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SPATIAL BAYESIAN VARIABLE SELECTION AND GROUPING
FOR HIGH-DIMENSIONAL SCALAR-ON-IMAGE REGRESSION
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Multi-subject functional magnetic resonance imaging (fMRI) data has
been increasingly used to study the population-wide relationship between hu-
man brain activity and individual biological or behavioral traits. A common
method is to regress the scalar individual response on imaging predictors,
known as a scalar-on-image (SI) regression. Analysis and computation of
such massive and noisy data with complex spatio-temporal correlation struc-
ture is challenging. In this article, motivated by a psychological study on
human affective feelings using fMRI, we propose a joint Ising and Dirichlet
Process (Ising-DP) prior within the framework of Bayesian stochastic search
variable selection for selecting brain voxels in high-dimensional SI regres-
sions. The Ising component of the prior makes use of the spatial information
between voxels, and the DP component groups the coefficients of the large
number of voxels to a small set of values and thus greatly reduces the pos-
terior computational burden. To address the phase transition phenomenon of
the Ising prior, we propose a new analytic approach to derive bounds for the
hyperparameters, illustrated on 2- and 3-dimensional lattices. The proposed
method is compared with several alternative methods via simulations, and is
applied to the fMRI data collected from the KLIFF hand-holding experiment.

1. Introduction. Positive social contact is known to enhance human health
and well-being, possibly because it helps to regulate humans’ emotional reactivity
when facing negative stressors in daily life [Coan, Schaefer and Davidson (2006);
Coan, Beckes and Allen (2013); Coan (2010, 2011)]. Conventional studies on so-
cial contact primarily focus on its aggregated effect on an entire population. With
the common belief that human behavior is controlled by individual mental deci-
sions, which is affected by the immediate environment, it is desirable to investigate
emotion regulation activity of the individual brain under different social interac-
tion conditions. Toward this aim, the KLIFF hand-holding psychological experi-
ment [Coan, Schaefer and Davidson (2006)] was conducted. In this experiment,
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104 pairs—each pair consisting of a male and a female—of mentally and phys-
ically healthy young adults in various close relationships including friends and
married couples were recruited from a larger representative longitudinal commu-
nity sample [Allen et al. (2007)]. One participant of each pair was threatened with
mild electric shock during a functional magnetic resonance imaging (fMRI) ses-
sion while either holding a hand of a friend, holding a hand of a stranger or holding
no hand at all, in three separate sessions, which represent three different types of
social interactions—positive and supportive social interaction with friends, gen-
eral social interaction with strangers and no social interaction, respectively. At the
end of each session, the subjects were asked to rate their feelings of arousal and
valence [Russell (1980); Lang et al. (1993)] experienced during the experiment.
Arousal and valence are the two dimensions in the framework of emotion fields,
representing the extent of excitement and pleasure experienced, respectively [see
Bradley and Lang (1994) for more detailed explanation].

To investigate which areas in the brain are predictive of individual’s affective
feelings in the KLIFF study, we can construct a regression model using subjects’
emotion (arousal and valence) measurements as the response, and summaries of
the fMRI images in the regions of interests (ROIs) as predictors. This type of
regression is often referred to as scalar-on-image (SI) regressions in the litera-
ture [Reiss et al. (2011); Huang et al. (2013); Goldsmith, Huang and Crainiceanu
(2014)]. SI regressions with predictors from other imaging modalities, such as dif-
fusion tensor imaging (DTI), have also been used in medical and scientific studies
[e.g., Reiss et al. (2015)].

The SI regression model in the KLIFF study has several unique characteristics
due to the features of fMRI data. First, the sample size is much smaller than the
number of predictors, that is, the number of brain voxels (3D cubic volumes in
the brain) in the ROIs, which is over 6000 in the KLIFF study. This is known as
the “large p, small n” paradigm [West (2003)]. Second, there is rich spatial infor-
mation between the predictors. Third, neighboring predictors are highly correlated
and often have similar but weak effects on the response. Finally, as each voxel
accounts for only a tiny area in the brain, it is very likely that the number of sig-
nificant voxels is much larger than the sample size. The last two characteristics
imply that even with all the true voxels being correctly selected, standard regres-
sion methods may still not be applicable due to multicolinearity. It is therefore
desirable to impose a certain degree of shrinkage or grouping of the regression co-
efficients so that predictors with similar values can be grouped together, and thus
the effective number of selected predictors is smaller than the sample size. Moti-
vated by these considerations, in this article, we propose a Bayesian SI regression
model that achieves simultaneous grouping and spatial selection of voxels that are
predictive of individual responses. The key to our proposal is to define a joint
Ising and Dirichlet Process (Ising-DP) prior for the regression parameters, within
the framework of Bayesian stochastic search variable selection [SSVS; George
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and McCulloch (1993, 1997)]. The Ising component of the prior utilizes the spa-
tial information between voxels to smooth the selection indicators of neighboring
voxels, and the DP component groups the coefficients of voxels with similar effects
to improve prediction power and also reduce the posterior computational burden.
This method has scientific, statistical and computational advantages over several
existing alternative priors.

Bayesian inference has become increasingly popular in fMRI data analysis due
to several attractive properties: first, the posterior inference offers direct proba-
bilistic interpretation of the estimates; second, it eschews the multiple-comparison
problem faced by classical inference; third, incorporating prior information is
straightforward within the Bayesian framework. In particular, Markov Random
Fields priors, such as the Ising prior and the Potts prior, have been widely
used to account for the spatial information between voxels [e.g., Gössl, Auer
and Fahrmeir (2001); Woolrich et al. (2004); Penny, Trujillo-Barreto and Fris-
ton (2005); Bowman (2007); Bowman et al. (2008); Derado, Bowman and Kilts
(2010); Ge et al. (2014)] and for meta-analysis [e.g., Kang et al. (2011); Yue,
Lindquist and Loh (2012)]. Johnson et al. (2013) used a joint Dirichlet Process
mixture and Potts prior to achieve simultaneous clustering and selection. Within
the SSVS framework, Smith et al. (2003) and Smith and Fahrmeir (2007) used
the Ising prior in the context of massive univariate general linear models [GLM,
Friston et al. (1995)] for identifying brain regions activated by a stimulus. It is im-
portant to stress that the setting in Smith and colleagues is fundamentally different
from the SI regression in this paper: the former only involves fMRI time series,
without individual scalar outcome, and it deals with selecting and smoothing the
coefficients from p one-dimensional regressions (one for each voxel), a setting
broadly belonging to multiple testing; whereas our paper deals with variable selec-
tion from one p-dimensional regression, a much more challenging task.

