
Transboundary air pollution and environmental justice: 

Vancouver and Seattle compared 

 

Su, Jason G.1; Larson, Timothy2; Gould, Timothy2; Cohen, Martin2; Buzzelli, Michael3* 

 

1Environmental Health Sciences, School of Public Health, University of California, 

Berkeley, USA 

2University of Washington, Seattle, Washington, USA 

3University of Western Ontario, London, Ontario, Canada 

 

Running head: Transboundary air pollution and environmental justice  

 

*Address correspondence to Dr. Michael Buzzelli, Department of Geography, Social 
Science Centre, the University of Western Ontario, 1151 Richmond Street, London, 
Ontario, Canada, N6A 5C2. Telephone: (519) 661-2111 ext 85329. Fax: (519) 661-3750. 
Email: michael.buzzelli@uwo.ca. 



Abstract 

This paper comparatively analyses the association between urban neighborhood 

socioeconomic markers and ambient air pollution in Vancouver and Seattle, the two 

largest urban regions in the Georgia Basin -Puget Sound (GB - PS) international airshed. 

Given their similarities and common airshed, Vancouver and Seattle are useful 

comparators addressing not only whether socioeconomic gradients exist in urban 

environmental quality but also clues to differences in these gradients between Canadian 

and American cities. Large air quality sampling campaigns and pollution regression 

mapping provide the pollution data, in this case nitrogen dioxide – a marker of traffic 

emissions considered the most important air pollutant for human health in the typical 

North American city. Pollution data are combined with neighborhood census data for 

regression and spatial analyses. Median household income is the most consistent correlate 

of air pollution in both cities, including their most polluted neighborhoods, although 

neighborhoods marked by immigrant populations do not correlate with high pollution 

levels in Vancouver as they do in Seattle. 
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Background 

Twenty years ago the publication of several studies (US GAO, 1982; UCC, 1987; 

Bullard, 1990) founded research in what has come to be known as environmental justice. 

These research and social movement have attracted continued interest in the societal 

distribution of environmental bads such as air pollution and residential proximity to 

hazardous waste facilities (Helfand and Peyton 1999; Gee 2004). These disadvantaged 

communities are defined in different ways including low-income (Evans and Kantrowitz 

2002), ethnic minorities (Bhat 2005; Green et al. 2004; Morello-Frosch and Jesdale 

2006), unemployment (Cummins et al. 2005), low education (Buzzelli et al. 2006), lone-

parent families (Buzzelli et al. 2003) and income and race (Apelberg et al. 2005; 

Mirabelli et al. 2006).  

 

Studies of environmental justice are inherently spatial in nature (Sheppard et al. 1999) 

requiring the selection of an appropriate spatial methodology for analyzing the 

relationship between population and environmental characteristics. Studies have been 

done at various scales including entire cities (Brown et al. 2003), ZIP code (Krieg 2005), 

census tract (Apelberg et al. 2005; Buzzelli and Jerrett 2004; Morello-Frosch and Jesdale 

2006), census block group (Derezinski et al. 2003) and census block (Neumann et al. 

1998). Some studies explicitly comare alternative spatial scales (Dolinoy and Miranda 

2004). Among them, census tracts (CT) or wards are the most typical spatial unit of 

analysis. Recent research suggests that CTs may be acceptable approximations of actual 

neighborhoods for social context (Lee 1999; Overman 2002; Sampson et al. 1997). 

Research methods included spatial coincidence (Sheppard et al. 1999), proximity analysis 



(Henderson et al. 2007; Jerrett et al., 2005a), exposure index (Farias et al. 2005) and air 

dispersion modelling (Dolinoy and Miranda 2004). A buffer analysis is superior to the 

point-in-polygon method as it uses spatial proximity as a measure of risk rather than 

spatial coincidence (Matson 2000). Recent studies show that  regression mapping, or land 

use regression (LUR), using road length and land use categories could be used effectively 

to predict traffic related pollution concentrations (Brauer et al. 2003; Briggs et al. 1997; 

Henderson et al. 2007; Jerrett et al. 2005a; Ross et al 2006; Su et al., 2008). In general 

LUR has two broad stages: first preliminary input data are used to parameterize a 

regression model; second, this regression model is used to predict ambient pollution 

concentrations continuously across geographic space based on localized land uses. The 

methodology centers on the selection of appropriate buffer sizes around pollution 

receptor locations in order to identify the relevant quantities and mixes of land uses and 

activities that contribute to local pollution concentrations. For example Jerrett et al. 

