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Abstract

This paper comparatively analyses the associagbnden urban neighborhood
socioeconomic markers and ambient air pollutiowamcouver and Seattle, the two
largest urban regions in the Georgia Basin -Pugah& (GB - PS) international airshed.
Given their similarities and common airshed, Vanayand Seattle are useful
comparators addressing not only whether socioecangradients exist in urban
environmental quality but also clues to differencethese gradients between Canadian
and American cities. Large air quality sampling pamgns and pollution regression
mapping provide the pollution data, in this cageogen dioxide — a marker of traffic
emissions considered the most important air poiluiar human health in the typical
North American city. Pollution data are combinedhmeighborhood census data for
regression and spatial analyses. Median househotane is the most consistent correlate
of air pollution in both cities, including their rebpolluted neighborhoods, although
neighborhoods marked by immigrant populations docoarelate with high pollution

levels in Vancouver as they do in Seattle.
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Background

Twenty years ago the publication of several stufli£s GAO, 1982; UCC, 1987;
Bullard, 1990) founded research in what has conbetbnown as environmental justice.
These research and social movement have attragtetheed interest in the societal
distribution of environmental bads such as airggah and residential proximity to
hazardous waste facilities (Helfand and Peyton 18@® 2004). These disadvantaged
communities are defined in different ways includiog-income (Evans and Kantrowitz
2002), ethnic minorities (Bhat 2005; Green et @02 Morello-Frosch and Jesdale
2006), unemployment (Cummins et al. 2005), low atioa (Buzzelli et al. 2006), lone-
parent families (Buzzelli et al. 2003) and income aace (Apelberg et al. 2005;

Mirabelli et al. 2006).

Studies of environmental justice are inherentlytighan nature (Sheppard et al. 1999)
requiring the selection of an appropriate spatiathadology for analyzing the
relationship between population and environmertiatacteristics. Studies have been
done at various scales including entire cities {Bret al. 2003), ZIP code (Krieg 2005),
census tract (Apelberg et al. 2005; Buzzelli andedie2004; Morello-Frosch and Jesdale
2006), census block group (Derezinski et al. 2@0®) census block (Neumann et al.
1998). Some studies explicitly comare alternatpa&tial scales (Dolinoy and Miranda
2004). Among them, census tracts (CT) or wardsherenost typical spatial unit of
analysis. Recent research suggests that CTs magcleptable approximations of actual
neighborhoods for social context (Lee 1999; Over2@02; Sampson et al. 1997).

Research methods included spatial coincidence (et al. 1999), proximity analysis



(Henderson et al. 2007; Jerrett et al., 2005a)psxe index (Farias et al. 2005) and air
dispersion modelling (Dolinoy and Miranda 2004)béffer analysis is superior to the
point-in-polygon method as it uses spatial proxynas a measure of risk rather than
spatial coincidence (Matson 2000). Recent studies/shat regression mapping, or land
use regression (LUR), using road length and laedcasegories could be used effectively
to predict traffic related pollution concentratidizauer et al. 2003; Briggs et al. 1997;
Henderson et al. 2007; Jerrett et al. 2005a; Roais2006; Su et al., 2008). In general
LUR has two broad stages: first preliminary inpatedare used to parameterize a
regression model; second, this regression modedad to predict ambient pollution
concentrations continuously across geographic spased on localized land uses. The
methodology centers on the selection of approphatéer sizes around pollution
receptor locations in order to identify the relevvgnantities and mixes of land uses and
activities that contribute to local pollution contetions. For example Jerrett et al.
(2004, 2005b) identified the effectiveness of laisd regression and buffering for
assessments of mortality of traffic-related aidytdn for Toronto, Canada, and of fine
particulate (PM5) pollution for Los Angles, USA. However becausdhad uncertainty in
identifying optimal buffer sizes, researchers ususglect a limited number of buffers
and pick up ones thought to be the highest coroela¥Ve argue that this method might
not reflect the best buffer selection.

