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Infra2Go: A Mobile Development Platform for Connected, Cooperative
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Abstract— Connected, cooperative autonomous driving and
mobility promises increased comfort and safety for public
transportation and logistics in urban and suburban regions.
Stationary roadside infrastructure equipped with intelligent
perception sensors and communication units has the potential to
increase the field of view and mitigate occlusions in perception,
but is limited to fixed places in the development process.

We present a mobile development platform for connected
roadside infrastructure that can be used in an extensible and
flexible fashion for various purposes: as a traffic monitoring
device, as a reference sensor platform to benchmark in-vehicle
perception, as a test platform for collaborative perception
algorithms and to operate as connected edge computation
infrastructure to support vehicles in decision making in real
world settings.

In this work, we present an overview over the Infra2Go
concept and give details about the hardware and software
architecture. We evaluate our platform by deploying it in
an outdoor real world scenario for cooperative perception
between the platform and a vehicle equipped with an on-
board V2X communication unit. The platform is used to track
vulnerable road users (VRU) and transmits the information via
V2X communication for cooperative perception (Cooperative
Perception Messages) to an autonomous vehicle in order to
extend it’s sensor field of view.

I. INTRODUCTION
Connected, cooperative and automated mobility (CCAM)

has been a topic of interest for several years. Multiple
national and international activities and research projects
have been carried out showing early feasibility and poten-
tials. Early applications of infrastructure supported driving
and infrastructure based warning services [1] have been
demonstrated in urban scenarios. Gabb et. al. [2] demon-
strated that cooperative perception by track level fusion
between infrastructure and autonomous vehicles is possible
and can improve data quality. Shan et. al. [3] demonstrated
collaborative perception using a mobile platform based on
LiDAR and Camera. Tarko et al. [4] introduced TScan a
mobile platform based on a transporter with a telescopic mast
system that relies on LiDAR, inertial sensors and camera data
to track road participants.

Besides technical feasibility studies, major normative ef-
forts for the connected driving domain exist. In the In-
framix project [5], connectivity and levels of infrastruc-
ture capabilities are normed by different support classes.
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Fig. 1: The Infra2Go mobile platform that is designed as a testing platform
for infrastructure based autonomous driving research and as a reference
sensor platform.

A crucial part in standardization and norming is done by
the European Telecommunications Standards Institute (ETSI)
which standardizes communication protocols and messages
for Vehicle-to-X communication (V2X) to exchange data in
connected vehicles like Cooperative Awareness Messages
(CAM) [6], Cooperative Perception Messages (CPM) [7] or
Vulnerable Road User Awareness Messages (VAM) [8] that
are promising to improve safety of vulnerable road users
(VRU) by considering external information in automated and
manually driven vehicles. These standardization activities
emphasize the importance of the topic of infrastructure based
VRU perception, communication and connected driving in
general.
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Multiple research activities construct or use mobile road-
side infrastructure as a testbed for connected driving applica-
tion. Liu et. al. [9] build a mobile edge platform that relies on
camera data and local computation and preprocessing. Kahn
et. al. [10] introduce a platform that relies on camera and
infrared camera data.

Static roadside infrastructure is more commonly used.
Our previous efforts in the Test Area Autonomous Driving
Baden-Württemberg (TAF-BW) put the focus on stationary
intelligent roadside infrastructure [11] and real time multi-
object tracking [12] in static roadside infrastructure. Similar
activities can be observed in many other test sites [13–17],
just to mention a few. For more information on stationary
roadside infrastructure for reference data acquisition, Hoss
et al. [18] gives an overview. A survey on intelligent trans-
portation with external infrastructure is given in [19].

None of the presented approaches provides a feasible and
suitable solution for the design and conceptualization of a
flexible infrastructure platform. Hence we identify the need
for a mobile, modular testing and development platform that
supports flexible testing of infrastructure and cooperative
algorithms for infrastructure based autonomous driving under
real world conditions. This may not be limited by sharing
perception information between the infrastructure and the
vehicle but may also include more advanced information
sharing. For instance, trajectory planning or other high level
tasks may also be performed by intelligent infrastructure
[20, 21]. The platform is required to support such testing
activities.