Within the SSVS but outside the fMRI literature, there is a stream of recent
work on using the Ising prior to incorporate existing structure information be-
tween variables under the “large p, small n” paradigm [e.g., Li and Zhang (2010);
Stingo et al. (2011); Vannucci and Stingo (2011)]. Moreover, simultaneous se-
lection and clustering in multiple regression was discussed in Tadesse, Sha and
Vannucci (2005), Kim, Tadesse and Vannucci (2006) and Dunson, Herring and
Engel (2008), but none of those incorporated existing structure between covari-
ates. Another important but under-investigated issue is phase transition in the Ising
model [for a review, see Stanley (1987)], which, in the context of variable selec-
tion, leads to a drastic change (from nearly none to nearly all) in the number of
variables selected given an infinitesimal change in the hyperparameters. And the
difficulty and sensitivity in hyperparameter selection increases substantially as the
degree of the underlying graph increases. Since the fMRI voxels naturally over-
lay a 3-dimensional lattice, it is crucial to select hyperparameters that avoid phase
transition for valid inference and feasible computation. However, despite being in-
tensively explored in statistical physics, phase transition and the consequent issue
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of hyperparameter selection has received relatively little attention in the literature
of variable selection. Li and Zhang (2010) derived a ballpark estimate of the phase
transition boundary for the Ising prior using mean field theory. But their derivation
is solely based on the prior distribution and does not take into account the data
or any prior knowledge of the predictors, and thus the resulting range of possible
hyperparameters is often very wide. In this article we develop a new analytic ap-
proach to derive a tighter boundary of the hyperparameters based on the data and
the posterior distribution, and illustrate it on 2- and 3-dimensional lattices.

The rest of the article is organized as follows. Section 2 introduces the new
Bayesian model and Section 3 develops an analytic approach to hyperparameter
selection. Posterior computation of the model is discussed in Section 4. Section 5
compares the proposed methods with several existing methods through simula-
tions. In Section 6 we apply the proposed method to the KLIFF study to investigate
the social regulation of human emotion. Section 7 concludes.

2. The model. We formulate the problem via a standard multiple regression

Y = Xη + ε,(1)

where Y is the n × 1 variable response, for example, the scalar arousal or valence
measurement in the KLIFF study; X = (X1, . . . ,Xp) is the n×p (p � n) matrix of
spatially correlated neuroimaging covariates, for example, the magnitudes of the
estimated hemodynamic response function (HRF) of the voxels in the two ROIs
in the study; and ε is the error term with ε ∼ N(0, σ 2In). To focus on the main
message, we do not consider design variables, such as age and sex, which can be
easily added to the regression.

To select the voxels that are predictive of the response, we adopt the Bayesian
SSVS approach that assumes the “spike-and-slab” type of mixture prior for the
regression coefficients [Mitchell and Beauchamp (1988); George and McCulloch
(1993, 1997); Smith and Kohn (1996)]. Specifically, we define a latent indicator
γj ∈ {0,1} for each covariate that indicates whether this covariate is included in
the model (i.e., whether a voxel is significantly predictive of the response). We let

ηj = γj · βj and βj ∼ G,

where βj represents the regression coefficient of predictor j once it is selected, and
G is a prespecified probability distribution. Given γj and G, ηj are independent
following a spike-and-slab prior

ηj |(γj ,G) ∼ (1 − γj )δ0 + γjG,(2)

where δ0 is a point mass at 0. Our goal is to propose a new joint Ising and DP
(Ising-DP) prior, where an Ising prior is imposed on γ = (γ1, . . . , γp)′ to incorpo-
rate spatial information between voxels, and, in parallel, a Bayesian nonparametric
DP prior is imposed on G to achieve grouping of the regression coefficients, as
elaborated below.
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We represent the spatial structure among the fMRI voxels via a graph. Let i ∼ j

denote that i and j are neighboring voxels. Let E = {(j1, j2) : 1 ≤ j1 ∼ j2 ≤ p} be
the set of all the neighboring pairs of voxels—the edge set of the underlying graph.
Given E , let a = (a1, . . . , ap)′ be a vector and B = (bj1,j2)p×p be a symmetric ma-
trix of real numbers where bj1,j2 = 0 for all (j1, j2) /∈ E . To incorporate the prior
structural information into the model building process, we assume an Ising prior
distribution for γ [Li and Zhang (2010)] as the first component of the proposed
prior:

Pr(γ ) = exp
{
a′γ + γ ′Bγ − ψ(a,B)

}
,(3)

where ψ(a,B) is the normalizing constant: ψ(a,B) = log{∑γ∈{0,1}p exp(a′γ +
γ ′Bγ )}. If B = 0, then ψ(a,B) = ∑p

j=1 log(1 + eaj ), but in general there is no
closed form for ψ . The Ising model is a binary Markov Random Fields model and
encourages the formation of clusters of like-valued binary variables.

The hyperparameters a control the sparsity of γ . Since we are focused on 2D
and 3D lattices, which are regular graphs (i.e., each vertex has the same degree), we
do not want to favor a priori the inclusion of any voxel. This is achieved by letting
a = a1p , where 1p = (1,1, . . . ,1)′ ∈ �p . The hyperparameters {bj1,j2} represent
the prior belief on the strength of coupling between the pairs of neighbors (j1, j2),
and thus control the smoothness of γ over E given a, with larger bj1,j2 leading
to tighter coupling. When B = 0, the prior is the standard i.i.d. Bernoulli for each
predictor [George and McCulloch (1993)]. Without specific prior information of
the strength of connection between each pair of neighbors, it is natural to assume
bj1,j2 ’s to be a constant b. Then (a,B) reduce to two hyperparameters (a, b), which
can be either pre-fixed or assumed to follow some hyperprior distributions.

The Ising prior smoothes the binary selection indicators, but not the regres-
sion coefficients. In structured high-dimensional settings like fMRI, neighboring
covariates, often highly correlated, tend to have similar effects on the outcome.
Intuitively, a certain degree of smoothing or grouping of the coefficients would
improve the model fitting, especially when the effects of individual predictors are
very weak. We achieve this by imposing a DP prior on G, G ∼ DP(α,G0), with
a precision parameter α and base measure G0 [Ferguson (1973, 1974); Antoniak
(1974)]. Following the sticking-breaking (SB) presentation [Sethuraman (1994)],
G can be written as a weighted sum of an infinite number of point masses (atoms):

G(·) =
∞∑

h=1

whδθh
(·), θh

i.i.d.∼ G0,

(4)
wh = w′

h

∏
k<h

(
1 − w′

k

)
, w′

h

i.i.d.∼ Beta(1, α),

where δθ is a point mass at θ . It is clear from (4) that samples from a DP are discrete
and the component weights wh decrease exponentially in expectation. The spike-
and-slab prior (2) for each η can then be written as a mixture of an infinite number
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of point masses (at 0 and atoms randomly drawn from the base measure G0):

ηj |(γj ,w, θ) ∼ (1 − γj )δ0 + γj

∞∑
h=1

whδθh
(·),(5)

where θ = (θ1, . . . , θh, . . .) and w = (w1, . . . ,wh, . . .). The clustering nature of the
DP prior can be immediately seen from (5): it classifies the voxels into one clus-
ter of voxels that have no effect on response, and several clusters of the remain-
ing voxels, where the regression coefficients within each cluster are shrunk to be
identical. The number of clusters increases automatically as the number of voxels
under consideration, p, increases. The precision parameter α governs the number
of active components and is assumed to follow a flexible hyper Gamma(1,1) prior.
And we assume the base measure G0 = N(0, v2) with hyperparameter v. In this
article, clustering per se is not the primary interest, rather clustering is a means
of grouping similar coefficients. There is a clear scientific justification for group-
ing regression coefficients in this manner, as each predictive brain region usually
contains a number of voxels that are of similar (and usually weak) effects on the
outcome. Clustering also introduces substantial improvement in posterior compu-
tation because instead of sampling the coefficient for each voxel, one only need to
sample the common coefficient for each cluster.