As part of the Canada-United States Border Air @u&itrategy (BAQS) which aims
to address health issues related to air polluno@B - PS, air pollution sampling data
have been used for the present environmental guatialysis. The Greater Vancouver

Regional District (GVRD, hereafter referred to aandouver) and the Seattle



Metropolitan Statistical Area (SMSA, hereafter rede to as Seattle) consist of the
majority of the population, industry and pollutiofhe major sources of air pollution for
Vancouver and Seattle are motor vehicles, marissels, wood stoves and fireplaces.
Although air quality in the region is generally aeded as good, both Seattle and
Vancouver frequently experience temperature ingassiThe stagnant air mass and the
confining valley walls keep pollutants from beingmersed and can lead to high levels of
air pollution. Given their similar climate, topogitey, economic bases and sources of air
pollution, Seattle and Vancouver serve as usefuparators in the burgeoning
environmental justice literature and in particiddow us to address ongoing debates over
continental versus national urbanism in Canadatlaad)S.

Accordingly, this paper has two purposes: Firstame to improve the methodology
of land use regression by demonstrating how we imayove the uncertainty of selecting
buffer sizes for input data in the modeling proc&econd, we aim to draw some
conclusions about the relative levels of environtakfin)justice in Seattle and
Vancouver and thereby offer some clues to poss§ialgada-US differences in urban

environmental justice.

Data and Methods

Figure 1 shows the GB-PS common air shed incluthiedocations of Seattle and
Vancouver metropolitan areas. We constructed agrgebic information system (GIS)
incorporating air-pollution estimates, road andficanetwork data, land use and
socioeconomic data drawn from the respective cessUde statistical and spatial
analyses relied on ArcGIS 9.1 together with SPS8,X3eoDA 0.95 and S-Plus 6.2.

Pollution estimates were based on NRitrogen Dioxide) air-pollution data collected by



the BAQS research group at 116 locations in Vanepouv2003 and for the Multi-Ethnic
Study of Atherosclerosis (MESA) Air Pollution Anlaity Study at the University of
Washington at 26 locations in 2005. The road netwdata of Vancouver were acquired
from DMTI and of Seattle from the US Bureau of T3partation Statistics. The land use
data of Vancouver and Seattle were acquired frarGireater Vancouver Regional
District (GVRD) office for 2002 and from the US Bronmental Protection Agency
(EPA) Water Science Center for 1998. The SES daat®@ncouver were drawn from
Statistics Canada’s E-Stat service for 2001 an&é&attle from the US Census Bureau
Factfinder for 2000.

The NG measurements used in this research were pamitfogen oxides (NQ air
guality monitoring campaign for the GVRD (Hendersatral. 2007), which included 116
samplers located using a location-allocation atbari(Kanaroglou et al., 2005). Briefly
site selection was aimed at maximizing the vanghith measured pollutant
concentrations. Measurements for this study ustdaleeraged from two field
campaigns that ran from Feb 24 through Mar 14 ap&through Sep 26, 2003, where
Ogawd passive samplers were used to collect NO (nittiide) and NQ over 14 days
throughout the region. Measurement periods wereifspaly selected, after review of 5
years of monitoring data, to most accurately chtaraae long term average
concentrations. The mean annual concentrationpfreasured were 16.07 ppb for the
metropolitan area.

LUR predicts long-term average pollution concemnrat at a given site based on
surrounding land use and traffic characteristiesrélt et al. 2005a). Measured pollutants

are regressed against road network, traffic voluare] cover, altitude and other locally



determined features. The main strength of LUR esaimpirical structure (e.g., selection
of optimized buffer size) of the regression mappng its relatively simple inputs/low
cost (as compared with dispersion modeling, fomgxa; Jerrett et al. 2005a). However,
for LUR, the methods developed to analyze intraaarbxposure contrasts are based on
circular buffers drawn around sites of interegtlfpextract covariates for calibrating
models of ambient concentrations with data at nreasent sites and then (2) estimate
values at un-sampled locations across the enftijiereAs such the method is case- and
area-specific (Briggs et al. 1997) and there ikltheoretical-physical basis behind its
application including the definition of circular thers to extract local covariates for LUR
modelling.