II. USE CASES AND REQUIREMENTS
We identify the following use cases for the mobile plat-

form:

A. Data recording

The development of new technologies and algorithms
strongly depends on reference data. Especially machine
learning techniques require a vast amount of diverse data.
The platform therefore needs to serve as a flexible instrument
to record data of various sensor types and from arbitrary
locations and perspectives.

B. Data processing

Besides data recording, the platform needs to be able to
process data on the spot. This might be necessary to pre-
process gathered data, e.g. to ensure privacy, to evaluate
developed concepts in the field or to run applications based
on the perceived data in order to pass on only processed and
condensed information. As the range of applications is count-
less, it has to be ensured that new concept, algorithms and
processing pipelines can be deployed easily. The computing
hardware also needs to be suitable to meet the demands of
the application, e.g. for machine learning based applications.

C. Data transmission

One of the aforementioned applications is the extraction
and broadcasting of situation aspects of the traffic environ-
ment. In the context of automated driving specific message

protocols have been defined by the ETSI ITS-G5 CP Service
[7]. The objects in the environment are perceived and the
observations are transmitted to other traffic participants via
V2X communication.

D. Environment

Besides the targeted use cases, we pose further require-
ments. First of all, we want to use the platform in all weather
conditions, if it’s raining or if it is exposed to the sun
in summer. Hence, the electronic components need to be
stored in a waterproof case equipped with an active cooling
system. Moreover, it is necessary to be able to reach a
certain height with the sensors to cover a large area and to
conveniently simulate static roadside infrastructure. Easy in
height adjustment of sensor orientation gives flexibility when
testing different sensors and sensor modalities. Hence, to be
able to adjust the sensor orientation without retracting and
extending the mast, the sensor head needs to be electronically
controllable. Last, the platform needs to be movable for
transportation and has to be easily adjustable at the target
location. When the platform is located at the desired spot, it
must be possible to set up the platform safely.

III. INFRA2GO - HARDWARE CONCEPT

In the following, the overall hardware components of the
platform are described to give an overview of its components,
which are shown in Fig. 1. The platform consists of three
major subsystems: a base platform provides stability with
flexible pedestals to be used in uneven terrain. A telescopic
mast that can reach heights of up to 4 meters is used as
a mounting point for a control box containing all necessary
electronics and compute hardware. A sensor head is mounted
on top of the telescopic mast with a Pan-and-Tilt-Unit (PTU)
that allows to move the sensor head remotely via software.
All subsystems are mechanically loosely coupled to make
it easy to unmount and transport the platform. The sensor
head can be switched if necessary for the test scenario, e.g.
to test different sensor settings or to test different kind of
infrastructure sensors. All in all, the platform can reach a
height of up to 5.5 meters, including the base platform,
telescopic mast and sensor head.

Fig. 2 shows the electronic components that are included
in the mobile platform. The core component of the platform
is an electric control unit (ECU) that contains a suiting
central processing unit (CPU) and a graphics processing unit
(GPU) that supports Deep Learning inference using recent
DL-frameworks. Hot-swap NVME solid state drives make an
easy handling of local data recordings possible. A network
switch that supports Power-Over-Ethernet (POE) connections
enables the powering of sensors on the sensor mast. GNSS-
Antennas (D-GPS), as well as a standard wifi antenna and
a V2X communication unit with suiting antenna for IEEE
802.11p and/or cellular V2X (C-ITS) are included in the
platform to provide connectivity. The GNSS device is able
to receive correction data via the German SAPOS service
[22] which makes highly accurate globale registration of the
sensor data possible. To power all components, the platform



2

LiDAR Cameras

V2X POE switch

230 AC24V DC

PTU

ECU

Control Box

Sensor HeaderAntennas

Interface

GPS

Fig. 2: The electronic components of the sensor platform.

contains two power systems, a 230V AC system and a 24V
DC converter to provide flexibility when integrating new
components if needed. For power consumption, we focus on
flexibility rather than energy optimality. An active fan based
cooling system in the control box ensure stable temperatures
in warm weather conditions.

The current sensor head includes a 3D-LiDAR (Ouster OS-
1 with 64 layers) with integrated Interial Measurement Unit
(IMU) that provides pointcloud streams of either 10Hz or
20Hz and RGB color cameras (Basler a2A1920-51gcPRO)
that support frame rates of up to 51 frames per second.