Jointly, equations (3), (4) and (5) define the new Ising-DP spike-and-slab prior.

3. Selection of hyperparameters. Selection of the hyperparameters a, b in
the Ising prior is crucial for both inference and computational feasibility for
high-dimensional data. A challenging feature of the Ising prior in the “large p”
paradigm is the phase transition behavior in a graph with dimension higher than 1:
certain combinations of the hyperparameters a, b lead to the selection of almost all
variables and thus induce critical slowdown of the MCMC for posterior computa-
tion. This issue cannot be mitigated by simply replacing a and b by a hyperprior,
because for a regular graph with even modest degree (say, 3), the range of hyper-
parameters that do not incur phase transition is narrow. If the domain of the prior
is not carefully chosen, it is very likely that little weight is assigned to appropri-
ate hyperparameters, leading to poor posterior results, especially for data with low
signal-to-noise ratio (SNR), such as fMRI data. Smith and Fahrmeir (2007) sug-
gested to co-estimate the hyperparameters and the binary indicators in posterior
computation. Their method relies on specifying a uniform prior between zero and
a prespecified maximum for the smoothing parameter b. However, if the maximum
is specified outside the phase transition bounds, the resulting MCMC will still suf-
fer from the critical slowdown. Therefore, finding these phase transition bounds is
central to correct specification of hyperparameters for the Ising prior.

Solely based on the prior distribution, Li and Zhang (2010), page 1205, used
mean field approximations to derive a ballpark estimate of the phase transition
boundary for the Ising prior defined on regular graphs, and illustrated it on a hyper-
tube with degree of 6. However, because this approach does not take into account
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the data or any prior knowledge of selection rate, it often results in a very wide
range of hyperparameters. The problem becomes even more pronounced when the
degree of the graph increases. Below we develop a new method to tighten the
bounds on a and b based on the posterior distribution.

The posterior conditional density of γ given the rest of parameters is propor-
tional to

C(γ ) = exp

(
a′γ + γ ′Bγ −

n∑
i=1

(
Yi − Xi(β · γ )

)2
/2σ 2

)
.

In high-dimensional settings, usually it is reasonable to a priori assume sparsity,
that is, the proportion of true predictors among the p candidates, π , is much
smaller than 1. Intuitively, in order to have only a small proportion of predictors
being selected, the mode of C(γ ) should be larger than C(0p) and attained at a γ̂
such that the number of nonzero γ ’s is around π · p, beyond which C(γ ) should
decrease fast as the number of nonzero γ ’s increases. Below we form inequalities
for a and b based on this intuition.

When all the candidate voxels locate on a lattice, selected voxels give rise to
the largest number of neighboring pairs when they form a square in two dimen-
sions or a cube in three dimensions. Therefore, we use squares (2D) or cubes
(3D) to approximate the location of the selected π · p voxels on the lattice. Let
V = [(π · p)1/d ], where [c] denotes the largest integer no larger than c, and d is
the dimension of the lattice, which equals either 2 or 3. For a square containing V 2

voxels, there are 4V 2 − 6V + 2 neighboring pairs; for a cubic containing V 3 vox-
els, there are 13V 3 + 28 + 66(V − 2)+ 51(V − 2)2 neighboring pairs (derivations
are given in Appendix A).

3.1. Selection on two-dimensional lattice. We first discuss the two-dimensio-
nal lattice. For V 2 selected voxels on a square,

a′γ + γ ′Bγ = (a + 8b)V 2 − 12bV + 4b.

To achieve sparsity, this value needs to decrease fast as V increases, thus we must
have a + 8b < 0. We also need the conditional density of selecting V 2 voxels to
be larger than the null model with zero voxel, that is,

−
n∑

i=1

(Yi − Ȳ )2/2σ 2

(6)

≤ (a + 8b)V 2 − 12bV + 4b −
n∑

i=1

(
Yi − Xi (β · γ )

)2
/2σ 2.

Since
∑n

i=1(Yi − Ȳ )2 is the total variation of the observed Y ,
∑n

i=1(Yi −Xi(β ·γ ))2

is the sum of squared errors, and E
∑n

i=1(Yi − Xi (β · γ ))2 ≈ nσ 2, then
∑n

i=1(Yi −



694 F. LI ET AL.

Ȳ )2/2σ 2 −∑n
i=1(Yi −Xi(β ·γ ))2/2σ 2 ≈ n · R2

2(1−R2)
, where R2 is the determinant

of coefficient in the linear regression of Y versus X. Then inequality (6) is reduced
to

(a + 8b)V 2 − 12bV + 4b >
−n · R2

2(1 − R2)
.

We now propose two ways to determine R2 to further tighten the inequality. In
the first method, we prespecify the R2 value that we expect to achieve. Then
given V from prior knowledge, obtain bounds on the parameters a and b. For
example, if we want at least 50% of variation of Y to be explained by the regres-
sion, and at most 5% of 1000 voxels to be selected, we may let R2 = 50% and
V = [√50] = 7, then the inequality becomes 49(a + 8b)− 84b + 4b > −n/2, that
is, 312b + 49a > −n/2. Consequently, the range of a and b is determined by two
inequalities: −8b > a > (−n/2 − 312b)/49 and b < n/160. The second method
is to approximate R2 by a lower bound obtained based on the data: the maximum
R2 among all simple linear regressions of Y versus each single predictor X. We
believe such a lower bound is an effective approximation for the problem under
study for two reasons. First, by using the DP prior, usually most of the selected
voxels should have identical β , effectively converting the multiple regression to
a simple linear regression. Second, for fMRI data, spatially close voxels typically
have very similar X values, and thus the R2 value from regressing Y on multiple
spatially close predictors is expected to be very similar to that from regressing Y

versus a single predictor.