(2004, 2005b) identified the effectiveness of land use regression and buffering for 

assessments of mortality of traffic-related air pollution for Toronto, Canada, and of fine 

particulate (PM2.5) pollution for Los Angles, USA. However because of the uncertainty in 

identifying optimal buffer sizes, researchers usually select a limited number of buffers 

and pick up ones thought to be the highest correlation. We argue that this method might 

not reflect the best buffer selection. 

As part of the Canada-United States Border Air Quality Strategy (BAQS) which aims 

to address health issues related to air pollution in GB - PS, air pollution sampling data 

have been used for the present environmental justice analysis. The Greater Vancouver 

Regional District (GVRD, hereafter referred to as Vancouver) and the Seattle 



Metropolitan Statistical Area (SMSA, hereafter referred to as Seattle) consist of the 

majority of the population, industry and pollution. The major sources of air pollution for 

Vancouver and Seattle are motor vehicles, marine vessels, wood stoves and fireplaces. 

Although air quality in the region is generally regarded as good, both Seattle and 

Vancouver frequently experience temperature inversions. The stagnant air mass and the 

confining valley walls keep pollutants from being dispersed and can lead to high levels of 

air pollution. Given their similar climate, topography, economic bases and sources of air 

pollution, Seattle and Vancouver serve as useful comparators in the burgeoning 

environmental justice literature and in particular allow us to address ongoing debates over 

continental versus national urbanism in Canada and the US. 

Accordingly, this paper has two purposes: First, we aim to improve the methodology 

of land use regression by demonstrating how we may improve the uncertainty of selecting 

buffer sizes for input data in the modeling process. Second, we aim to draw some 

conclusions about the relative levels of environmental (in)justice in Seattle and 

Vancouver and thereby offer some clues to possible Canada-US differences in urban 

environmental justice. 

Data and Methods 

Figure 1 shows the GB-PS common air shed including the locations of Seattle and 

Vancouver metropolitan areas. We constructed a  geographic information system (GIS) 

incorporating air-pollution estimates, road and traffic network data, land use and 

socioeconomic data drawn from the respective censuses. The statistical and spatial 

analyses relied on ArcGIS 9.1 together with SPSS 14.0, GeoDA 0.95 and S-Plus 6.2. 

Pollution estimates were based on NO2 (Nitrogen Dioxide) air-pollution data collected by 



the BAQS research group at 116 locations in Vancouver in 2003 and for the Multi-Ethnic 

Study of Atherosclerosis (MESA) Air Pollution Ancillary Study at the University of 

Washington at 26 locations in 2005. The road network data of Vancouver were acquired 

from DMTI and of Seattle from the US Bureau of Transportation Statistics. The land use 

data of Vancouver and Seattle were acquired from the Greater Vancouver Regional 

District (GVRD) office for 2002 and from the US Environmental Protection Agency 

(EPA) Water Science Center for 1998. The SES data for Vancouver were drawn from 

Statistics Canada’s E-Stat service for 2001 and for Seattle from the US Census Bureau 

Factfinder for 2000.  

The NO2 measurements used in this research were part of a nitrogen oxides (NOx) air 

quality monitoring campaign for the GVRD (Henderson et al. 2007), which included 116 

samplers located using a location-allocation algorithm (Kanaroglou et al., 2005). Briefly 

site selection was aimed at maximizing the variability in measured pollutant 

concentrations. Measurements for this study used data averaged from two field 

campaigns that ran from Feb 24 through Mar 14 and Sep 8 through Sep 26, 2003, where 

Ogawa® passive samplers were used to collect NO (nitric oxide) and NO2 over 14 days 

throughout the region. Measurement periods were specifically selected, after review of 5 

years of monitoring data, to most accurately characterize long term average 

concentrations. The mean annual concentrations of NO2 measured were 16.07 ppb for the 

metropolitan area.  

