T.m. BezemerLeiden University | LEI · Institute of Biology
T.m. Bezemer
PhD
About
449
Publications
98,737
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
22,684
Citations
Publications
Publications (449)
Soil communities, tree performance, and greenhouse gas (GHG) fluxes remains unclear. This study examines how different size fractions of soil biota from young and mature forests influence Alnus glutinosa performance, root-associated community composition, and GHG fluxes. We conducted a mesocosm experiment using soil com-munity fractions (wet sievin...
Land use intensification can influence soil microbial communities and their functional potential. However, the impacts of different aspects of land use intensification on functional groups of soil microbes remain insufficiently elucidated in agroecosystems. This study investigated soil microbial groups and their functional potential in arable field...
The magnitude of plant–soil feedback (PSF) can depend on the time of conditioning as well as the length of feedback. Understanding the temporal variation in PSF requires insight in the response of both soil characteristics and the plant.
We examined how conspecific PSF varies with the length of conditioning and the size of the response plant using...
During early afforestation stages, biotic and abiotic soil characteristics change at different paces. However, the extent that each of these characteristics contribute to plant performance and subsequent herbivory remains unclear. This study aimed to study the effects of biotic and abiotic characteristics of forest soil on Alnus glutinosa performan...
Plant-associated microorganisms can negatively influence plant growth, which makes them potential biocontrol agents for weeds. Two Gammaproteobacteria, Serratia plymuthica and Pseudomonas brassicacearum, isolated from roots of Jacobaea vulgaris, an invasive weed, negatively affect its root growth. We examined whether the effects of S. plymuthica an...
Plant competition can be affected by plant functional traits but also by differences in fitness mediated by soil microbes. Climatic conditions such as drought further influence plant competition. Yet little is known about how soil microbes and drought interact with plant species that have distinct root traits and how this influences plant competiti...
Aims
The spread of invasive weeds threatens biodiversity and stability of ecosystems. Jacobaea vulgaris is an invasive weed in some countries and an outbreak species in its native European range. Although biological control using specialist herbivores is available, controlling with soil microorganisms remains far less explored.
Methods
Twenty bact...
Extracellular polymeric substances (EPS) synthesized by soil microorganisms play a crucial role in maintaining soil structure by acting as binding agents of soil aggregates. Microbial EPS production is governed by C sources, soil nutrient availability, pH, and other local environmental factors. Another important factor is soil management, and parti...
With a continuous increase in world population and food production, chemical pesticide use is growing accordingly, yet unsustainably. As chemical pesticides are harmful to the environment and developmental resistance in pests is increasing, a sustainable and effective pesticide alternative is needed. Inspired by nature, we mimic one defense strateg...
An increasing number of studies of above‐belowground interactions provide a fundamental basis for our understanding of the coexistence between plant and soil communities. However, we lack empirical evidence to understand the directionality of drivers of plant and soil communities under natural conditions: ‘Are soil microorganisms driving plant comm...
Arthropod pests cause significant problems in agricultural crops all around the world. As chemical pesticide use becomes less desired, there is a need for alternative methods of pest control. Inspired by the natural adhesiveness of arthropod trapping plants, we examined the effectiveness of adhesive droplets made from oxidised and cross-linked plan...
Despite increasing evidence that intercropping systems may increase crop productivity, little is known about whether and how soil biota change under interspecific competition among plants. A field experiment with maize/soybean intercropping and the corresponding monoculture systems was conducted under four nitrogen fertilization regimes to investig...
Microbes can be an important source of phenotypic plasticity in insects. Insect physiology, behaviour, and ecology are influenced by individual variation in the microbial communities held within the insect gut, reproductive organs, bacteriome, and other tissues. It is becoming increasingly clear how important the insect microbiome is for insect fit...
Nematodes are the most abundant animals in soil. They are active in all trophic levels and functionally important for plant growth and plant diversity. Nematode community structure not only can be directly influenced by other belowground organisms such as soil microbes via trophic interactions, but also indirectly by aboveground organisms like herb...