3.2. Selection on three-dimensional lattice. Analogously, we can derive the
range of a and b for a three-dimensional lattice. For V 3 voxels forming a cubic
and V > 1,

a′γ + γ ′Bγ = (a + 26b)(V − 2)3 + 6(a + 17b)(V − 2)2

(7)
+ 12(a + 11b)(V − 2) + 8a + 56b.

In order to avoid all predictors being selected, we need C(γ ) < 0 to decrease fast
as V increases after certain threshold. For simplicity, we only require C(γ ) to
be negative for the maximum possible V , that is, V = [p1/3]. For example, in
the KLIFF data, p is around 6600 in both ROIs, then V = 18 and, consequently,
a < −23b. In addition, in order to avoid the null model, that is, no voxel being
selected, we have

a′γ + γ ′Bγ ≥ −n · R2

2(1 − R2)
.(8)

Given the prespecified R2 and V , we can obtain the range of a and b satisfying this
inequality. Again taking the KLIFF data, for example, n = 104, we want at most
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1% voxels selected, and the expected R2 is 0.5. Then V = [66.71/3] = 4, plug
this value and R2 = 0.5 into the inequality (8), and we have a > −14.6b − 0.81.
Combining the previously obtained inequality a < −23b, it must be the case that
−23b > −14.6b − 0.81, so that we have b < 0.1. Therefore, for the KLIFF data
analysis, we will choose a and b such that b ≤ 0.1 and −23b > a > −14.6b−0.81.

One potential problem of using (7) to evaluate a′γ + γ ′Bγ in (8) is the over-
estimation of the number of neighboring pairs of selected voxels, especially when
the selected V is larger than 3, which can lead to a very tight range of b and a.
We instead propose that as long as there is one predictor whose posterior proba-
bility of being selected is larger than that of not selected, the posterior simulation
will not be stuck at the null model. Therefore, we can just let a ≥ −n·R2

2(1−R2)
, imply-

ing b < n·R2

2·23(1−R2)
such that −23b > −n·R2

2(1−R2)
. For one of the real data sets under

study, the maximum R2 across all simple linear regressions is 0.10, then we have
−23b > a > −5.8 and b < 0.25. Given the derived range of hyperparameters,
and with the belief that all the true predictors are tightly clustered together, we
first choose the largest possible b to induce the most spatial clustering effect; then
given the value b, we choose the smallest a within the phase transition boundary to
induce sparsity. Such a choice of a also brings computational advantage, because
the computational cost of obtaining the regression coefficients decreases with the
number of selected predictors in each MCMC iteration. Here, we choose b = 0.2
and a = −4.5 as the hyperparameters for the Ising prior.

3.3. Remarks. The above derivation suggests the following: first, the larger
R2 and the sample size n, and the smaller the degree of the underlying graph (i.e.,
the average number of neighbors of each candidate predictor), the wider the range
of b; and second, the range of a depends on both b and the degree of the graph.
Generally, for an Ising model built on a regular graph, given b, a larger degree of
the graph leads to smaller a. These are consistent with a general understanding of
the effect of prior distributions in Bayesian inference: when R2 and n are large,
indicating a strong SNR and abundant data information, choice of prior is less
crucial. On the other hand, if each predictor has many neighbors, then the positive
part γ ′Bγ in the prior will give a strong preference to models with many spatially
close predictors. Therefore, we need to use a smaller b in order not to impose a
strong prior. This also explains, for fixed b, the larger the degree of the graph, the
smaller a is required to induce a small prior odds of selecting a large number of
predictors.

The degrees of a 2D and 3D lattice are 8 and 26, respectively. Consequently,
the range of hyperparameters a and b that avoids phase transition is much tighter
in the latter than the former case. Indeed, in the real application, when we assume
the Ising prior on a 3D lattice, the results are much more sensitive to the choice of
a and b. In general, we find a larger degree of the underlying graph corresponds
to substantially more difficult hyperparameter selection and inference, consistent
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with the observation made in Li and Zhang (2010). Also, it is crucial to examine
γ ′Bγ . Nevertheless, when choosing the underlying graph, the concern of the de-
gree of the graph should not outweigh the true physical structure. For example,
in fMRI data, we prefer an Ising prior on a 3D lattice than on a 2D lattice, as the
latter only accounts for the structure in one slice and ignores the true 3D structure
between voxels.

In Bayesian variable selection problems, choice of hyperparameters affects not
only posterior selection probabilities, but also computational time, convergence
rate and required iteration of MCMC simulations. We found that if very few pre-
dictors are selected in each iteration, the DP prior tends to shrink the β’s of all
predictors into one identical value, leading to very sticky MCMC, which offsets
the computational advantage per iteration offered by the shrinkage effect of the
DP prior. Therefore, besides avoiding the two extreme ends of full selection and
zero selection, the trade-off between computation per iteration and convergence
rate should be taken into consideration when choosing the hyperparameters.

4. Posterior computation. We use a Gibbs sampler with data augmentation
to carry out the posterior inference of the proposed model: γ |−, β|−, σ |−, where
“−” denotes all the rest of the parameters. Below we describe the outline of the
Gibbs sampler but relegate the computational details to Appendix B.

The procedure to update the variance σ , and the indicators γ , which we up-
date one at a time in a random order in each sweep, is standard. To draw posterior
samples of β , we use an approximate blocked Gibbs sampler based on the trun-
cated stick-breaking process [Ishwaran and Zarepour (2000); Ishwaran and James
(2001)]. First choose a conservative upper bound, H < ∞ on the number of mix-
ture components potentially occupied by βj ’s in the sample. Then introduce latent
class indicators for each predictor, Zj(∈ {1, . . . ,H }) with a multinomial distribu-
tion, Zj ∼ MN(w) where w = {w1, . . . ,wH }. This associates each predictor in the
current iteration with a cluster h in the DP. In the Gibbs sampler, we first augment
the cluster membership Zj and then sample βj conditional on Zj .

The main computational gain, especially when p is large, is due to the clustering
nature of DP: because all the predictors in one cluster share the same coefficient,
we only need to update one β for each cluster within each iteration. It is easy to
show the computational order of the posterior computation of one MCMC iter-
ation under the DP prior for β is O(n × p × psel), where psel is the number of
selected predictors (model size) in that iteration. For comparison, we present the
corresponding computational order under the standard spike-and-slab prior with
Gaussian prior for β , for which there are two general schemes for posterior com-
putation: (i) sample all parameters, β , σ and γ ; and (ii) integrate out β and σ

under the conjugate setup and only sample γ . In both schemes, the main compu-
tational burden is due to the inversion of the covariance matrix, which, even using
fast low-rank update algorithms, is of the order O(n × p2) and O(n × p × p2

sel),
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respectively. When p is very large as in this application, the computational or-
der of the first scheme is prohibitive, and this is the reason that the vast majority of
the SSVS literature in high-dimensional settings adopts the second scheme, which,
however, does not provide posterior samples of the coefficients β or the variance σ .
Moreover, because of the squared term of psel, even when the average model size
is modest (e.g., between 50–100), the second scheme can still incur overwhelm-
ing computational cost. In contrast, as shown in the details of the Gibbs sampler
in Appendices A and B, the DP prior does not require matrix inversion, yet still
provides posterior samples of β’s with much lower computational cost.

