
Timothy M WillsonGlaxoSmithKline | GSK · Chemical Biology
Timothy M Willson
About
194
Publications
23,129
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
37,462
Citations
Publications
Publications (194)
Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemo-types, blocked replication of pathogenic human, bat, and murine β-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the esse...
Introduction:
The portfolio of novel targets to treat Alzheimer's disease (AD) has been enriched by the Accelerating Medicines Partnership Program for Alzheimer's Disease (AMP AD) program.
Methods:
Publicly available resources, such as literature and databases, enabled a data-driven effort to identify existing small molecule modulators for many...
Introduction:
A chemogenomic set of small molecules with annotated activities and implicated roles in Alzheimer's disease (AD) called the AD Informer Set was recently developed and made available to the AD research community: https://treatad.org/data-tools/ad-informer-set/.
Methods:
Small subsets of AD Informer Set compounds were selected for AD...
Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human and murine β-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential r...
Twenty years after the publication of the first draft of the human genome, our knowledge of the human proteome is still fragmented. The challenge of translating the wealth of new knowledge from genomics into new medicines is that proteins, and not genes, are the primary executers of biological function. Therefore, much of how biology works in healt...
Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound–kinase interactions for novel and potent activities. Here, we carry out a crowdsource...
Computational approaches in drug discovery and development hold great promise, with artificial intelligence methods undergoing widespread contemporary use, but the experimental validation of these new approaches is frequently inadequate. We are initiating Critical Assessment of Computational Hit-finding Experiments (CACHE) as a public benchmarking...
Computational approaches in drug discovery and development hold great promise, with artificial intelligence methods undergoing widespread contemporary use, but the experimental validation of these new approaches is frequently inadequate. We are initiating Critical Assessment of Computational Hit-finding Experiments (CACHE) as a public benchmarking...
Introduction: The portfolio of novel targets to treat Alzheimer's disease (AD) has been enriched by the AMP-AD program.
Methods: A cheminformatics-driven effort enabled identification of existing small molecule modulators for many protein targets nominated by AMP-AD and suitable positive control compounds to be included in the set.
Results: We have...
CAMKK2 is a serine/threonine kinase and an activator of AMPK whose dysregulation is linked with multiple diseases. Unfortunately, STO-609, the tool inhibitor commonly used to probe CAMKK2 signaling, has limitations. To identify promising scaffolds as starting points for the development of high-quality CAMKK2 chemical probes, we utilized a hinge-bin...
p>Deep generative neural networks have been used increasingly in computational chemistry for de novo design of molecules with desired properties. Many deep learning approaches employ reinforcement learning for optimizing the target properties of the generated molecules. However, the success of this approach is often hampered by the problem of spars...
div>CAMKK2 is a serine/threonine kinase and an activator of AMPK whose dysregulation is linked with multiple diseases. Unfortunately, STO-609, the tool inhibitor commonly used to probe CAMKK2 signaling, has limitations. To identify promising scaffolds as starting points for the development of high-quality CAMKK2 chemical probes, we utilized a hinge...
A concise 4-step synthesis of furo[2,3-b]pyridines, with handles in the 3- and 5-positions for palladium mediated cross-coupling reactions, is described. The synthetic route has been optimized, with only one step requiring purification by column chromatography. The route is amenable to scale-up, and was successfully executed on a multi-gram scale....
Water networks within kinase inhibitor design and more widely within drug discovery are generally poorly understood. The successful targeting of these networks prospectively has great promise for all facets of inhibitor design, including potency and selectivity on target. Here we describe the design and testing of a targeted library of 4‐anilinoqui...
p>A concise 4-step synthesis of furo[2,3-b]pyridines, with handles in the 3 and 5 positions for palladium mediated cross-coupling reactions, is described. The synthetic route has been optimized, with only one step requiring purification by column chromatography. The route is amenable to scaling-up and was successfully executed on a multi-gram scale...
Despite decades of intensive search for compounds that modulate the activity of particular proteins, there are currently small-molecule probes available only for a small proportion of the human proteome. Effective approaches are therefore required to map the massive space of unexplored compound-target interactions for novel and potent activities. H...