The application of organic amendments (OAs) obtained from biological treatment technologies is a common agricultural practice to increase soil functionality and fertility. OAs and their respective pretreatment processes have been extensively studied. However, comparing the properties of OAs obtained from different pretreatment processes remains cha...
Negative plant-soil feedbacks can be viewed as Janzen-Connell effects and influence plant population dynamics in grasslands. However, even though plant-soil feedbacks are often referred to as a mechanism for Janzen-Connell effects, for grassland species this is based on pot experiments and these effects have rarely been examined in the field. We ex...
The gut microbiome of plant-eaters is affected by the food they eat, but it is currently unclear how the plant metabolome and microbiome are influenced by the substrate the plant grows in and how this subsequently impacts the feeding behavior and gut microbiomes of insect herbivores. Here, we use Plutella xylostella caterpillars and show that the l...
Plants influence numerous soil biotic factors that can alter the performance of later growing plants - defined as plant-soil feedback (PSF). Here, we investigate whether PSF effects are linked with the temporal changes in root exudate diversity and the rhizosphere microbiome of two common grassland species (Holcus lanatus and Jacobaea vulgaris). Bo...
Plant functional traits are increasingly recognised as being impacted by soil abiotic and biotic factors. Yet, the question to what extent the coupling between community‐level above‐ and below‐ground traits is affected by soil conditions remains open.
In a field experiment in dune grassland, we quantified the responses of both community‐level leaf...
PurposeUnderstanding the impact of neighbor tree diversity on soil biodiversity at the individual tree scale and clarifying which facets of neighbor tree diversity have a decisive impact on soil biodiversity.Methods
We collected and identified soil nematodes underneath 256 individual trees of 16 species at four species-richness levels (1, 2, 4, 8 s...
Green roofs provide ecosystem services and can promote biodiversity in urban areas. Blue-green roofs have an additional water storage compartment under the substrate to reduce roof water runoff, thereby also reducing drought stress which is beneficial for green roof vegetation. In order to study which blue-green roof design supports the highest pla...
Inoculation with soil from different ecosystems can induce changes in plant and soil communities and promote the restoration of degraded ecosystems. However, it is unknown how such inoculations influence the plant and soil communities, how much inoculum is needed, and whether inocula collected from similar ecosystems will steer soil and plant commu...
Current and legacy effects can greatly affect the growth of a focal plant and its interactions with herbivores and such effects can be mediated by above- and belowground effects. However, determining the relative importance of current and legacy above- and belowground effects in natural conditions is a major challenge. In a long-term grassland expe...
The living soil harbors a significant number and diversity of bacteria and fungi, which are essential in sustaining soil ecosystem functions. Most studies focus on soil bacteria or fungi, ignoring potential interrelationships between kingdoms that coevolve and synergistically provide ecosystem functions. In a seven-year agricultural field, we explo...
Climate change predictions indicate that summer droughts will become more severe and frequent. Yet, the impact of soil communities on the response of plant communities to drought remains unclear. Here, we report the results of a novel field experiment, in which we manipulated soil communities by adding soil inocula originating from different succes...
Biochar is proposed as an option to sequester carbon (C) in soils and promote other soil-based ecosystem services. However, its impact on soil biota from micro to macroscale remains poorly understood. We investigated biochar effects on the soil biota across the soil food web, on plant community composition and on biomass production. We conducted a...
Environmental conditions experienced by parent plants can influence offspring performance through parental effects induced by DNA methylation. The offspring can also be influenced by environmental conditions experienced by their parents via soil legacy effects due to plant‐mediated changes in the composition of soil microbes. These two effects are...
Purpose
Insect herbivory affects plant growth, nutrient and secondary metabolite concentrations and litter quality. Changes to litter quality due to insect herbivory can alter decomposition, with knock on effects for plant growth mediated through the plant-litter-soil feedback pathway.
Methods
Using a multi-phase glasshouse experiment, we tested h...