LUR predicts long-term average pollution concentrations at a given site based on 

surrounding land use and traffic characteristics (Jerrett et al. 2005a). Measured pollutants 

are regressed against road network, traffic volume, land cover, altitude and other locally 



determined features. The main strength of LUR is the empirical structure (e.g., selection 

of optimized buffer size) of the regression mapping and its relatively simple inputs/low 

cost (as compared with dispersion modeling, for example; Jerrett et al. 2005a). However, 

for LUR, the methods developed to analyze intra-urban exposure contrasts are based on 

circular buffers drawn around sites of interest to (1) extract covariates for calibrating 

models of ambient concentrations with data at measurement sites and then (2) estimate 

values at un-sampled locations across the entire region. As such the method is case- and 

area-specific (Briggs et al. 1997) and there is little theoretical-physical basis behind its 

application including the definition of circular buffers to extract local covariates for LUR 

modelling. 

To assist in selecting the best buffer distances for local land use inputs, 50 inclusive 

buffers of 100m each were drawn around each sampler such that the first buffer ranged 

from 0-100 m, the second 0-200 m, and so forth up to the final buffer from  the final 

buffer 0-5000 m. This approach permits us to examine the correlations between land uses 

and observed air pollution values at sampled locations. For roadways the total road length 

inside a buffer was summed. A similar approach was used to analyze population density 

(eq. 2) and areal land use types (eq. 3).  
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Li,j, Di,j, and Si,j are respective total highway or major road length (m), population density 

(per ha) and area of a land use type (ha) inside buffer distance j (j = 100, 200, …, 5000 

m) of the ith sampler. Li,j,k represents the highway or major road length of the kth segment 

inside buffer j of the ith sampler. Si,j,k is the intersected area (ha) between the kth CT (or 

land use polygon) and buffer of distance j. Sk is the area (ha) of the kth CT (or land use 

polygon). Xk is the total population inside the kth CT.   

The road length, population density and area of a land cover within each of the 50 

buffers were calculated and their correlations with NO2 were estimated (Figure 2 a and 

b). The X-axis represents buffers running from 0-100, 0-200, …, 0-5000 m from the 

sampler. The correlations peaked at different buffer distances for different predictors. 

Overall, the correlations for Vancouver vary dramatically for buffers within 2000 m and 

then climb only slowly to plateau from 3500 to 5000 m. Seattle showed more variability 

and no apparent plateau for most of the predictors. A plateau demonstrates that a spatial 

correlation reaches its maximum distance of influence. Residential land use showed 

inconsistent signs of correlation for both areas and was therefore removed as a factor for 

our model selection. The signs of correlation of major road length in Seattle also showed 

inconsistency and were removed from the analysis.  

Based on Figure 2a (Vancouver), highways showed high correlations from buffer 

distance 500 m to 1200 m. Highway 1000 m (Hwy1000) was among the highest and 

therefore selected for the land use model for Vancouver. Major roads included three 

apparent peaks: buffer distances 400 (Mjrd400), 1000 and 2500 m, and these three 

distances were selected for our prediction model. Population density showed a typical 

population growth shape – rapid increase for buffers with distance below 500 m and little 



increase beyond this. Buffer distance 3000 m (PopDen3000) was a representative point of 

the plateau and was selected to calculate population density for our prediction model.  As 

to the correlation between a land use (ha) and its NO2, commercial, industrial and 

transportation-communication-utilities peaked at buffer distances of 400/3800 (Comm400 

and Comm3800), 1400 (Ind1400) and 3000 m (Trans3000), respectively. A final land use 

model for Vancouver by road network, population density and land use types used these 

buffers plus elevation (Elev in meter) in a stepwise procedure (covariate significant level 

at 0.05) to predict NO2 as shown in equation (4). The model was significant at the 0.01 

level (p < 0.01 and R2 = 0.58). For comparison this model differs from that developed by 

Henderson et al. (2007) in the original LUR sampling campaign: 

 

NO2 = 10.744 + 0.0002 * Hwy1000 + 0.001 * Mjrd400 + 0.142 * Comm400 + 0.015 * 

Ind1400 + 0.007 * Trans3000 + 0.108 * PopDen3000 - 0.015 * Elev  (4) 

 

Based on Figure 2b (Seattle), highway correlations peak at buffer distance 1800 m 

(Hwy1800). With buffer distances below or above that, a significant decrease was 

observed, especially for distances greater than 1800 m. Highway 1800 m was therefore 

selected for the land use model for Seattle. Major road and residential land use showed 

inconsistency in correlations and were removed from the model covariates list. 

Population density showed a similar pattern to Vancouver and buffer distance 2500 m 

(PopDen2500) had a relatively higher correlation compared to its neighboring buffers. 

Population buffer distance 2500 m was selected to represent its population density effect.  

