Tobias Hinz

Tobias Hinz
Adobe · Research

About

23
Publications
7,804
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
307
Citations

Publications

Publications (23)
Preprint
We present ASSET, a neural architecture for automatically modifying an input high-resolution image according to a user's edits on its semantic segmentation map. Our architecture is based on a transformer with a novel attention mechanism. Our key idea is to sparsify the transformer's attention matrix at high resolutions, guided by dense attention ex...
Article
Full-text available
Generative adversarial networks conditioned on textual image descriptions are capable of generating realistic-looking images. However, current methods still struggle to generate images based on complex image captions from a heterogeneous domain. Furthermore, quantitatively evaluating these text-to-image models is challenging, as most evaluation met...
Conference Paper
Full-text available
We introduce CharacterGAN, a generative model that can be trained on only a few samples (8 - 15) of a given character. Our model generates novel poses based on keypoint locations, which can be modified in real time while providing interactive feedback, allowing for intuitive reposing and animation. Since we only have very limited training samples,...
Article
With the advent of generative adversarial networks, synthesizing images from text descriptions has recently become an active research area. It is a flexible and intuitive way for conditional image generation with significant progress in the last years regarding visual realism, diversity, and semantic alignment. However, the field still faces severa...
Preprint
Full-text available
We introduce CharacterGAN, a generative model that can be trained on only a few samples (8 - 15) of a given character. Our model generates novel poses based on keypoint locations, which can be modified in real time while providing interactive feedback, allowing for intuitive reposing and animation. Since we only have very limited training samples,...
Preprint
Full-text available
With the advent of generative adversarial networks, synthesizing images from textual descriptions has recently become an active research area. It is a flexible and intuitive way for conditional image generation with significant progress in the last years regarding visual realism, diversity, and semantic alignment. However, the field still faces sev...
Article
Full-text available
Human infants are able to acquire natural language seemingly easily at an early age. Their language learning seems to occur simultaneously with learning other cognitive functions as well as with playful interactions with the environment and caregivers. From a neuroscientific perspective, natural language is embodied, grounded in most, if not all, s...
Preprint
Full-text available
Generative adversarial networks conditioned on textual image descriptions are capable of generating realistic-looking images. However, current methods still struggle to generate images based on complex image captions from a heterogeneous domain. Furthermore, quantitatively evaluating these text-to-image models is challenging, as most evaluation met...
Preprint
Full-text available
Human infants are able to acquire natural language seemingly easily at an early age. Their language learning seems to occur simultaneously with learning other cognitive functions as well as with playful interactions with the environment and caregivers. From a neuroscientific perspective, natural language is embodied, grounded in most, if not all, s...
Preprint
Full-text available
Recently there has been an interest in the potential of learning generative models from a single image, as opposed to from a large dataset. This task is of practical significance, as it means that generative models can be used in domains where collecting a large dataset is not feasible. However, training a model capable of generating realistic imag...
Article
Full-text available
The problem of generating structured Knowledge Graphs (KGs) is difficult and open but relevant to a range of tasks related to decision making and information augmentation. A promising approach is to study generating KGs as a relational representation of inputs (e.g., textual paragraphs or natural images), where nodes represent the entities and edge...
Preprint
Full-text available
Generative adversarial networks conditioned on simple textual image descriptions are capable of generating realistic-looking images. However, current methods still struggle to generate images based on complex image captions from a heterogeneous domain. Furthermore, quantitatively evaluating these text-to-image synthesis models is still challenging,...
Chapter
Full-text available
Adversarial examples are artificially modified input samples which lead to misclassifications, while not being detectable by humans. These adversarial examples are a challenge for many tasks such as image and text classification, especially as research shows that many adversarial examples are transferable between different classifiers. In this work...
Preprint
Full-text available
Adversarial examples are artificially modified input samples which lead to misclassifications, while not being detectable by humans. These adversarial examples are a challenge for many tasks such as image and text classification, especially as research shows that many adversarial examples are transferable between different classifiers. In this work...
Conference Paper
Full-text available
Recent improvements to Generative Adversarial Networks (GANs) have made it possible to generate realistic images in high resolution based on natural language descriptions such as image captions. However, fine-grained control of the image layout, i.e. where in the image specific objects should be located, is still difficult to achieve. We introduce...
Preprint
Full-text available
Recent improvements to Generative Adversarial Networks (GANs) have made it possible to generate realistic images in high resolution based on natural language descriptions such as image captions. Furthermore, conditional GANs allow us to control the image generation process through labels or even natural language descriptions. However, fine-grained...
Conference Paper
Full-text available
Generative models have made significant progress in the tasks of modeling complex data distributions such as natural images. The introduction of Generative Adversarial Networks (GANs) and auto-encoders lead to the possibility of training on big data sets in an unsupervised manner. However, for many generative models it is not possible to specify wh...
Article
Full-text available
Most learning algorithms require the practitioner to manually set the values of many hyperparameters before the learning process can begin. However, with modern algorithms, the evaluation of a given hyperparameter setting can take a considerable amount of time and the search space is often very high-dimensional. We suggest using a lower-dimensional...
Article
Full-text available
Generative models have made significant progress in the tasks of modeling complex data distributions such as natural images. The introduction of Generative Adversarial Networks (GANs) and auto-encoders lead to the possibility of training on big data sets in an unsupervised manner. However, for many generative models it is not possible to specify wh...
Article
Full-text available
Combining Generative Adversarial Networks (GANs) with encoders that learn to encode data points has shown promising results in learning data representations in an unsupervised way. We propose a framework that combines an encoder and a generator to learn disentangled representations which encode meaningful information about the data distribution wit...
Conference Paper
Full-text available
We present the robotic system IRMA (Interactive Robotic Memory Aid) that assists humans in their search for misplaced belongings within a natural home-like environment. Our stand-alone system integrates state-of-the-art approaches in a novel manner to achieve a seamless and intuitive human-robot interaction. IRMA directs its gaze toward the speaker...
Conference Paper
Full-text available
Convolutional neural networks (CNNs) have become effective instruments in facial expression recognition. Very good results can be achieved with deep CNNs possessing many layers and providing a good internal representation of the learned data. Due to the potentially high complexity of CNNs on the other hand they are prone to overfitting and as a res...

Network

Cited By