Agricultural intensification has had long-lasting negative legacies largely because of excessive inputs of agrochemicals (e.g., fertilizers) and simplification of cropping systems (e.g., continuous monocropping). Conventional agricultural management focuses on suppressing these negative legacies. However, there is now increasing attention for creat...
Soil biotic communities can strongly impact plant performance. In this paper, we ask the question: how long-lasting the effect of the soil microbial community on plant growth is. We examined the plant growth rates at three stages: early, mid and late growth. We performed two growth experiments with Jacobaea vulgaris, which lasted 49 and 63 days in...
Background and aims
Soil legacies mediated by abiotic and biotic factors can greatly influence succeeding plants, a phenomenon called plant-soil feedback (PSF). To date, the patterns and mechanisms of PSF remain largely unexplored in agroecosystems, especially how soil microbial legacies of crop species and management practices interact is poorly u...
The importance of plant–soil feedbacks (PSF) for above‐ground and below‐ground multitrophic interactions is well recognized. However, most studies only condition soil for a short time before testing the feedback response. Here we investigate the influence of time of conditioning on soil microbiome composition, plant growth and metabolomics, and pla...
Purpose Insect herbivory affects plant growth, nutrient and secondary metabolite concentrations and litter quality. Changes to litter quality due to insect herbivory can alter decomposition, with knock on effects for plant growth mediated through the plant-litter-soil feedback pathway.
Methods Using a multi-phase glasshouse experiment, we tested ho...
Plants leave legacy effects in the soil they grow in, which can drive important vegetation processes, including productivity, community dynamics and species turnover. Plants at the same time also face continuous pressure posed by insect herbivores. Given the intimate interactions between plants and herbivores in ecosystems, plant identity and herbi...
Aims
Plants can influence the level of herbivory experienced by neighboring plants. The importance of such belowground associational effects are poorly understood. In this study we examine whether Jacobaea vulgaris provides associational resistance against nematodes to neighboring plants.
Methods
Thirteen species (6 forbs, 3 grasses and 4 legumes)...
Composts are commonly used as soil amendments to sustain and improve the functionality of agricultural soil. Compost has abiotic (organic matter [OM], nutrients) and biotic characteristics (microorganisms) and both can influence the soil microbiome. The abiotic and biotic characteristics of compost, in turn, depend on properties of the compost such...
Soil legacies mediated by plant species-specific microbial communities are major drivers of plant community dynamics. Most soil legacy studies focus on the role of pathogens and mutualists in driving these processes, while much less is known about plant litter-mediated changes to the soil microbial community. Here, we used an existing plant-soil fe...
Plant-soil feedbacks are shaped by microbial legacies that plants leave in the soil. We tested the persistence of these legacies after subsequent colonization by the same or other plant species using 6 typical grassland plant species. Soil fungal legacies were detectable for months, but the current plant effect on fungi amplified in time. By contra...
Background and aims
Jacobaea vulgaris plants grow better in sterilized than in live soil. Foliar application of SA mitigates this negative effect of live soil on plant growth. To examine what causes the positive effect of SA application on plant growth in live soils, we analyzed the effects of SA application on the composition of active rhizosphere...
Inoculation with soil from different ecosystems can induce directional changes in plant and soil communities, however, it is unknown how specific these inoculations are, how much inoculum is needed, and whether different inocula collected from a similar ecosystem will steer differential ecosystem development at the recipient site. We conducted a so...
The overall effect of a live soil inoculum collected from nature on plant biomass is often negative. One hypothesis to explain this phenomenon is that the overall net pathogenic effect of soil microbial communities reduces plant performance. Induced plant defenses triggered by the application of the plant hormones jasmonic acid (JA) and salicylic a...
Plant–soil feedback (PSF) and diversity–productivity relationships are important research fields to study drivers and consequences of changes in plant biodiversity. While studies suggest that positive plant diversity–productivity relationships can be explained by variation in PSF in diverse plant communities, key questions on their temporal relatio...