Among land use types, commercial land use was found to rise rapdily in correlation with 



NO2 peaking at the selected buffer distance of 500 m (Comm500). After a modest 

correlation from 1000 m to 2000 m, the highest correlation at buffer distance 2000 m for 

industrial land use was selected. Transportation-communication-utilities (Trans) had the 

highest correlation among the selected variables; however, Trans was found mainly 

distributed along highways in Seattle. These two arrays of correlations (with NO2) were 

highly correlated (r = 0.97) (Figure 2b). Because our purpose was to model the spatial 

distribution of NO2 highway rather than Trans was used as a predictor. A final land use 

model for Seattle used the above chosen buffers plus elevation (Elev in meter) in a 

stepwise procedure (covariate significant level at 0.05) to predict NO2 and the model is 

shown in equation (5). The model was significant at the 0.01 level (p < 0.01 and R2 = 

0.67). Similar to equation (4), no spatial coordinates were used for the prediction model: 

 

NO2 = 10.653 + 0.0004 * Hwy1800 + 0.061 * Comm500 + 0.114 * PopDen2500   (5) 

 

Equations (4) and (5) were then used, respectively, to estimate NO2 concentrations 

for Vancouver and Seattle. Census tract mean NO2 concentrations were then used in the 

environmental injustice analysis with selected SES variables hypothesized to be 

significant based on past research. These included white, black, Asian and visible 

minority composition, education attainment, lone parent family, labor force in 

manufacturing, unemployment rate, poverty, average income, median income, average 

family income, median family income, average household income and median household 

income. Stepwise ordinary least square (OLS) regression was used to include all the SES 

variables chosen above with p significant at the 0.05 level. The correlation of each SES 



variable with NO2 was investigated first and the selected variables were required to have 

an unchanging sign (either positive or negative) in both correlation and OLS model. This 

approaches requres that we test model results for spatial autocorrelation (Buzzelli et al. 

2003).  If the data display this property, least squares estimators are biased and 

inconsistent. The spatial aspects underpinning many social phenomenaoften influence the 

results obtained in multivariate regression (Getis 1990).  Spatial autocorrelation between 

variables in a regression framework has to be identified and addressed. Associations at 

the CT level were therefore tested with not only a multiple OLS, but also spatial 

autocorrelation removal algorithms - Lagrange Multiplier (LM) spatial lag/error (Anselin 

2005) and generalized additive models (GAM). All models were tested with standard 

diagnostics and for significant spatial autocorrelation in the model residuals with Moran’s 

local I statistics (Anselin 1995). A first-order queens-contiguity matrix was used to define 

neighborhood dependency. If the spatial autocorrelation still exists after the spatial lag or 

error model, a GAM including a loess function of census-tract centroids (Burnett et al. 

2001) was rerun using spatial covariates from the LM spatial lag/error model to ensure 

that the model did not violate the independent-observations assumption. If the spatial 

lag/error model and GAM all fail, a first-order rook-contiguity (Anselin 2005) was used 

as an alternative to define neighborhood dependency and the sensitivity analysis was 

reurn again. 

Finally, in addition to generating models for Seattle and Vancouver separately we 

also pooled their data for a combined analysis for more direct comparison. Income 

variables were standardized separately for Vancouver and Seattle, respectively, using the 

mean income value before pooling. Furthermore, we were interested not only in analysis 



environmental unjustice at the CT scale across both regions but also in identifying and 

analysisng air pollution hot spots: CT mean NO2 in the top tertile. 

Results 

Figure 3 shows estimated NO2 surfaces and regional views of NO2 distributions in 

Vancouver and Seattle. The top surfaces in Figure 3a and 3b are respective distributions 

of NO2 estimated for Vancouver and Seattle. The bottom surfaces are their respective 

tertile distributions of NO2 aggregated by a mass mean at the CT level. Figure 3a shows 

that Vancouver has high concentrations of NO2 at three clustered areas: (1) Downtown 

Vancouver, Burrard Inet and along Kingsway Ave, (2) the Vancouver International 

Airport and the northern Richmond neighborhoods, and (3) the Fraser River coastal areas 

along New Westminster. Seattle had peaks of NO2 concentration mostly along interstate 

and state highways. Because the interstate and state highways are densely located on the 

west side of King County, so the highest concentrations of NO2. The southwest part of 

Snohomish and the northern section of Pierce also demonstrate high concentrations of 

NO2 because of the high emissions of NO2 from highway traffic. In spite of all the 

differences, the highest NO2 were within three times of the lowest, both in Vancouver 

and Seattle, for the large majority of the locations. 