IV. INFRA2GO - SOFTWARE CONCEPT

For easy software integration, we rely on the Robot Oper-
ating System (ROS) as a middleware running on a standard
linux operating system on the main ECU, supporting also an
easy integration of common machine learning frameworks.

A. User Interface

To provide easy and flexible sensor positioning in field
and measurement campaigns, a user friendly web based
user interface (UI) (see Fig. 3) has been developed. The
interface can be reached as a local web service when a user
is connected to the platform via mobile phone or notebook.
The web services can be used to query current live image
streams and visualization images that show results of the
tracking and detection algorithms running locally on the
platform. The UI can be used to move the pan-and-tilt unit to
conveniently align the sensor head for testing. Furthermore,
data recordings can be triggered with the UI (see Fig. 3).

B. Time Synchronization

In order to support distributed multi sensor fusion and to
make the gathered data comparable to in-vehicle data, highly
accurate time stamping is needed. We utilize GPS time as a
reference time source, as GPS sensors are widely available
and are commonly used for time synchronization.

The main ECU is synchronized against GPS time, by using
the GPS device on the platform as a reference clock. The
LiDAR scanner is synchronized to the main ECU by using
the PTP protocol, where the ECU acts as a master source for
the LiDAR scanner, making it possible to get highly accurate
time stamps on the LiDAR data. Camera data is synchronized
via software by writing the current main ECU system time
stamp to the data when the images are received on the host

Fig. 3: Web based user interface to move the pan-and-tilt unit, trigger data
recordings and to view outputs of the algorithms on the platform.
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Fig. 4: Coordinate systems of the platform.

ECU. Although not being perfect, this is sufficient for most
of our use cases due to the high frame rates of the cameras.

C. Spatial Calibration and Coordinate Systems

Fig. 4 shows the coordinate systems and their spatial
relationships as 6DOF transformations T = (t, r) (3D
translation t and 3D orientation r) that we define in the
mobile platform. Frame L represents the LiDAR origin
coordinate system, being fixed to the orientation of the
LiDAR hardware. Frame I is the coordinate system of the
integrated IMU of the LiDAR scanner. Coordinate systems
Ci represent camera base coordinate systems for a pinhole
camera model in 3D space. In these systems, camera i is
located in the origin of Ci and the z axis is pointing towards
the view direction of the camera. Coordinate system G is the
ground base point of the mobile platform. LV is a virtual
LiDAR coordinate system in the origin of L, but oriented
similar to the ground system G.

Calibration of the mobile platform is equal to estimate the
transformations TL,C1 , TL,C2 , TL,I , TL,LV and TLV,G. In
our case, the transform TL,I is given by the hardware spec
of the sensor.

To estimate the transforms TL,C1
and TL,C2

, lidar-to-
camera calibration needs to be performed. We tackle this
problem with a target based calibration procedure, in which
a checkerboard pattern is detected in both sensor streams
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Fig. 5: LiDAR pointcloud from a parking lot with coordinate systems LV
and G and the corresponding z-value histogram. The red line represents the
estimated approximate height.

(LiDAR and rectified camera images) and correspondence
points between LiDAR and rectified camera are stored over
time. Then a standard solver for the perspective-n-point
problem (PnP) [23] is used to estimate the transform.

The intrinsic calibration and estimation of distortion pa-
rameters of the cameras is performed offline by using a
checkerboard as a target with standard calibration techniques
like Zhang’s method [24].

The transform TL,LV is given by a simple rotation, as
no translation between the two coordinate frames L and
LV is defined. The rotation can be computed by utilizing
acceleration data of the IMU. The force vector of the IMU
on the static pole will point towards the direction of gravity,
which is approximately equal to the direction of the ground.
Hence the orientations can be computed from the force vector
of the IMU data. We smooth the orientation in quaternion
space by using a weighted average over a fixed window
of timesteps. This procedure eliminates noise and gives a
simple but stable estimate of the sensor head orientation of
coordinate frame I towards the ground.