To assist in selecting the best buffer distance®oftal land use inputs, 50 inclusive
buffers of 100m each were drawn around each sarapédr that the first buffer ranged
from 0-100 m, the second 0-200 m, and so forthoupe final buffer from the final
buffer 0-5000 m. This approach permits us to exartiie correlations between land uses
and observed air pollution values at sampled loaatiFor roadways the total road length
inside a buffer was summed. A similar approach ugzsl to analyze population density

(eq. 2) and areal land use types (eq. 3).
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Lij, Dij, andS; are respective total highway or major road ler{gith population density
(per ha) and area of a land use type (ha) insifferdistancg (j = 100, 200, ..., 5000
m) of thei™ samplerL;; represents the highway or major road length okthsegment
inside bufferj of thei™ samplerS; « is the intersected area (ha) betweerkth€T (or
land use polygon) and buffer of distaric& is the area (ha) of thd' CT (or land use
polygon).X, is the total population inside ti& CT.

The road length, population density and area ahd cover within each of the 50
buffers were calculated and their correlations Wb, were estimated (Figure 2 a and
b). The X-axis represents buffers running from @;1®200, ..., 0-5000 m from the
sampler. The correlations peaked at different buffstances for different predictors.
Overall, the correlations for Vancouver vary draicadly for buffers within 2000 m and
then climb only slowly to plateau from 3500 to 50@0Seattle showed more variability
and no apparent plateau for most of the predicforlateau demonstrates that a spatial
correlation reaches its maximum distance of infagerResidential land use showed
inconsistent signs of correlation for both areas was therefore removed as a factor for
our model selection. The signs of correlation ofaneoad length in Seattle also showed
inconsistency and were removed from the analysis.

Based on Figure 2a (Vancouver), highways showeld tagrelations from buffer
distance 500 m to 1200 m. Highway 1000Hv;000) Was among the highest and
therefore selected for the land use model for Vamen Major roads included three
apparent peaks: buffer distances 4 {l400), 1000 and 2500 m, and these three
distances were selected for our prediction modgpuRtion density showed a typical

population growth shape — rapid increase for bafieth distance below 500 m and little



increase beyond this. Buffer distance 300@PapDenson) was a representative point of
the plateau and was selected to calculate popaldgasity for our prediction model. As
to the correlation between a land use (ha) and@g commercial, industrial and
transportation-communication-utilities peaked dfdéndistances of 400/380@C6mMMygo
andComnsggo), 1400 (nd1400) and 3000 mTransseno), respectively. A final land use
model for Vancouver by road network, populationsignand land use types used these
buffers plus elevatiorHev in meter) in a stepwise procedure (covariate Sicanit level

at 0.05) to predict N@as shown in equation (4). The model was signifieanthe 0.01
level (p < 0.01 and &= 0.58). For comparison this model differs frorattHeveloped by

Henderson et al. (2007) in the original LUR sanmgpliampaign:

NO, = 10.744 + 0.0002 Hwyi000 + 0.001 *Mjrdag + 0.142 *Comimygo + 0.015 *

INdy400 + 0.007 *Transspeo + 0.108 *PopDensoy - 0.015 *Elev (4)

Based on Figure 2b (Seattle), highway correlatjpeek at buffer distance 1800 m
(Hwy1s00). With buffer distances below or above that, aifigant decrease was
observed, especially for distances greater tha® b8tHighway 1800 m was therefore
selected for the land use model for Seattle. Miagad and residential land use showed
inconsistency in correlations and were removed ftioeomodel covariates list.
Population density showed a similar pattern to \dawer and buffer distance 2500 m
(PopDenyseo) had a relatively higher correlation compareds$mieighboring buffers.
Population buffer distance 2500 m was selectedpeoesent its population density effect.