Part I of Table 1 displays the modeling results for Vancouver, Seattle and both 

pooled. Emphasized here is that the SES variables in the OLS stepwise model included 

all the covariates considered significant. Not all the SES variables remained in the model. 

The stepwise method was based on the probability of F: entry for p ≤ 0.05 and removal 

for p ≥ 0.10. For Vancouver’s  420 CTs, immigrants, population in poverty and median 

household income were found significant. Though the significance of the stepwise model 



(R2 = 0.42, p<0.001), it also produced significant spatial autocorrelation (Moran’s I = 

0.508). A regression with a LM spatial lag test was found appropriate and applied to 

adjust for the significant spatial dependence among those covariates. Median household 

income and poverty remained significant. 

In Seattle’s 770 CTs median household income, immigrant composition, 

manufacturing and poverty were significant. However, manufacturing population was 

found significantly but negatively correlated with NO2. Again, the OLS stepwise model 

produced significant spatially autocorrelated errors. After removing the majority of the 

spatial autocorrelation (R2 from 0.41 to 0.86, and Moran’s I from 0.580 to 0.107) by a 

LM lag model, median household income and immigrant composition remained 

significant; however, their coefficients diminished. Manufacturing and poverty were no 

longer significant. A GAM model was further used to determine the efficiency of 

including both the median household income and immigrant composition as predictors. 

The GAM model shows both variables remain significant with residuals not showing 

significant spatial autocorrelation. 

Table 1 also shows the pooled OLS model with the inclusion of 420 CTs in 

Vancouver and 770 CTs in Seattle. Similar to the findings from the OLS models for 

Vancouver and Seattle, median household income, immigrant and poverty variables were 

found significant. After removing the majority of the spatial autocorrelation (R2 = 0.82 

and Moran’s I = 0.077) by a LM spatial lag model, neighbourhoods marked by low 

income households, higher immigrant populations and poverty endured a 

disproportionate burden of pollution concentration of NO2.  



Turning to the hot spot analysis (Figure 3), CTs of the top tertile classification for 

Vancouver and Seattle were analyzed. Part II of Table 1 shows the significance of all the 

SES variables used. For Vancouver, median household income and labor force in 

manufacturing were found significant in the OLS stepwise model. However, the overall 

variance could be explained (R2 = 0.15) by the OLS model for the hotspots were much 

lower than its corresponding model for the broad Vancouver region (R2 = 0.42). Despite 

the significance of the stepwise model, it also produced significant spatial autocorrelation 

(Moran’s I = 0.485). A regression with a LM spatial error test was applied to adjust for 

the significant spatial dependence among those covariates. The median household income 

and labor force in manufacturing remained significant with the LM spatial error model; 

however, labor force in manufacturing showed its inconsistency: the change of 

coefficient from negative in the OLS model to positive in the LM model. This 

demonstrated that labor force in manufacturing is only marginally significant.  

For Seattle, the 257 hotspot CTs showed a similar pattern to its broad 770 CTs: 

median household income, labor force in manufacturing, poverty population were all 

found significant and the immigrant composition was changed to Asian composition for 

the hotspots. Again, the variance being explained by the hotspots was smaller than the 

broader Seattle region and the OLS model produced significant spatial autocorrelations 

(Moran’s I = 0.450). Once againa regression with a LM spatial error test was applied. 

Similar to the broader Seattle analysis, the median household income and Asian 

population composition remained significant for the hotspots with the LM spatial error 

model but not for labor force in manufacturing and poverty after removing the majority 

of the spatial autocorrelation (R2 from 0.27 to 0.66, and Moran’s I from 0.450 to -0.096). 



A GAM model was further used to determine the efficiency of including both the median 

household income and Asian population composition as covariates. The GAM model 

identified these two variables as significant on NO2 concentrations and the modeling 

residual had non-significant spatial autocorrelation. These analyses demonstrated that 

environmental injustice for the hotspots did exist for low income households and Asian 

populations in Seattle similar to the broader regional analysis.  

