the length-based stroke, participants often reported
that too large of patches were being selected. One partici-
pant said that they did not expect such large patches to be
selected on this small of an image (512 pixels square). This
suggests that it might be useful to allow the parameters of the
segmentation pyramid to be adjusted according to the image.

However, large patches were being selected because par-
ticipants tended to want to draw one long stroke, rather than
many strokes of variable length, as was the original intention
of the brush. The natural mode of interaction seems to be to
not lift the pen for as long as possible, rather than to make
a small stroke and see what the effect is. The undo feature
is available with the length-based stroke, which allows the
stroke length to be reduced after drawing. However, once
the stroke path is resumed, large patches will again be se-
lected, which keeps users from making one long stroke to
select all the desired patches. This suggests that the length-
based stroke may be improved by resetting the segmentation
level back to the smallest scale when an undo is invoked, and
resetting the length counter to zero. In this the way the user
could continue selecting appropriate patches without having
to lift the pen.

As one participant noted, another issue with the length-
based stroke is that patches at the beginning of the stroke can
be affected by movement at the end of the stroke, since as the
stroke is lengthened, the entire selection is re-calculated. We
also observed that our participants did not make much use
of the undo feature. This may have been because the undo
could not be invoked once the pen has been lifted. It may
require more practice for participants to get used to this tool.

Next, the speed-basd selection tool was shown to par-
ticipants. The previous segmentation was cleared and users
were asked to again try selecting the same foreground ob-
ject. The concept of the speed-based stroke seemed to make
more sense to participants; in fact, one participant had inde-
pendently suggested the idea while using the length-based
tool. With this tool, users were able to hold the pen down
for a very long stroke. They tended to move slowly, try-
ing to get each region of the object perfectly as they went.
Rather than first selecting everything, and then going back
with the eraser, participants would stop and fix problems as
they occurred, which may have made the overall segmen-
tation time longer than it had to be, since they would re-
peatedly switch between selecting and deselecting patches.
However, this strategy may change after extended use of the
interface.

In our evaluation we found that the length-based stroke
made it easier for participants to understand and control

which level of the pyramid was being used for patch se-
lection. Generally the length of the stroke is easier to see
and control, as opposed to the speed. We tried to choose
speed thresholds which were appropriately far enough apart,
based on early experiments with the system. However, these
could be further tuned, or adjusted explicitly by the user. The
expert participant suggested visually displaying the stroke
speed, so that it is easier to predict which level will be used.

The visual feedback of the segmentation system also af-
fects performance. In our experiments we did not show the
user the segmentation pyramid while they were using the se-
lection tools. We only showed the current object labeling,
transparently overlaid on top of the image with each object
in a different color, and the current stroke line in white. It
may be beneficial for the patch edges to be visible. We no-
ticed that some time was spent by participants trying to find
the extent of patches in the segmentation, so that the correct
ones could be selected. This becomes an issue in areas with
edges that have too low contrast to be detected by the seg-
mentation algorithm, because the desired segmentation can-
not be achieved unless the parameters of the segmentation
are changed.

We also had participants try the edge brush on the same
image. They were told to draw in any important occlusion
edges, and to check the depth map to make sure the correct
gradients were being added. All of the participants under-
stood the idea of the brush, although the edges that were ac-
tually drawn varied among participants. Some tried to mark
all of the depth edges to make a very detailed image, and
others only put in the essential lines. This result is similar
to the segmentation study by Martin et al., where some par-
ticipants made very detailed segmentations, and others only
outlined the high level objects [MFTM01].

At first, participants would switch between the image and
the depth map to check if the gradient was in the correct di-
rection, and would click the pen to flip the edge if necessary.
However, after a while, all of the participants stopped check-
ing this and just drew on the image itself, which resulted in
many wrongly specified edges. This suggests that a less cum-
bersome interface would be useful for checking the result of
added depth edges. Also, participants had a hard time accu-
rately drawing depth edges directly on the contours of the
image. The inclusion of an edge snapping technique would
probably improve this interface, if it proved sufficiently ac-
curate.

8. Conclusions and future work

In this work we described an interface for creating 3D scenes
from photographs which is arguably faster and easier to
use than previous systems. We developed two novel sketch-
based object selection techniques which make intelligent use
of stroke properties, in conjunction with a hierarchical seg-
mentation obtained through iterative graph-based clustering.

27



J. Ventura & S. DiVerdi & T. Höllerer / A Sketch-based Interface for Photo Pop-up

We also developed an interface for adding depth detail which
allows drawing of depth edges, and solves for the resulting
surface.

Using our interface, visually compelling 3D models can
be created from a wide range of photographs. Interaction
time is usually under ten minutes, while simple scenes can
be constructed within a minute. Our interface occupies a
comfortable middle ground between complex systems that
require substantial user effort [OCDD01, ZDPSS01, JC08],
and semi-automated systems which lack the detailed control
necessary to arrive at satisfactory results [HEH05, RT09].

Our formative evaluation indicated the usefulness of these
techniques, and suggests several avenues of future work.
There are many possibilities to augment the visual feedback
of the system, for example by explicitly showing the seg-
mentation pyramid and the currently chosen patch scale. The
depth edge tool might also benefit from a different visual in-
terface, where the effect of strokes can be seen together with
the image itself. We would like to follow up our formative
evaluation with specific controlled experiments to gain more
insight into these issues.

Acknowledgments

This work was partially supported by NSF CAREER grant
IIS-0747520, and NSF IGERT grant DGE-0221713.