Aim
High levels of nitrogen deposition have been responsible for important losses of plant species diversity. It is often assumed that reduction of ammonia and nitrogen oxide emissions will result in the recovery of the former biodiversity. In Western Europe, N deposition peaked between 1980 and 1988 and declined thereafter. In a 60‐year experiment...
Understanding biogeographic patterns of community assemblages is a core objective in ecology, but for soil communities these patterns are poorly understood. To understand the spatial patterns and underlying mechanisms of β‐diversity in soil communities, we investigated the β‐diversity of soil nematode communities along a 3,200‐km transect across se...
Plant-soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here,...
Background and aims
Many plant species grow better in sterilized than in live soil. Foliar application of SA mitigates this negative effect of live soil on the growth of the plant Jacobaea vulgaris. To examine what causes the positive effect of SA application on plant growth in live soils, we analyzed the effects of SA application on the compositio...
Plant-soil feedbacks are shaped by microbial legacies previous plants leave in the soil. We tested the persistence of such soil legacies after subsequent colonization by the same or other plant species, and whether the microbiome created by the previous plant explains current plant growth. Legacies of previous plants were detectable in soil fungal...
Background
Insect-associated microorganisms can provide a wide range of benefits to their host, but insect dependency on these microbes varies greatly. The origin and functionality of insect microbiomes is not well understood. Many caterpillars can harbor symbionts in their gut that impact host metabolism, nutrient uptake and pathogen protection. D...
Green roofs can promote biodiversity in urban areas. The extent to which green roofs stimulate plant diversity can depend on roof characteristics such as roof age, substrate depth and shading. We exploratively studied the vegetation on a Dutch green roof in 50 permanent plots (1 m2) over eight years (2012–2019) following roof construction. Plots we...
AimsThis study examines how inoculation with live soil influences the assembly of the endosphere microbiome of leaves and roots of chrysanthemum.Methods
Sterilized soil was inoculated with 10% soil in which grasses had grown. Chrysanthemum was planted in these soils and control plants were grown in 100% sterilized soil. All plants were exposed to t...
Plant–soil feedbacks of plants that are exposed to herbivory have been shown to differ from those of plants that are not exposed to herbivores. Likely, this process is mediated by jasmonic acid (JA) and salicylic acid (SA) defense pathways, which are induced by aboveground herbivory. Furthermore, exogenous application of these phytohormones to plan...
Changes in plant community composition can have long‐lasting consequences for ecosystem functioning. However, how the duration of plant growth of functionally distinct grassland plant communities influences abiotic and biotic soil properties and thus ecosystem functions is poorly known. In a field experiment, we established identical experimental s...
This Research Topic comprises articles - ranging from Original research articles, meta-analytical Reviews and Perspectives - that aim to advance our understanding of the contribution of PSFs to plant growth and plant community composition in different environmental contexts.
Abiotic and biotic properties of soil can influence growth and chemical composition of plants. Although it is well-known that soil microbial composition can vary greatly spatially, how this variation affects plant chemical composition is poorly understood. We grew genetically identical Jacobaea vulgaris in sterilized soil inoculated with live soil...
In response to environmental conditions, plants can alter the performance of the next generation through maternal effects. Since plant–soil feedbacks (PSFs) influence soil conditions, PSFs likely create such intergenerational effects. We grew monocultures of three grass and three forb species in outdoor mesocosms. We then grew one of the six specie...
As a model for genetic studies, Arabidopsis thaliana (Arabidopsis) offers great potential to unravel plant genome-related mechanisms that shape the root microbiome. However, the fugitive life history of this species might have evolved at the expense of investing in capacity to steer an extensive rhizosphere effect. To determine whether the rhizosph...
Plant-soil feedbacks (PSFs) can influence plant performance in natural and agricultural systems but how PSF principles can be applied in agriculture is not well-studied.
In a two-phase PSF experiment, we tested how inoculating soil conditioned by plants into live and sterilized commercial glasshouse soil influences the root-associated microbiome (b...