Among land use types, commercial land use was feaimde rapdily in correlation with



NO, peaking at the selected buffer distance of 50Com{sq). After a modest
correlation from 1000 m to 2000 m, the higheste@lation at buffer distance 2000 m for
industrial land use was selected. Transportationfmanication-utilities Trans) had the
highest correlation among the selected variableseler, Trans was found mainly
distributed along highways in Seattle. These twaya of correlations (with N§) were
highly correlated (r = 0.97) (Figure 2b). Becauge murpose was to model the spatial
distribution of NQ highway rather thafrans was used as a predictor. A final land use
model for Seattle used the above chosen buffessglayvation Elevin meter) in a
stepwise procedure (covariate significant level.@b) to predict N@and the model is
shown in equation (5). The model was significarthat0.01 level (p < 0.01 and R

0.67). Similar to equation (4), no spatial coord@savere used for the prediction model:

NO, = 10.653 + 0.0004 Hwy;g00 + 0.061 *Commsgo + 0.114 *PopDenysyy  (5)

Equations (4) and (5) were then used, respectitelgstimate N@concentrations
for Vancouver and Seattle. Census tract meap ¢d@centrations were then used in the
environmental injustice analysis with selected SBfables hypothesized to be
significant based on past research. These incluth@, black, Asian and visible
minority composition, education attainment, lonegpa family, labor force in
manufacturing, unemployment rate, poverty, averageme, median income, average
family income, median family income, average hoosg¢imcome and median household
income. Stepwise ordinary least square (OLS) regrasvas used to include all the SES

variables chosen above with p significant at tl@& Qevel. The correlation of each SES



variable with NQ was investigated first and the selected variabl® required to have
an unchanging sign (either positive or negativd)ath correlation and OLS model. This
approaches requres that we test model resultp&tias autocorrelation (Buzzelli et al.
2003). If the data display this property, leastasgs estimators are biased and
inconsistent. The spatial aspects underpinning nsanial phenomenaoften influence the
results obtained in multivariate regression (G&880). Spatial autocorrelation between
variables in a regression framework has to be ifiethiand addressed. Associations at
the CT level were therefore tested with not ontgwtiple OLS, but also spatial
autocorrelation removal algorithms - Lagrange Miir (LM) spatial lag/error (Anselin
2005) and generalized additive models (GAM). Alldalts were tested with standard
diagnostics and for significant spatial autocotrefain the model residuals with Moran’s
local | statistics (Anselin 1995). A first-order queensHiguity matrix was used to define
neighborhood dependency. If the spatial autocdrogiatill exists after the spatial lag or
error model, a GAM including a loess function ohses-tract centroids (Burnett et al.
2001) was rerun using spatial covariates from thlespatial lag/error model to ensure
that the model did not violate the independent-plz®mns assumption. If the spatial
lag/error model and GAM all fail, a first-order teoontiguity (Anselin 2005) was used
as an alternative to define neighborhood dependandythe sensitivity analysis was
reurn again.

Finally, in addition to generating models for Skatind Vancouver separately we
also pooled their data for a combined analysisifore direct comparison. Income
variables were standardized separately for Vanaoave Seattle, respectively, using the

mean income value before pooling. Furthermore, weevinterested not only in analysis



environmental unjustice at the CT scale across tegfions but also in identifying and

analysisng air pollution hot spots: CT meanNi©the top tertile.

Results

Figure 3 shows estimated N@urfaces and regional views of N@istributions in
Vancouver and Seattle. The top surfaces in Figarangl 3b are respective distributions
of NO, estimated for Vancouver and Seattle. The bottoriases are their respective
tertile distributions of N@aggregated by a mass mean at the CT level. Fpushows
that Vancouver has high concentrations of;MOthree clustered areas: (1) Downtown
Vancouver, Burrard Inet and along Kingsway Ave,t{® Vancouver International
Airport and the northern Richmond neighborhoodsl, @) the Fraser River coastal areas
along New Westminster. Seattle had peaks of dlidcentration mostly along interstate
and state highways. Because the interstate arellsgitways are densely located on the
west side of King County, so the highest concelanatof NQ. The southwest part of
Snohomish and the northern section of Pierce asmodstrate high concentrations of
NO, because of the high emissions of Nt@m highway traffic. In spite of all the
differences, the highest N@vere within three times of the lowest, both in Yanver
and Seattle, for the large majority of the locagion

Part | of Table 1 displays the modeling resultsMancouver, Seattle and both
pooled. Emphasized here is that the SES variabldseiOLS stepwise model included
all the covariates considered significant. Notladl SES variables remained in the model.
The stepwise method was based on the probabiliiy ehtry for p< 0.05 and removal
for p>0.10. For Vancouver's 420 CTs, immigrants, popoiiein poverty and median

household income were found significant. Thoughstigaeificance of the stepwise model



(R*=0.42, p<0.001), it also produced significanttbautocorrelation (Moran’s=
0.508). A regression with a LM spatial lag test viasd appropriate and applied to
adjust for the significant spatial dependence antboge covariates. Median household
income and poverty remained significant.