5. Simulations.

5.1. Simulation design. We conduct simulations to examine the performance
of the Ising-DP prior and compare with several alternative methods. We simulate
data of n = 104 subjects (the number of subjects in the real application), each hav-
ing p = 1000 candidate predictors overlaying a 10×10×10 3D grid. Each predic-
tor j (1 ≤ j ≤ 1000) is spatially indexed by dj = (d1

j , d2
j , d3

j ) for 1 ≤ d1
j , d2

j , d3
j ≤

10. To mimic the real data, we let predictors be strongly correlated, and the design
matrices of the ith subject Xi = (Xi1, . . . ,Xip) in all the following simulations fol-

low a multivariate normal MVNp(μ,�), where μ = (μ1, . . . ,μp)
i.i.d.∼ Unif(3,6)

and �j1j2 = 0.8|dj1−dj2 |, where |dj1 − dj2 | = ∑3
i=1 |di

j1
− di

j2
|. We consider the

following four simulation scenarios.

Scenario 1: One cluster of true predictors, with identical β’s. There is a cluster
of 5 × 5 × 5 (125) true predictors (γj = 1) with spatial indices 4 ≤ d1

j , d2
j , d3

j ≤ 8
located in the center of the 3D cube. The coefficients β of the true predictors are set
to 0.6. The response is generated from Yi = ∑

j Xi,jβjγj +εi with εi ∼ N(0,2002)

for i = 1, . . . , n, creating a data set with a low SNR 5%—defined as V(Xβ)/V(ε).
The following scenarios also all have such a low SNR, which is the norm in real
fMRI data.

Scenario 2: One cluster of true predictors, with varying but strongly correlated
β’s. We let the coefficients of the true predictors, locating on the same grid as
those in scenario 1, vary and follow MVNp(0.6 × 1p,
), where 
j1j2 = 0.1 ×
0.95|dj1−dj2 |. Therefore, both the observed values and the underlying coefficients
of neighboring predictors are strongly correlated.

Scenario 3: Two clusters of true predictors, with identical β’s within each clus-
ter. A more challenging scenario is when there are multiple spatially separated
clusters of true predictors. Specifically, we let the true predictors form two clus-
ters: one overlays the grid of 3 ≤ d1

j ≤ 4,3 ≤ d2
j ≤ 4,3 ≤ d3

j ≤ 4, and another

overlays the grid of 6 ≤ d1
j ≤ 9,6 ≤ d2

j ≤ 9,6 ≤ d3
j ≤ 9. We set the coefficients β

of the predictors in the two clusters to 0.4 and 1, respectively.
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Scenario 4: Two clusters of true predictors, with varying β’s within each clus-
ter. The true predictors locate on the same grid as those in scenario 3, and one
cluster of β were generated from MVNp(0.4 × 1p,
1) with 
1,j1j2 = 0.1 ×
0.95|dj1−dj2 |, and those in the second cluster are from MVNp(1 × 1p,
2) with

2,j1j2 = 0.1 × 0.95|dj1−dj2 |. Variable selection under two-cluster scenarios is
challenging: the strong correlation between the predictors outside and inside the
clusters renders differentiating nonsignificant predictors, especially those located
between the two clusters, from the true ones difficult.

For each of the simulated data set, we fit the regression model (1) with four
different priors: (i) i.i.d. Bernoulli prior for γj , with a Gaussian prior for the βj ’s
(this is the standard spike-and-slab prior), referred to as the i.i.d.-Gaussian prior;
(ii) Ising prior for γj , with a Gaussian prior for the βj ’s, referred to as the Ising-
Gaussian prior; (iii) i.i.d. Bernoulli prior for γj , with a DP prior for βj ’s, referred
to as the i.i.d.-DP prior; (iv) the Ising-DP prior. The hyperparameters (a, b) for the
Ising priors are chosen by the proposed approach in Section 3, with a = −5 and
b = 0.25. For the DP priors, we set H = 20, α = 1 and v = 10 such that G0 is very
flat in a wide domain. For each simulated data, we run 10 parallel Gibbs samplers
with random start in γ , each having 20,000 iterations with the first 10,000 ones as
burn-in. Posterior computation with the i.i.d.-Gaussian and Ising-Gaussian priors
are carried out using the software by Li and Zhang (2010). The main summary
statistic, the posterior inclusion probability, is deemed convergent upon inspecting
the Gelman–Rubin statistic [Gelman and Rubin (1992)]. In all of our experiments,
the 10 simulations lead to highly similar posterior summary statistics.

5.2. Simulation results. We calculate the posterior inclusion probabilities
Pr(γj = 1|Y) as the posterior summary statistics, obtained by dividing the number
of iterations where γj = 1 over the total number of iterations excluding the burn-in
period. To summarize these marginal probabilities, we compute the ROC curve as
follows: only those covariates j with Pr(γj = 1|Y) greater than a threshold are
deemed positives, and those below the threshold are deemed negatives; the ROC
curve reflects the pair of true positive rate and false positive rate achieved by vary-
ing the calling threshold. The bigger area under the ROC curve (maximum 1), the
better the discriminating power of the model.

The ROC curves resulting from the simulations under scenarios 1–2 (one clus-
ter) and 3–4 (two clusters) are presented in the top and bottom panel of Figure 1,
respectively. We also calculated the root mean squared error (RMSE) per vari-
able, (

∑
j (β̂j − βj )

2/p)1/2, of each prior, summarized in Table 1. In all four
simulations, the Ising-DP prior resulted in the best ROC, closely followed by the
i.i.d.-DP prior, beating both the i.i.d.-Gaussian and the Ising-Gaussian priors. This
pattern is consistent with the RMSEs. Overall, the ROC curves suggest relatively
low discriminating power in these simulations, even for the best-performing Ising-
DP prior. This is not surprising because variable selection under all four scenarios
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One cluster

(a) Identical β of true predictors (b) Varying β of true predictors

Two clusters

(c) Identical β of true predictors within a cluster (d) Varying β of true predictors

FIG. 1. ROC curves based on the posterior selection probability Pr(γj = 1|Y) obtained from
i.i.d.-Gaussian, Ising-Gaussian, i.i.d.-DP and Ising-DP prior, respectively, under four simulation
scenarios.

is very challenging due to the low SNR, strong correlation between variables and
the small-n large-p nature. Indeed, our experience based on more simulations sug-
gests that as the SNR and/or the sample size decreases, performance of all the
priors drops, but the Ising-DP prior is the least affected, demonstrating the benefit
of introducing additional shrinkage to the coefficients when the signal is weak. In
summary, it is evident from these simulations that the Ising-DP prior outperforms
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TABLE 1
Root mean squared error (RMSE) per variable, (

∑
i (β̂i − βi)

2/p)1/2, by different priors

Scenario I.i.d.-Gaussian Ising-Gaussian I.i.d.-DP Ising-DP

1. One-cluster identical β 0.623 0.599 0.190 0.190
2. One-cluster varying β 0.284 0.283 0.181 0.179
3. Two-cluster identical β 0.311 0.315 0.256 0.250
4. Two-cluster varying β 0.368 0.251 0.235 0.233

the existing alternatives in data with characteristics similar to those of the fMRI
data under study.