To estimate the transform TLV,G, the height of the virtual
LiDAR coordinate system towards ground has to be esti-
mated. To do so, a simple histogram heuristic can be used.
In common outdoor scenes, many LiDAR measurements and
points will lie on the ground when they don’t hit any objects.
We utilize this observation and transform the measurement
points to the coordinate system LV . In this frame, which is
parallel to the ground, a histogram of the z-values (vertical
axis) of points will give a peak for all points lying on the
ground, if the ground is sufficiently planar. Fig. 5 shows a z-
value histogram in frame LV that has been recorded in a real
world scene. The heuristic starts from the lowest possible z-
value (in Fig. 5 −10 meters) and returns the height where
the number of points in a bin exceeds a threshold τ .

After all transformations are known, it is possible to
spatially relate all data from the sensors.

V. PERCEPTION AND LOCALIZATION OF VULNERABLE
ROAD USERS (VRUS)

We integrate a baseline pipeline, see Fig. 6, for multi-
object tracking (MOT) of pedestrians as they are currently
a main focus of our research. Although the details of the
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Fig. 6: Overview of the multi-object tracking pipeline.

pipeline is not in the focus of this work, we give an overview
of the integrated components in the following. The pipeline
consists of two independent multi-object tracking systems,
one relying on LiDAR data, the second one relying on image
detections and tracks that are projected to a ground plane
model to receive locations in three-dimensional Cartesian
space.

A. Camera Perception

Once data is received from a camera, the gathered images
are undistorted using distortion parameters from the intrinsic
calibration process of a pinhole camera model. The rectified
image is then used in the realtime capable object detector
YOLO-V4 [25] with 2D non-maximum suppression (NMS)
as a postprocessing step. This yields a list of bounding boxes
bi = (xi

1, y
i
1, x

i
2, y

i
2, c

i, si) in the image plane, where xi
1, y

i
1

is the top left corner point of an axis aligned bounding box,
xi
2, y

i
2 is the bottom right corner point, ci is the classification

of the object and si is an existence score for the object.
A 2D multi-object tracking algorithm consisting of a La-

beled Gaussian Mixture Hypothesis Density Filter (Labeled
GMPHD) [26, 27] is applied in image space considering
bounding box detections as an input and giving tracked
bounding boxes of the form b̂i = (x̂i
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2 and ĉi are completely similar defined to

the detection case, ŵi is a measure for object existence and
l̂i is the unique label assigned to the tracked box.

The tracked 2D bounding boxes are then projected to
the previously estimated ground plane model as illustrated
in Fig. 7. For each bounding box b̂i, the bottom middle
point m̂b

i
is projected using a parametric line l̂b

i
that is

intersected with the ground plane model, giving the ground
point p̂b

i
of the vulnerable road user in the ground coordinate

system G. The parametric line can be computed using the
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Fig. 7: Projection of tracked 2D bounding boxes to the ground plane model.

intrinsic parameters parameters of the calibrated camera and
the transformation between camera coordinate system C1 and
the Ground G (extrinsic parameters). The top middle point
m̂t

i
of the tracked bounding box can be projected in a similar

fashion by considering the intercept theorem or by using a
second parametric line l̂t

i
, including the constraint that the

line (pti, pbi) needs to be orthogonal to the ground plane.
As a result, the position p̂b

i
and the height ∥p̂ti − p̂b

i
∥ of

a vulnerable road user can be determined. Note that this
heuristic assumes that the ground point of the bounding box
is standing on the ground plane model. If this assumption is
not met, for instance due to partial occlusion of the bounding
box or jumping of the pedestrian, positioning errors after the
projection will be the result.

B. LiDAR Perception

The LiDAR perception pipeline uses a segmentation based
approach for pedestrian tracking. As a first step, the point-
cloud is ordered into a cylindrical, virtual image around
the origin of the LiDAR scanner that is dependent on the
resolution of the LiDAR, in our case 64 × 1024 pixels.
Each pixel in this image refers to a single scan point in
3D space. The image contains different channels, including
x, y, z and range values of the original point, as well as label
and cluster values that encode which classification the pixel
has and to which other pixels it belongs. Label and cluster
channels are initialized with default values at the beginning
of the pipeline. The structure of the data is preserved through
the complete pipeline.