In Seattle’s 770 CTs median household income, imamnigcomposition,
manufacturing and poverty were significant. Howeweanufacturing population was
found significantly but negatively correlated wl©,. Again, the OLS stepwise model
produced significant spatially autocorrelated esréifter removing the majority of the
spatial autocorrelation (Rrom 0.41 to 0.86, and Moranfsrom 0.580 to 0.107) by a
LM lag model, median household income and immigcamposition remained
significant; however, their coefficients diminishédanufacturing and poverty were no
longer significant. A GAM model was further usedittermine the efficiency of
including both the median household income and ignamt composition as predictors.
The GAM model shows both variables remain signiftaaith residuals not showing
significant spatial autocorrelation.

Table 1 also shows the pooled OLS model with tistugion of 420 CTs in
Vancouver and 770 CTs in Seattle. Similar to thdifigs from the OLS models for
Vancouver and Seattle, median household incomejgnamt and poverty variables were
found significant. After removing the majority dfe spatial autocorrelation R 0.82
and Moran’d = 0.077) by a LM spatial lag model, neighbourhoodsked by low
income households, higher immigrant populations@meerty endured a

disproportionate burden of pollution concentratwdmO..



Turning to the hot spot analysis (Figure 3), CT#heftop tertile classification for
Vancouver and Seattle were analyzed. Part Il ofel alshows the significance of all the
SES variables used. For Vancouver, median houséhmddne and labor force in
manufacturing were found significant in the OLSpstesse model. However, the overall
variance could be explainediR 0.15) by the OLS model for the hotspots weremuc
lower than its corresponding model for the broaddataiver region (R= 0.42). Despite
the significance of the stepwise model, it alsadpaed significant spatial autocorrelation
(Moran’sl = 0.485). A regression with a LM spatial errortt@as applied to adjust for
the significant spatial dependence among thoseriatea. The median household income
and labor force in manufacturing remained signifto&ith the LM spatial error model;
however, labor force in manufacturing showed itorsistency: the change of
coefficient from negative in the OLS model to pw&tin the LM model. This
demonstrated that labor force in manufacturingnly enarginally significant.

For Seattle, the 257 hotspot CTs showed a simdtem to its broad 770 CTs:
median household income, labor force in manufaocgpoverty population were all
found significant and the immigrant composition whanged to Asian composition for
the hotspots. Again, the variance being explainethé hotspots was smaller than the
broader Seattle region and the OLS model produigmifisant spatial autocorrelations
(Moran’sl = 0.450). Once againa regression with a LM spatiar test was applied.
Similar to the broader Seattle analysis, the med@arsehold income and Asian
population composition remained significant for bweéspots with the LM spatial error
model but not for labor force in manufacturing graderty after removing the majority

of the spatial autocorrelation {/Rom 0.27 to 0.66, and Moranfsrom 0.450 to -0.096).



A GAM model was further used to determine the efficy of including both the median
household income and Asian population composit®oavariates. The GAM model
identified these two variables as significant on,Oncentrations and the modeling
residual had non-significant spatial autocorrelatibhese analyses demonstrated that
environmental injustice for the hotspots did efastlow income households and Asian
populations in Seattle similar to the broader regi@nalysis.

When all the 397 hotspot CTs were pooled, the QkBveise model once again
showed that both median household income and faboe in manufacturing were
significant. Immigrant and low income populatiomgmositions were also found
significant for the pooled hotspots. However, ttepwise OLS model displayed
significant spatial autocorrelation (Moran’s 0.467, p=0.001). A LM spatial error test
was then applied. Only median household incomefaasd significant and the spatial
autocorrelation (Moran’s=-0.121, p=0.001) still existed after the LM spbérror
model (R = 0.73). After a GAM model with 3% spatial smoaitpiwas applied, median
household income (F=5.98 and p= 0.000) was fougmifggant, and its corresponding
Moran’s| statistics insignificant (1=0.063, p=0.06). Sinnita the findings for the broad
regions, the median household income for the htgseonained significant in the

separate Vancouver, Seattle and pooled models.