It is worth noting that in these simulations the DP component appears to impose
a stronger clustering effect on performance than the Ising component. One reason
is that, as shown in Section 3, when the degree of the graph is large as in the 3D
fMRI analysis, the hyperparameter b in the Ising prior used to control the cluster-
ing effect has to be set small to avoid phase transition, which consequently limits
its clustering effect. Nevertheless, the simulation results suggest that incorporat-
ing the spatial information into Bayesian variable selection via the Ising prior still
leads to improved selection accuracy than otherwise.

6. Application to the KLIFF study.

6.1. The data. We now provide more information on the design of the KLIFF
study and the preprocessing procedure. For each of the 104 pairs of participants
in a close relationship (referred to as partners hereafter), one of them was ran-
domly selected to be threatened by electric shocks while their brain activities were
measured by fMRI in three separate sessions: in one session he/she is holding
hands with his/her partner; in the second session, he/she is holding hands with a
stranger; in the third session, he/she is alone, holding hands with nobody at all.
The three hand-holding conditions mimic three types of social interactions. Each
of the three sessions, randomized within each pair of partners, contains 24 trials
in random order, half of which are threat cues (a red “X” on a black background)
indicating a 20% likelihood of receiving an electric shock to the ankle, and the
other half are safety cues (a blue “O” against a black background) indicating no
chance of shock. A 3D fMRI scan of the subject’s brain was acquired for every 2
seconds in the experiment lasting for 400 s. Overall, fMRI data collected from the
KLIFF experiment consist of 104 subjects in 3 sessions at 200 time points for over
100,000 spatially distributed voxels. At the end of each session, the subjects fac-
ing the threat were asked to score their arousal and valence feelings experienced
during the experiment. Both the arousal and valence measurements range from 1
to 9, encoding feelings from calming/soothing to alert/agitated, and feelings from
highly negative/miserable to highly positive/pleased, respectively.
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Preprocessing of the fMRI data was carried out via FMRIB’s Software Library
(FSL) software [Version 5.98; Smith et al. (2004)]. Registration of the images
in FLIRT [Jenkinson et al. (2002)] was based on Montreal Neurological Institute
(MNI) space. More details of preprocessing can be found in Zhang et al. (2013).
ROIs were determined structurally using the Harvard subcortical brain atlas, and
were chosen for their likely involvement in affective processing based on previous
studies [Maresh, Beckes and Coan (2013)]. In particular, our analysis focuses on
two emotion related regions: dorsal anterior cingulate cortex (dACC) and insula,
which were commonly implicated in negative affect and threat responding, and
whose numbers of voxels are similar, 6666 and 6591, respectively. To obtain the
predictors, we conducted massive univariate analysis using the GLM to get scalar
summaries of the fMRI time series. Specifically, for every voxel in each ROI, we
used the semi-parametric GLM approach in Zhang et al. (2013) to estimate the
hemodynamic response functions (HRF) corresponding to the threat and safety
cues (stimuli), and extracted the height of the HRF estimates, interpreted as the
magnitude of brain response to the stimuli of that voxel. We then computed the
difference between the estimated magnitudes under the threat cue and the safety
cue (baseline) for each voxel as the predictors. In total, for each ROI, we obtained
six sets of regression data: two different response variables—valence and arousal
scores of the subjects, under each of the three hand-holding conditions, and asso-
ciated magnitude estimates of each voxel in the ROI collected in the same session
as the predictors.

6.2. Results. We applied the proposed Bayesian model to the 12 sets of data
(6 for each ROI) using the Ising-DP prior on a 3D lattice with hyperparameter
a = −4.5 and b = 0.2 obtained from the method in Section 3. For comparison, we
also fit the model with the i.i.d.-Gaussian and the Ising-Gaussian priors. For each
regression, 25,000 iterations of MCMC were performed with the first 5000 dis-
carded as burn-in. Convergence of the marginal inclusion probabilities is deemed
via the Gelman–Rubin statistics.

Though the number of selected predictors is larger than the sample size in each
MCMC iteration, the clustering effect of the DP prior leads to a small number of
different β values (less than 10) in most iterations. Among the 12 sets of regres-
sions, we focused on those with (i) reasonably high R-squared values and (ii) top
10% selected voxels having a high proportion of nonzero coefficients with the
same sign. The R-squared value for each iteration t is given by

R2
t = 1 −Var(Y − Xγ t · β t )/Var(Y),

where γ t and β t are the posterior draws of γ and β , respectively, at the t th it-
eration. The first criterion requires that a significant proportion of variation of
subjects’ emotion measurements can be explained by their brain response magni-
tudes, and the second requires that the majority of the top selected predictors have
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(a) dACC alone arousal (b) Insula alone arousal (c) Insula partner valence

FIG. 2. R-squared values of the regressions.

similar and significant effects on the response, matching the substantive knowl-
edge from the existing psychology literature. We found three sets of regressions fit
these two criteria: the regression with the arousal measurement under alone condi-
tion as the response in dACC and insula, respectively, and the regression with the
valence measurement under hand-holding-with-partner condition as the response
in insula.

Histograms of the R-squared values and the coefficients of the top 10% selected
voxels in these three regressions are displayed in Figures 2 and 3, respectively.
We can see that in the regression with arousal under the alone condition as the
response in dACC, the R-squared value is larger than 20% in more than 20%
of the MCMC draws [Figure 2(a)], and almost all (>99.5%) of the top 10% se-
lected voxels’ coefficients are positive in more than 90% of the posterior draws
[Figure 3(a)]. The same regression in insula led to similar results [R-squared in
Figure 2(b) and coefficients in Figure 3(b)]. The significant positive association
between the arousal measurement and brain response magnitudes under the alone
condition is consistent with related findings in the literature. First, in a previous

(a) 10% percentile (b) 10% percentile (c) 90% percentile
dACC arousal insula arousal insula valence