When all the 397 hotspot CTs were pooled, the OLS stepwise model once again 

showed that both median household income and labor force in manufacturing were 

significant. Immigrant and low income population compositions were also found 

significant for the pooled hotspots. However, the stepwise OLS model displayed 

significant spatial autocorrelation (Moran’s I = 0.467, p=0.001). A LM spatial error test 

was then applied. Only median household income was found significant and the spatial 

autocorrelation (Moran’s I = -0.121, p=0.001) still existed after the LM spatial error 

model (R2 = 0.73). After a GAM model with 3% spatial smoothing was applied, median 

household income (F=5.98 and p= 0.000) was found significant, and its corresponding 

Moran’s I statistics insignificant (I=0.063, p=0.06). Similar to the findings for the broad 

regions, the median household income for the hotspots remained significant in the 

separate Vancouver, Seattle and pooled models. 

Discussions and Conclusions 

The regression models for Vancouver and, Seattle, separately and pooled, supplied varied 

estimates in the association between NO2 and SES. In one aspect, the results showed that 

whether NO2 rose or fell, injustice persisted but becomes less pronounced over the 

hotspots (lower R2); however, this difference almost disappeared after removing or 



reducing their spatial dependence in the models. Despite changing variable sets and 

model fit, the most consistent and robust covariate of NO2 was median household income 

(inverse relations). As noted above, the median household income provides a more 

accurate representation of the wealth and asset holdings of the typical households. This 

corroborated with Evans and Kantrowitz (2002), who documented evidence of inverse 

relations not only between income and ambient air pollutants, but also between income 

and and a range of environmental hazards including hazardous wastes, ambient noise and 

residential crowdings. This review was further enhanced by Blodgett (2006), Faber and 

Krieg (2002), Evans and Marcynyszyn (2004) and Porter and Tarrant (2001), who found 

median household income an important marker of environmental injustice.  

Lone parent family often constitutes a “community of least resistance”. However, in 

this study, neighbourhoods marked by lone parent families did not show significant 

environmental injustice in Vancouver and Seattle. Like some environmental justice and 

urban studies (Anderton et al. 1994; Buzzelli 2003), we included the manufacturing 

employment variable to control for the potential residential choice among lower status 

populations living near higher pollution zones. However, it was found insignificant in 

most of the cases after removing spatial autocorrelations. Where significant in the OLS 

models, manufacturing employment was found negatively rather than positively 

associated with NO2. This is because the spatial distribution of manufacturing industries 

in Vancouver and Seattle are moving toward suburbs and are shifting to a post-Fordist 

light-manufacturing sector. Industrial and spatial restructuring may have rebalanced 

aggregate pollution away from the city and toward the suburbs, which can only be 

intensified by attendant vehicular trips and emissions (Buzzelli et al. 2003).  



In general these results point to a number of areas for further inquiry and conceptual 

development. First, the presence of injustice in Vancouver connects with the main 

lineaments of U.S. justice research and thereby builds on the small but growing literature 

that dispels Canadian urban exceptionalism (Jerrett and Eyles 1997; Jerrett et al. 2001; 

Wakefield et al. 2001). Urban environmental justice, at least when related to urban air 

pollution exposures and putative health effects, would appear to be as much a health and 

environment policy issue in Canada as it is in the United States (Buzzelli et al. 2003). 

Second, desipte their similarities there are some differences in the substantive results 

between Seattle and Vancouver. Immigration proved less important for its association 

with air pollution in Vancouver where it was found significant in Seattle at in both the 

regional and hot spot analyses. Although this difference is surprising, it could be 

understood as the product of historical residential and labor-market segregation. The 

temporal relations of industrialization and residential segregation created a 

geographically specific immigrant population in areas like central and southern 

Richmond in the GVRD. The immigrants and Asian American population in Seattle 

mostly resided closer to industrial lands and near highways. The historical residential and 

labor-market segregation was supported by Krieg (2005), who also demonstrated the 

segregation excluded African Americans from residing in industrialized sections of the 

city, disproportionate impact of environmental hazards occurred on lower median income 

households but the insignificant environmental racism of African Americans. This might 

help to explain why previous analyses of market dynamics by Been (1994) and Been and 

Gupta (1997) did not reach conclusive results. The difference also demonstrated that 

specific conclusions should depend on one's definition of environmental discrimination 



and the levels of analysis, both spatial and temporal (Anderton et al. 1994; Bowen et al. 

1995; Dolinoy and Miranda 2004; Downey 1998). 
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Table 1. OLS stepwise and spatial regression (Lagrange multiplier test and GAM) models 
  Part I – The broad Vancouver and Seattle regions : Vancouver 420 CTs and Seattle 770 CTs 

Region 

OLS stepwise model*   Lagrange multiplier test   GAM model***** 

SES Variable Coefficient (SE) 

Model 
sig. 