Discussions and Conclusions

The regression models for Vancouver and, Seatfmrately and pooled, supplied varied
estimates in the association betweenld@d SES. In one aspect, the results showed that
whether NQ rose or fell, injustice persisted but becomes peesounced over the

hotspots (lower B; however, this difference almost disappeared aémoving or



reducing their spatial dependence in the modelspB®changing variable sets and
model fit, the most consistent and robust covanifdO, was median household income
(inverse relations). As noted above, the mediarséold income provides a more
accurate representation of the wealth and asseinlgsl of the typical households. This
corroborated with Evans and Kantrowitz (2002), wleeumented evidence of inverse
relations not only between income and ambient@iufants, but also between income
and and a range of environmental hazards includazgrdous wastes, ambient noise and
residential crowdings. This review was further erdeal by Blodgett (2006), Faber and
Krieg (2002), Evans and Marcynyszyn (2004) andd?and Tarrant (2001), who found
median household income an important marker ofrenmental injustice.

Lone parent family often constitutes a “communityeast resistance”. However, in
this study, neighbourhoods marked by lone parentlies did not show significant
environmental injustice in Vancouver and Seattlkelsome environmental justice and
urban studies (Anderton et al. 1994; Buzzelli 2008) included the manufacturing
employment variable to control for the potentiaidential choice among lower status
populations living near higher pollution zones. Hwer, it was found insignificant in
most of the cases after removing spatial autocatrogls. Where significant in the OLS
models, manufacturing employment was found neggtrnather than positively
associated with N© This is because the spatial distribution of mantufring industries
in Vancouver and Seattle are moving toward subanigsare shifting to a post-Fordist
light-manufacturing sector. Industrial and spatgstructuring may have rebalanced
aggregate pollution away from the city and towdwe suburbs, which can only be

intensified by attendant vehicular trips and enoissi(Buzzelli et al. 2003).



In general these results point to a number of adadsirther inquiry and conceptual
development. First, the presence of injustice indtauver connects with the main
lineaments of U.S. justice research and therebig®on the small but growing literature
that dispels Canadian urban exceptionalism (JeanettEyles 1997; Jerrett et al. 2001,
Wakefield et al. 2001). Urban environmental justeteleast when related to urban air
pollution exposures and putative health effectajld@appear to be as much a health and
environment policy issue in Canada as it is inUinged States (Buzzelli et al. 2003).
Second, desipte their similarities there are soiffierdnces in the substantive results
between Seattle and Vancouver. Immigration proeed important for its association
with air pollution in Vancouver where it was fousignificant in Seattle at in both the
regional and hot spot analyses. Although this tbffiee is surprising, it could be
understood as the product of historical resideiatial labor-market segregation. The
temporal relations of industrialization and restikdrsegregation created a
geographically specific immigrant population inasdike central and southern
Richmond in the GVRD. The immigrants and Asian Aicean population in Seattle
mostly resided closer to industrial lands and meéginways. The historical residential and
labor-market segregation was supported by Krie@%20vho also demonstrated the
segregation excluded African Americans from regidmindustrialized sections of the
city, disproportionate impact of environmental hagaoccurred on lower median income
households but the insignificant environmentalsacof African Americans. This might
help to explain why previous analyses of marketadyics by Been (1994) and Been and
Gupta (1997) did not reach conclusive results. difference also demonstrated that

specific conclusions should depend on one's defimdf environmental discrimination



and the levels of analysis, both spatial and teaig@mnderton et al. 1994; Bowen et al.