In the second stage, labels get assigned to points, marking
ground points and non-ground points in the image-like
structure. This is achieved by a singular value decomposition
based ground plane fitting algorithm highly inspired by [28].
The algorithm separates the space around the pole into
different regions where for each region a ground hyperplane
is fitted to the measurement points using an iterative scheme
very similar to Expectation Maximization (EM). Given a set
of starting points that are assumed to be ground points, the
algorithm fits a hyperplane to these points using a singular
value decomposition of the empiric covariance matrix of the
points, leading to a first ground estimate. Then, a reassigning
step labels all points that are close to the current ground
estimate to be ground points as well. This procedure is

iterated by recomputing the current ground plane estimate.
After a fixed number of iterations of ground estimation and
reassignment, a stable ground plane is reached giving a
final ground hyperplane. Finally, all points that lie within
a threshold distance to the final ground estimate are labeled
to be ground points, while all other points are labeled to
be non-ground points. The algorithm needs a good starting
hypothesis, which in our case is given by the histogram based
heuristic previously described. As the height of the pole is
approximately known by the histogram technique, an initial
guess for the hyperplane can be set to the estimated base of
the platform in parallel to the virtual lidar coordinate system
that is orthogonal to the force vector of the IMU.

The third stage of the LiDAR pipeline consists of an object
clustering stage. Since ground points have been labeled, but
not removed, the virtual image structure on the point cloud
has been preserved, which makes the use of a range image
based object segmentation possible. We utilize an approach
similar to FLIC [29], a fast range based segmentation algo-
rithm that provides more stability and robustness to overseg-
mentation than similar approaches like [30, 31]. The third
stage yields point clusters (x, y, z, label, cluster, range)
where identical cluster values encode belonging to the same
cluster.

In a fourth stage, the mean of all clusters points is com-
puted as a tracking feature for each cluster. In a final tracking
stage, these measurements are given to a Labeled GMPHD
Tracker that estimates positions and velocities of the moving
point objects from given position measurements, assignes
unique ids over time and eliminates clutter detections, lead-
ing to a LiDAR based object list that is independent of the
camera pipeline.

VI. EVALUATION

To evaluate our concept, we start with a qualitative discus-
sion of the identified requirements of the platform and their
realization. We then proceed to evaluate the introduced base
pipelines for VRU Localization and tracking by deploying
them to the platform in a field experiment.

A. Discussion

Since our platform consists of three mechanical subsys-
tems, it provides the flexibility to attach new sensor heads
and to be dismounted to be transported in an ordinary
transporter vehicle. Local data recordings of raw sensor
data are possible with the necessary recording speeds and a
convenient user interface has been designed and implemented
using web services for easy access in a measurement cam-
paign in the field. Trajectory data can be recorded from our
base pipelines. The presented concept platform is weather
resistant and the local cooling system ensures operation in
higher temperatures. Thus all the stated requirements for
flexible use are fulfilled.

B. Vulnerable Road User Localization

To evaluate the platform and it’s capability to compute
realtime trajectories of vulnerable road users, we deploy
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Fig. 8: Evaluation scenario from the perspective of the mobile platform.
Pedestrians are tracked and located using the camera and LiDAR pipeline.
The top image shows the lane network projected to the camera (cyan),
the tracked 2D bounding box and the projection to the image of the
corresponding 3D location of the camera track. The bottom image shows
the LiDAR track as a yellow dot and it’s estimated velocity vector as a cyan
arrow. The text contains meta information of the tracks.

the platform in a real world traffic scenario on a walkway
lane. Pedestrians walk on the walking/bicycle lane and their
trajectories are estimated in real time on the platform. Fig. 8
illustrates the evaluation setting from the sensor perspective
of the mobile platform.

We visualize the trajectories of a three minute recorded
sequence together with a geo-referenced high definition
lanelet map [32]. The mobile platform is calibrated against
the map using manual correspondence matchings between
the camera image and the lanelet map as described in our
previous work [11]. As Figures 9 (i) and 9 (ii) visualize,
both tracking pipelines produce trajectories that reach lane-
precision. It can be observed that in general the estimated
LiDAR trajectories are smoother and do not contain any
projection errors and jumps that are cause by estimation
errors of the bounding box size in the camera pipeline due
to partial occlusion. Nevertheless if the explained conditions
are met, camera based VRU tracking is a valid alternative
to expensive LiDAR sensors. Additional occlusion reasoning
might improve trajectory quality in the future.