FIG. 3. Histograms of 10% or 90% percentile of the coefficients (in scale 10−4) of the top 10%
selected voxels in dACC and insula when regressing subjects’ arousal (the first two figures) or va-
lence (the third figure) scores versus the magnitude of brain response to threat under the alone or
hand-holding-with-partner condition.
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study of the KLIFF data [Zhang et al. (2013)], we found that the brain response
to threat stimulus is most active when subjects are alone. This phenomenon can
be explained through the social baseline theory [Beckes and Coan (2011); Coan,
Beckes and Allen (2013); Coan and Maresh (2014)], which suggests that the hu-
man brain assumes proximity to other human beings, and perceives the environ-
ment as less threatening during the presence of other people in a close relationship,
and thus serving as a default, or baseline, strategy of emotion regulation. This re-
duces the need to rely on effortful self-regulation in response to threat. On the
other hand, when the subjects are alone without any social support, their brains
have to use their own energy for emotion regulation, and, consequently, their emo-
tional response is strong, and its association with subjects’ emotion measurements
is easier to detect in the two emotion-related ROIs. Second, the positive association
between brain response and excitement level corresponds with literature showing
a role for dACC and insula in both cognitively- and physically-induced arousal
[Critchley et al. (2000); Lewis et al. (2007)]. Since the use of electric shock as a
threat stimulus causes physical pain and induce subjects’ internal awareness of up-
coming pain during anticipation of a shock particularly, it is natural that the more
active emotion-related ROIs process the stimulus, the more intense and agitated
feeling the subjects experience.

We also found significant association between valence and brain response mag-
nitude in insula under hand-holding-with-partner condition [R-squared values
shown in Figure 2(c) and coefficients shown in Figure 3(c)]. The negative asso-
ciation has two possible explanations. First, the threat stimulus induces subjects’
negative feelings, and the valence and arousal measures are negatively correlated,
therefore, the more active the brain responds to the stimulus, the less pleased the
subjects’ feelings. Second, according to the social baseline theory, humans feel less
threatened under the hand-holding-with-partner condition. Thus, subjects’ emotion
variation is more likely to occur in the valence dimension. We indeed found that
the variance of subjects’ valence is larger than that of arousal. Moreover, insula
is thought to mediate the awareness of internal bodily and emotional states [Craig
(2009)] and is related to pain anticipation and intensity [Wiech, Ploner and Tracey
(2008)]. Results of the regression under the hand-holding-with-stranger condition
are not as stable as the other two regressions, possibly due to the individual differ-
ences in cognitive and affective perception of strangers.

In all three regressions, the largest posterior selection probabilities of voxels are
around 0.1, and the majority of the probabilities are below 0.05. This is as expected
given the very low SNR common in fMRI data. In these situations, arguably, the
ranks rather than absolute value of the probabilities are more informative about the
selection results. Figures 4, 5 and 6 show the heatmaps of the posterior selection
probabilities of the voxels in three slices based on their rank under the Ising-DP
(top panel) in these regressions, respectively, in comparison to the corresponding
heatmaps under the i.i.d.-Gaussian (middle panel) and the Ising-Gaussian prior
(bottom panel). The color scale is arbitrary, with dark red representing the selection
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FIG. 4. Heatmaps of voxels according to the ranks of their posterior inclusion probabilities ob-
tained from Ising-DP, Ising-Gaussian and i.i.d.-Gaussian priors, respectively, in the Bayesian re-
gression of subjects’ arousal scores versus the magnitude of brain response to threat of voxels in
dACC and insula when subjects are alone.

probability in the lowest rank and light yellow representing the highest rank. The
most striking pattern from these graphs is that the areas with the highest selection
probabilities identified by the Ising-DP prior were smoothly located across the
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FIG. 5. Heatmaps of voxels according to the ranks of their posterior inclusion probabilities ob-
tained from Ising-DP, Ising-Gaussian and i.i.d.-Gaussian priors, respectively, in the Bayesian re-
gression of subjects’ arousal scores versus the magnitude of brain response to threat of voxels in
insula when subjects are alone.

ROIs, matching the scientific understanding of human brain functions, in contrast
to those by the i.i.d.-Gaussian or the Ising-Gaussian prior, which are very diffused
and scattered across the entire region.
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FIG. 6. Heatmaps of voxels according to the ranks of their posterior inclusion probabilities ob-
tained from Ising-DP, Ising-Gaussian and i.i.d.-Gaussian priors, respectively, in the Bayesian re-
gression of subjects’ valence scores versus the magnitude of brain response to threat of voxels in
insula when subjects are hand holding with their partners.

Since the underlying truth is unknown, we use a simulation-based procedure to
obtain the sampling distribution of the R-squared values of a null model. Specif-
ically, we simulated, independently of the covariates, a normally distributed re-
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(a) Histogram of R-squared (b) Heatmap of selection (c) Voxels with highest top 10%
probabilities of voxels selection probabilities

FIG. 7. Regression of simulated response versus brain activity measurements in dACC under alone
condition.

sponse variable with similar variance and range as the observed emotion measure-
ments, and applied the Bayesian model to regress the simulated outcome on the
observed covariates in dACC under the alone condition. The histogram of positive
R-squared values in the posterior draws of this null model, shown in Figure 7(a),
centers around zero, and is distinct from the histograms from the aforementioned
three regressions, each of which has a much higher proportion of large R-squared
values. In contrast, the histogram of the null model is very similar to those from the
remaining nine regressions. As such, we deem there is no statistically significant
association between the covariates and the responses in these nine regressions.

7. Discussion. Motivated by the KLIFF hand-holding experiment, in this
article we propose a joint Ising-DP prior within the Bayesian SSVS frame-
work to achieve selection and grouping of spatially correlated variables in high-
dimensional SI regression models. We developed an analytic approach for deriving
the bounds of the hyperparameters to avoid phase transition, a main challenge in
methods involving the Ising prior. Though the bounds provided by our method are
tighter than the previous mean field bounds, they are still only ballpark estimates
and may be wide in graphs with high degrees. A focus of our future research is
therefore to improve the method of hyperparameter selection for a more complex
graphical structure.

A major challenge to MCMC-based Bayesian methods in high-dimensional set-
tings is computation. Though the DP prior in our model partially reduces the com-
putational load by clustering the coefficients, computational scalability remains a
challenge given the large p. Indeed, currently we are not able to perform a whole
brain analysis with p ≈ 100,000. Moreover, the mixing rate of the MCMC of the
standard strategy in SSVS of updating one variable at a time may be slow, espe-
cially when the DP prior is involved. An attractive direction is to design a block
update Gibbs sampling scheme that updates multiple variables at a time, and to
parallelize the computation within a block using graphics processing unit (GPU)-
based programming [Suchard et al. (2010); Ge et al. (2014)]. The procedure can
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be further speeded up by carefully selecting the block so that it matches the under-
lying block structure.