1995; Dolinoy and Miranda 2004; Downey 1998).
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Table 1. OLS stepwise and spatial regression (legranultiplier test and GAM) models

Part | — The broad Vancouver and Seattle regionsVancouver 420 CTs and Seattle 770 CTs

OLS stepwise model* Lagrange multiplier test NBAodel*****
Regi Model Moran's | . Moran's | of . Moran's | of
egion ) o . f residual o Model sig. idual Model sig. idual
SES Variable Coefficient (SE) SIg- orresiauals Coefficient (SE) residuals residuals
R (p) I (p*) R (p) I (p*) I (p™)
Constant 16.501 (0.944) 4.543 (0.752)
% immigrants 0.051 (0.012
LRV g _ ( ) 0.42 0.508 0.77 (0.000) 0.036
Med household income -8.24E-05 (0.000) (0.000) (0.010) -3.42E60800) (0.089)
% pop in poverty 0.071 (0.023) 0.025 (0.012)
Constant 14.445 (0.467) 2.291 (0.255)
% immigrants 0.110 (0.010) 0.020 (0.005)
SMSA  Med household income -3.05E-05 (0.000) 041 0.580 2.21E0800)  0.86 (0.000y 0107 9.126 (0.000)  0.036 (0.06)
' ' (0.000) (0.001) ' ' ’ (0.001) ' ' ' '
% pop in manufacturing -0.092 (0.014)
% pop in poverty 0.078 (0.016)
Constant 14.669 (0.394) 3.211 (0.295)
% immigrants 0.055 (0.007) 0.009 (0.004)
LFV& 0.41 0.603 ek
Seattle % black 0.042 (0.014) (0.000) (0.001) 0.82 (0.000) 0.077 (0.01)
Med household income -2.644 (0.308) -1.284 (0.165)
% pop in poverty 0.074 (0.013) 0.021 (0.007)
Part Il The hotspots in Vancouver and Seattle: Vanouver 140 CTs and Seattle 257 CTs
Constant 22.707 (0.801) 17.108 (0.980)
: ) ) 0.15 0.507 ) e -0.096
LFV Med household income 6.93E-05 (0.000) (0.000) (0.001) 4.94E0645) 0.68(0.000) (0.085)
% pop in manufacturing -0.148 (0.050) 0.083 (B)04
Constant 18.260 (0.822) 15.77 (0.625)
% Asian 0.040 (0.014) 0.035 (0.013)
: 0.27 0.450 0.66 -0.096
SMSA  Med household income -2.89E-05 (0.000) (0.000) (0.001) -3.35E00600) (0.000)** (0.016) 6.96 (0.000) -0.034 (0.25)
% pop in manufacturing -0.119 (0.025)
% pop in poverty 0.045 (0.022)
Constant 18.852 (0.672 16.621 (0.564 -
LFV & nsta ( ) 0.37 0.467 ( ) 073 0.121 5.98 (0.000) 0.067 (0.05)
Seattle o4 immigrants 0.026 (0.008) (0.000) (0.001) (0.000) (0.001)




Med household income -1.746 (0.538) -2.201 (0.314)
% pop in manufacturing -0.144 (0.021)
% pop in poverty 0.038 (0.015)

* Stepping method criteria use probability of Frirg 0.05 and removal 0.10; ** p values are resoftpermutation using Geoda; ***results from a spldag model; ****results from a spatial error
model; ***GAM model uses a 1-5 percent loess-sthing to the weighted centroid coordinaté®ata standardized to a mean of 1 for VancouverSaadtle, respectively, for the pooled data;
uses a K-nearest neighbor algorithm.
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Figure 1. Canadian part Vancouver and Georgia Basiinthe USA part Seattle and
Puget Sound. The broad Vancouver region includestieater Vancouver Regional
District and the Fraser Valley Regional Districhelbroad Seattle region is located inside
Snohomish, King, Pierce and Kitsap County and thiwithe Puget Sound airshed

boundary.
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Figure 2. Correlation matrices of road network, ydapon density and land uses for
Vancouver (a) and Seattle (b) with buffer distanb@3-5000 m.
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High : 32.68

. Low : 0.000

CT level NO2
[ 11.148 - 14.04
I 14.05 - 16.20
N 16.21 - 29.98
(unit: ppb)
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Low : 10.65
CT level NO2
[ 110.66 - 11.95
I 11.96 - 14.24
Il 14.25 - 24.92
(unit: ppb)

Figure 3. Estimated NOsurfaces for Vancouver (upper) and Seattle (lower)
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