About
18
Publications
6,293
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,325
Citations
Introduction
Current institution
Additional affiliations
August 2015 - November 2015
August 2015 - July 2016
Publications
Publications (18)
The gut microbiota has a significant impact on the development and function of intestinal epithelial cells (IECs) by modifying bile acid (BA) metabolites. Recently, specific gut microbiome-derived BAs, such as 7-oxo-deoxycholic acid (7-oxo-DCA) and isodeoxycholic acid (isoDCA), have been identified to be shifted inversely in colitis and hepatic liv...
Bile acids (BAs) affect the intestinal environment by ensuring barrier integrity, maintaining microbiota balance, regulating epithelium turnover, and modulating the immune system. As a master regulator of BA homeostasis, farnesoid X receptor (FXR) is severely compromised in patients with inflammatory bowel disease (IBD) and colitis-associated color...
Colorectal cancer (CRC) is driven by genomic alterations in concert with dietary influences, with the gut microbiome implicated as an effector in disease development and progression. While meta-analyses have provided mechanistic insight into patients with CRC, study heterogeneity has limited causal associations. Using multi-omics studies on genetic...
Dysregulated bile acid (BA)/lipid metabolism and gut bacteria dysbiosis are tightly associated with development of obesity and non-alcoholic fatty liver disease (NAFLD). The orphan nuclear receptor, Small Heterodimer Partner (SHP/NR0B2), is a key regulator of BA/lipid metabolism, and its gene-regulating function is markedly enhanced by phosphorylat...
The pleiotropic actions of the Farnesoid X Receptor (FXR) are required for gut health, and reciprocally, reduced intestinal FXR signaling is seen in inflammatory bowel diseases (IBDs). Here, we show that activation of FXR selectively in the intestine is protective in inflammation-driven models of IBD. Prophylactic activation of FXR restored homeost...
Dysregulation of the gut microbiome has been implicated in the progression of non-alcoholic fatty liver disease (NAFLD) to advanced fibrosis and cirrhosis. To determine the diagnostic capacity of this association, we compared stool microbiomes across 163 well-characterized participants encompassing non-NAFLD controls, NAFLD-cirrhosis patients, and...
A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease1, 2, 3, 4, 5, 6, 7, 8–9. Considering the diversity of the human microbiome (which numbers over 40,000 operati...
Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5+) cancer stem cells and promote an adenoma-to-adenocarcinoma...
In this issue of Cancer Cell , Kettner et al. identify the disruption of normal circadian rhythmicity as an independent risk factor for hepatocellular carcinoma (HCC) in experimental animals and reveal opposing roles for the nuclear receptors FXR and CAR in disease progression from non-alcoholic fatty liver disease (NAFLD) to HCC.
The obesity epidemic and the urgent need for effective and safe drugs to treat obesity-related diseases have greatly increased research interest in the metabolic hormones, fibroblast growth factor-19 (FGF19, FGF15 in mice), and FGF21. FGF19 and FGF21 function as endocrine hormones that play key roles in energy metabolism and counteract obesity. Imp...
The bile acid-sensing nuclear receptor, Farnesoid X Receptor (FXR), regulates postprandial metabolic responses, including inhibition of bile acid synthesis, by inducing the intestinal hormone, fibroblast growth factor 15 (FGF15; FGF19 in human). In this study, we tested a novel hypothesis that FXR not only induces intestinal FGF15, but also primes...
Lysosomal degradation of cytoplasmic components by autophagy is essential for cellular survival and homeostasis under nutrient-deprived conditions. Acute regulation of autophagy by nutrient-sensing kinases is well defined, but longer-term transcriptional regulation is relatively unknown. Here we show that the fed-state sensing nuclear receptor farn...
Brown fat generates heat through uncoupled respiration, protecting against hypothermia and obesity. Adult humans have brown
fat, but the amounts and activities are substantially decreased in obesity, by unknown mechanisms. Here we show that elevated
microRNA 34a (miR-34a) in obesity inhibits fat browning in part by suppressing the browning activato...
SIRT1 is an NAD(+) -dependent deacetylase that is implicated in prevention of many age-related diseases including metabolic disorders. Since SIRT1 deacetylase activity is dependent on NAD(+) levels and the development of compounds that directly activate SIRT1 has been controversial, indirectly activating SIRT1 through enhancing NAD(+) bioavailabili...
MicroRNA-34a (miR-34a) is the most highly elevated hepatic miR in obese mice and is also substantially elevated in patients who have steatosis, but its role in obesity and metabolic dysfunction remains unclear. After a meal, FGF19 is secreted from the ileum; binds to a hepatic membrane receptor complex, FGF19 receptor 4 and coreceptor β-Klotho (βKL...
In order for two sensors within a body area network to determine they are on the same body, e.g., for security purposes, extensive prior work considers the use of physiological values. We study the practicality of using body physiological values for securely exchanging messages for sharing keys. Due to its popularity in the literature, we use elect...