References
[BJ01] BOYKOV Y., JOLLY M.-P.: Interactive graph cuts for opti-

mal boundary & region segmentation of objects in n-d images. In
Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on (2001), vol. 1, pp. 105–112 vol.1.

[FH04] FELZENSZWALB P. F., HUTTENLOCHER D. P.: Efficient
graph-based image segmentation. Int. J. Comput. Vision 59, 2
(2004), 167–181.

[Gib68] GIBSON J. J.: The perception of surface layout: A classi-
fication of types. Unpublished “Purple Perils” essay, November
1968.

[GWL∗03] GOODNIGHT N., WOOLLEY C., LEWIN G., LUE-
BKE D., HUMPHREYS G.: A multigrid solver for boundary value
problems using programmable graphics hardware. In HWWS ’03:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware (Aire-la-Ville, Switzerland, Switzer-
land, 2003), Eurographics Association, pp. 102–111.

[HAA97] HORRY Y., ANJYO K.-I., ARAI K.: Tour into the pic-
ture: using a spidery mesh interface to make animation from a
single image. In SIGGRAPH ’97: Proceedings of the 24th annual
conference on Computer graphics and interactive techniques
(New York, NY, USA, 1997), ACM Press/Addison-Wesley Pub-
lishing Co., pp. 225–232.

[HEH05] HOIEM D., EFROS A. A., HEBERT M.: Automatic
photo pop-up. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Pa-
pers (New York, NY, USA, 2005), ACM, pp. 577–584.

[JC08] JOSHI P., CARR N.: Repoussé: Automatic inflation of 2D
artwork. In EUROGRAPHICS Workshop on Sketch-Based Inter-
faces and Modeling, SBIM 2008, June, 2008 (Annecy, France,
June 2008), Alvarado C., Cani M.-P., (Eds.).

[KPAS01] KANG H. W., PYO S. H., ANJYO K., SHIN S. Y.:
Tour into the picture using a vanishing line and its extension
to panoramic images. Computer Graphics Forum 20, 3 (2001),
132–141.

[LSTS04] LI Y., SUN J., TANG C.-K., SHUM H.-Y.: Lazy snap-
ping. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers (New
York, NY, USA, 2004), ACM, pp. 303–308.

[MFTM01] MARTIN D., FOWLKES C., TAL D., MALIK J.: A
database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological
statistics. In Proc. 8th Int’l Conf. Computer Vision (July 2001),
vol. 2, pp. 416–423.

[MP08] MCCANN J., POLLARD N. S.: Real-time gradient-
domain painting. ACM Transactions on Graphics (SIGGRAPH
2008) 27, 3 (Aug. 2008).

[OBW∗08] ORZAN A., BOUSSEAU A., WINNEMÖLLER H.,
BARLA P., THOLLOT J., SALESIN D.: Diffusion curves: A
vector representation for smooth-shaded images. In ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH 2008) (2008),
vol. 27.

[OCDD01] OH B. M., CHEN M., DORSEY J., DURAND F.:
Image-based modeling and photo editing. In SIGGRAPH ’01:
Proceedings of the 28th annual conference on Computer graph-
ics and interactive techniques (New York, NY, USA, 2001),
ACM, pp. 433–442.

[OH08] OLSEN JR. D. R., HARRIS M. K.: Edge-respecting
brushes. In UIST ’08: Proceedings of the 21st annual ACM sym-
posium on User interface software and technology (New York,
NY, USA, 2008), ACM, pp. 171–180.

[PTVF07] PRESS W. H., TEUKOLSKY S. A., VETTERLING
W. T., FLANNERY B. P.: Numerical recipes: the art of scien-
tific computing, 3 ed. Cambridge University Press, 2007.

[RKB04] ROTHER C., KOLMOGOROV V., BLAKE A.: "grabcut":
interactive foreground extraction using iterated graph cuts. ACM
Trans. Graph. 23, 3 (2004), 309–314.

[RT09] RUSSELL B., TORRALLBA A.: Building a database of 3d
scenes from user annotations. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2009).

[RTMF08] RUSSELL B. C., TORRALBA A., MURPHY K. P.,
FREEMAN W. T.: Labelme: A database and web-based tool for
image annotation. Int. J. Comput. Vision 77, 1-3 (2008), 157–
173.

[Rus09] RUSINKIEWICZ S.: TriMesh2 software library, 2009.
http://www.cs.princeton.edu/gfx/proj/trimesh2.

[SSN09] SAXENA A., SUN M., NG A.: Make3d: Learning 3d
scene structure from a single still image. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 31, 5 (May 2009),
824–840.

[Vis09] VISUAL COMPUTING LAB - ISTI - CNR: MeshLab,
2009. http://meshlab.sourceforge.net/.

[WH05] WITHER J., HOLLERER T.: Pictorial depth cues for
outdoor augmented reality. In Wearable Computers, 2005. Pro-
ceedings. Ninth IEEE International Symposium on (Oct. 2005),
pp. 92–99.

[ZDPSS01] ZHANG L., DUGAS-PHOCION G., SAMSON J.-S.,
SEITZT S.: Single view modeling of free-form scenes. In Com-
puter Vision and Pattern Recognition, 2001. CVPR 2001. Pro-
ceedings of the 2001 IEEE Computer Society Conference on
(2001), vol. 1, pp. I–990–I–997 vol.1.

28

http://www.cs.princeton.edu/gfx/proj/trimesh2
http://meshlab.sourceforge.net/