1) Runtime Evaluation: As realtime capability is critical
for perception in road user safety, we determine the dis-
tribution of pipeline delays for the two base pipelines. We
do so by computing the end-to-end difference ttrack − tacq
between the time of the sensor data acquisition tacq and
the system time ttrack when the final tracked object list is
available when the corresponding measurement from time
tacq has been processed. Fig. 10 visualizes the distribution
as histograms with confidence bounds of the results.

The camera pipeline produces object lists with a mean
delay of µ = 120.74ms, where the standard deviation is
σ = 11.72ms. The LiDAR pipeline produces object lists
with a mean delay of µ = 346.91ms, where the standard
deviation is σ = 25.57ms. The presented LiDAR pipeline
is not optimized, while the camera pipeline relies on end-
to-end detection highly leveraging the GPU computation
capabilities of our platform, which explains the lower end-

( (i)) Camera tracks on the xy-plane in coordinate system G.

( (ii)) LiDAR tracks on the xy-plane in coordinate system G.

( (iii)) CPM tracks (camera) on the xy-plane in coordinate system G that
are received by the vehicle.

Fig. 9: Resulting trajectories (camera, lidar, received CPM) in the estimated
xy-plane of the ground coordinate system G. Black lines show the high
definition lanelet map, red dotted lines visualize the camera view frustrum.

to-end computation times. As our LiDAR pipeline is imple-
mented as modular components using the Robot Operating
System, communication overheads between the components
may introduce delays in the LiDAR pipeline that can be
mitigated in the future.

All in all, we conclude that the mobile platform provides a
flexible and powerful tool to test realtime sensor perception
pipelines in real life conditions in a convenient fashion.
Deep Learning based detectors and algorithms can easily be
executed and tested on the platform.

C. Cooperative, Connected Perception via V2X

As an evaluation of the concept of infrastructure supported
sensing of vulnerable road users, we integrate our camera
tracking pipeline with the V2X communication hardware
of the platform. The tracked object lists generated by the
camera are converted to CPMs with a custom message
sampling procedure that selects CPMs uniformly with a fixed
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Fig. 10: Distribution of the end-to-end delays of our tracking pipelines
(camera top, LiDAR bottom).

frequency of maximum 10Hz and transmits them to a V2X
on-board unit in an automated vehicle nearby. Fig. 9 (iii)
shows the received CPM trajectories that are based on the
camera trajectories (see Fig. 9 (i)). There are two effects that
can be noted during the experiment. First of all, it can be
observed that uniform sub-sampling introduces artefacts that
might be mitigated by implementing improved sub-sampling
procedures as recommended in the CPM draft [7] or [33]
or approaches like our previously used custom sub-sampling
technique applied in [11] that uses derivation from a constant
motion model to determine the frequency to sample objects
in the object list. Secondly, after CPM transmission small
discretization errors on localization information can be ob-
served on transmitted points. This can be explained by the
datatype encoding of the DistanceValue field in the CPMs.
This field which encodes location information for objects,
has a limited precision of at most 1cm. Hence, all object
locations are naturally discretized to multiples of 1cm.

VII. CONCLUSIONS

In this work, we introduced Infra2Go, a flexible mobile
research platform for data acquisition, testing and evaluation
of highly autonomous driving systems that may be supported
by intelligent infrastructure.

The Infra2Go platform is designed to provide flexibility
when selecting test sites since it can be easily transported.
It provides a hardware and software platform to perform
reference data recording and testing of realtime algorithms

for infrastructure based driving that can rely on cooperation
between vehicles and infrastructure.

Our baseline methods for vulnerable road user tracking,
that are based on two independent sensor streams, are a
feasible approach for realtime trajectory estimation and have
been demonstrated in a relevant real world scenario. First
steps towards collaborative perception between infrastructure
and an automated vehicle have been performed by evaluat-
ing V2X communication of perceived vulnerable road user
trajectories as Cooperative Perception Messages between a
Roadside Unit in our platform and an on-board V2X Unit in
a vehicle.

The Infra2Go platform serves as a general purpose tool for
testing, evaluation and validation of methods for connected
automated driving in various aspects. This may include the
evaluation of sensor fusion algorithms between infrastructure
and vehicles or different sensor modalities like thermal
imaging cameras, dynamic vision sensors or Radar Detection
and Ranging for infrastructure sensing. Furthermore the
device can be used as a standalone evaluation and validation
platform for the validation in field tests and can be applied
in test areas and proving grounds in the future.
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