The Ising prior is a special case of Markov random fields. Kalus, Sämann and
Fahrmeir (2014) proposed latent GMRFs via a probit model. The probit-GMRF
prior simplifies the calculation of the hyperparameters and does not suffer from the
phase transition behavior. However, the main computational hurdle of inversion of
a matrix of the size of selected variables remains. Nevertheless, it is possible to
combine the DP prior with the probit-GMRF prior to reduce the computation.

Extension to binary and categorical responses is, in principle, straightforward
using generalized linear models. Computation is an increased focus, as closed-
form posterior conditional distributions are no longer available. The same problem
applies with censored survival models. Laplace approximations [Raftery (1996)]
are useful, but they usually require gradient methods for iterative computation of
posterior modes for each sweep of covariates. A possible improvement can be
obtained by exploiting the majorization–minimization/maximization (MM) algo-
rithm [Lange (2008)]—a generalized version of the EM algorithm—for within-
model mode computations.

The proposed Ising-DP prior inherently assumes sparsity, that is, only a small
portion of the voxels in the ROIs are associated with the individual scalar outcome.
This is achieved via a point mass (spike-and-slab) prior for the regression coeffi-
cients, resulting in a “hard-thresholding” of the β’s. However, in our real applica-
tion, posterior probabilities of inclusion of nearly all voxels are relatively small,
which suggests that an alternative “soft-thresholding” without sparsity—achieved
by (spatial adaption of) LASSO-type priors [Park and Casella (2008)]—may be
desirable and a worthwhile direction for future investigation.

Though we have focused on fMRI, the proposed model is applicable to other
imaging modalities where detailed spatial information between covariates is avail-
able, such as DTI or MRI.

Matlab code that implements the method is available at http://faculty.virginia.
edu/tingtingzhang/Software.html.

APPENDIX A: CALCULATION OF a′γ + γ ′Bγ

1. Two-dimensional square. For V 2(V > 1) voxels on a square, the (V − 2)2

voxels in the center all have 8 neighbors, the 4 vertex voxels have 3 neighbors, and
the 4 · (V − 2) voxels on the edge but not vertexes have 5 neighbors. Then, given
a and B as defined in Section 2, we have

a′γ + γ ′Bγ = a · V 2 + b · (
8 · (V − 2)2 + 4 · 3 + 5 · 4 · (V − 2)

)
= (a + 8b)V 2 − 12bV + 4b.

2. Three-dimensional cube. For V 3 (V > 1) voxels in a cube, the (V −2)3 vox-
els in the center all have 26 neighbors, the 8 voxels on the vertex have 7 neighbors,

http://faculty.virginia.edu/tingtingzhang/Software.html
http://faculty.virginia.edu/tingtingzhang/Software.html
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the 12(V − 2) voxels on the edge but not vertexes have 11 neighbors, and the
6(V − 2)2 voxels on the 6 outside faces of the cube but not on the edges have 17
voxels. Then, given a and B as defined in Section 2, we have

a′γ + γ ′Bγ

= a · V 3 + b · (
26(V − 2)3 + 8 · 7 + 12(V − 2) · 11 + 6(V − 2)2 · 17

)
= (a + 26b)(V − 2)3 + 6(a + 17b)(V − 2)2 + 12(a + 11b)(V − 2)

+ 8a + 56b.

APPENDIX B: POSTERIOR DISTRIBUTIONS IN THE GIBBS SAMPLER

1. Update γ . We update the indicator for one voxel γj at a time. Let γ (−j) =
{γl : l 
= j}, I(−j) be the set of indices {γl = 1 : l 
= j}, β(−j) = {βl : l 
= j}, and
X(−j) be the design matrix corresponding to β(−j). The prior probability of γj = 1,
Pr(γj = 1|γ (−j)) is exp(a + b

∑
l∈I(−j)

γl)/(1 + exp(a + b
∑

l∈I(−j)
γl)). By the

Bayes rule, the posterior probability of γj = 1 given the data and other parameters
is

Pr(γj = 1|γ (−j),β, σ,Y)

= Pr(γj = 1|γ (−j))

Pr(γj = 1|γ (−j)) + F(j |γ (−j))
−1 · Pr(γj = 0|γ (−j))

,

where β ·γ denotes the dot product between β and γ , and F(j |γ (−j)) is the Bayes
factor,

F(j |γ (−j)) = Pr(Y|γj = 1,γ (−j),β, σ )

Pr(Y|γj = 0,γ (−j),β, σ )

= exp{−∑n
i=1(Yi − Xiβ · γ )2/2σ 2}

exp{−∑n
i=1(Yi − Xi,(−j)β(−j) · γ (−j))

2/2σ 2} ,

where Xi,(−j) is the ith row of matrix X(−j).
2. Update σ 2. σ 2|− ∼ Inv-Gamma(n/2,μσ ), where μσ = ∑

i (Yi − Xiβ ·
γ )2/2.

3. Update β . Denote the βj ’s in Zj = h by βh, and let Xh
i = ∑

j : γj=1,Zj=h Xij .

Note that Xh
i = 0 if {j :γj = 1,Zj = h} = ∅. Also, let β(−h) = {βj :Zj 
= h},

γ (−h) = {γj :Zj 
= h} and X(−h) = {Xj :Zj 
= h}, respectively, denote the collec-
tion of all the β’s and the design matrix of the covariates not in cluster h. Then for
h = 1, . . . ,H ,

βh|− ∼ N
(
μh,1/Sh)

,

with Sh = ∑n
i=1(X

h
i )

2/σ 2 + 1/v2 and μh = {∑n
i=1(Yi − X(−h)

i β(−h) · γ (−h))Xh
i }/

Sh. This part can be parallelized (across h).
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The posterior cluster membership Z is drawn from a multinomial distribution
with

Pr(Zj = h|γj = 1,−) = wh exp{−∑n
i=1(Yi − Xiβ(jh) · γ (jh))

2/2σ 2}∑H
k=1 wk exp{−∑n

i=1(Yi − Xiβ(jk) · γ (jk))
2/2σ 2} ,

Pr(Zj = h|γj = 0,−) = wh,

where β(jh) = (β1, . . . , βj−1, β
h,βj+1, . . . , βp) and γ (jh) = (γ1, . . . , γj−1,1,

γj+1, . . . , γp) for h = 1, . . . ,H and j = 1, . . . , p. To update the associated weights
w, first set w′

H = 1 and draw w′
h from Beta(1 + ∑

j : Zj=h 1, α + ∑
j : Zj>h 1) for

each h ∈ {1, . . . ,H − 1}, then update wh = w′
h

∏
k<h(1 − w′

k).
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SUPPLEMENTARY MATERIAL

Heatmaps (DOI: 10.1214/15-AOAS818SUPP; .pdf). We provide the heatmaps
of the voxels with top 10% highest posterior selection probabilities obtained, re-
sulting from Ising-DP, Ising-Gaussian and i.i.d.-Gaussian priors, respectively, in
three regressions [Li et al. (2015)].
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