Moran's I 
of residuals 

 
Coefficient (SE) 

Model sig. 
Moran's I of 

residuals 
 Model sig. 

Moran's I of 
residuals 

R2 (p) I (p**)   R2 (p) I (p**)   F (p) I (p**) 

LFV 

Constant 16.501 (0.944) 

0.42 
(0.000) 

0.508 
(0.010) 

 4.543 (0.752) 

0.77 (0.000)*** 
0.036 

(0.089) 

  

    
% immigrants 0.051 (0.012)    

Med household income -8.24E-05 (0.000)  -3.42E-05 (0.000)  

% pop in poverty 0.071 (0.023)   0.025 (0.012)   

SMSA 

Constant 14.445 (0.467) 

0.41 
(0.000) 

0.580 
(0.001) 

 2.291 (0.255) 

0.86 (0.000)*** 
0.107 

(0.001) 

  

9.126 (0.000) 0.036 (0.06)2 

% immigrants 0.110 (0.010)  0.020 (0.005)  

Med household income -3.05E-05 (0.000)  -2.21E-05 (0.000)  

% pop in manufacturing -0.092 (0.014)    

% pop in poverty 0.078 (0.016)       

LFV & 
Seattle 

Constant 14.669 (0.394) 

0.41 
(0.000) 

0.603 
(0.001) 

 3.211 (0.295) 

0.82 (0.000)*** 0.077 (0.01) 

  

    

% immigrants 0.055 (0.007)  0.009 (0.004)  

% black 0.042 (0.014)    

Med household income1 -2.644 (0.308)  -1.284 (0.165)  

% pop in poverty 0.074 (0.013)   0.021 (0.007)   

Part II The hotspots in Vancouver and Seattle: Vancouver 140 CTs and Seattle 257 CTs 

LFV 

Constant 22.707 (0.801) 
0.15 

(0.000) 
0.507  

(0.001) 

 17.108 (0.980) 

0.68(0.000)**** 
-0.096 
(0.085) 

  

    Med household income -6.93E-05 (0.000)  -4.94E-05 (0.045)  

% pop in manufacturing -0.148 (0.050)   0.083 (0.043)   

SMSA 

Constant 18.260 (0.822) 

0.27 
(0.000) 

0.450 
(0.001) 

 15.77 (0.625) 

0.66 
(0.000)**** 

-0.096 
(0.016) 

 

6.96 (0.000) -0.034 (0.25) 

% Asian 0.040 (0.014)  0.035 (0.013)  

Med household income -2.89E-05 (0.000)  -3.35E-05 (0.000)  

% pop in manufacturing -0.119 (0.025)    

% pop in poverty 0.045 (0.022)       

LFV & 
Seattle 

Constant 18.852 (0.672) 0.37 
(0.000) 

0.467 
(0.001) 

 16.621 (0.564) 0.73 
(0.000)**** 

-0.121 
(0.001) 

  
5.98 (0.000) 0.067 (0.06)2 

% immigrants 0.026 (0.008)    



Med household income1 -1.746 (0.538)  -2.201 (0.314)  

% pop in manufacturing -0.144 (0.021)    

% pop in poverty 0.038 (0.015)       

* Stepping method criteria use probability of F - entry 0.05 and removal 0.10; ** p values are results of permutation using Geoda; ***results from a spatial lag model; ****results from a spatial error 
model;  *****GAM model uses a 1-5 percent loess-smoothing to the weighted centroid coordinates.  1Data standardized to a mean of 1 for Vancouver and Seattle, respectively, for the pooled data;  2 
uses a K-nearest neighbor algorithm. 
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Figure 1. Canadian part Vancouver and Georgia Basin and the USA part Seattle and 
Puget Sound. The broad Vancouver region includes the Greater Vancouver Regional 
District and the Fraser Valley Regional District. The broad Seattle region is located inside 
Snohomish, King, Pierce and Kitsap County and is within the Puget Sound airshed 
boundary. 
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Figure 2. Correlation matrices of road network, population density and land uses for 
Vancouver (a) and Seattle (b) with buffer distances 100–5000 m. 
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Figure 3. Estimated NO2 surfaces for Vancouver (upper) and Seattle (lower). 
 