We describe the assembly and annotation of a chemogenomic set of protein kinase inhibitors as an open science resource for studying kinase biology. The set only includes inhibitors that show potent kinase inhibition and a narrow spectrum of activity when screened across a large panel of kinase biochemical assays. Currently, the set contains 187 inh...
A panel of cell-permeable energy transfer probes has been developed to quantify target occupancy for all 21 CDKs in live, intact cells. Here we present the first comprehensive evaluation of intracellular isozyme potency and selectivity for a collection of 46 clinically-advanced CDKi’s and tool molecules. Here we provide a broadly applicable method...
SGC-GAK-1 (1) is a potent, selective, cell-active chemical probe for cyclin G-associated kinase (GAK). However, 1 was rapidly metabolized in mouse liver microsomes by cytochrome P450-mediated oxidation, displaying rapid clearance in liver microsomes and in mice, which limited its utility in in vivo studies. Chemical modifications of 1 that improved...
Inhibitors based on a 3-acylaminoindazole scaffold were synthesized to yield potent dual AAK1/BMP2K inhibitors. Optimization furnished a small molecule chemical probe (SGC-AAK1-1, 25) that is potent and selective for AAK1/BMP2K over other NAK family members, demonstrates narrow activity in a kinome-wide screen, and is functionally active in cells....
p>Inhibitors based on a 3-acylaminoindazole scaffold were synthesized to yield potent dual AAK1/BMP2K inhibitors. Optimization of this 3-acylaminoindazole scaffold furnished a small molecule chemical probe (SGC-AAK1-1, 25 ) that is potent and selective for AAK1/BMP2K over other NAK family members, demonstrates narrow activity in a kinome-wide scree...
Development of an efficient and scalable synthesis of 6-formylindolo[3,2-b]carbazole (FICZ), a naturally-occurring aryl hydrocarbon receptor (AhR) ligand, allowed its biological and physical properties to be studied. FICZ was shown to be the most potent among a series of 6-substituted indolo[3,2-b]carbazoles for activation of AhR in cells. Photosta...
Although the human genome provides the blueprint for life, most of the proteins it encodes remain poorly studied. This perspective describes how one group of scientists, in seeking new targets for drug discovery, used open science through unrestricted sharing of small molecules to shed light on dark matter of the genome. Starting initially with a s...
β-Catenin-dependent WNT signal transduction governs development, tissue homeostasis, and a vast array of human diseases. Signal propagation through a WNT-Frizzled/LRP receptor complex requires proteins necessary for clathrin-mediated endocytosis (CME). Paradoxically, CME also negatively regulates WNT signaling through internalization and degradatio...
Table S1. Kinome Gain-of-Function and Loss-of-Function Screens of WNT Signaling Identify AAK1 as an Inhibitor, Related to Figure 1
We describe SGC-GAK-1 (11), a potent, selective, and cell-active inhibitor of cyclin G associated kinase (GAK), together with a structurally-related negative control SGC-GAK-1N (14). SGC-GAK-1 is highly selective in a kinome-wide screen, but cellular engagement assays defined RIPK2 as a collateral target. We identified 18 as a potent inhibitor of R...
We demonstrate for the first time that 4H-1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4H-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified...
Continuous exposure of a pancreatic cancer cell line MIA PaCa-2 (MiaS) to gemcitabine resulted in the formation of a gemcitabine-resistant subline (MiaR). In an effort to discover kinase inhibitors that inhibited MiaR growth, MiaR cells were exposed to kinase inhibitors (PKIS-1 library) in a 384-well screening format. Three compounds (UNC10112721A,...
Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive stru...
β-catenin-dependent WNT signal transduction governs normal development and adult tissue homeostasis. Inappropriate pathway activity mediates a vast array of human diseases, including bone density disorders, neurodegeneration and cancer. Although several WNT-directed therapeutics are in clinical trials, new targets, compounds and strategies are need...
For kinase inhibitors, intracellular target selectivity is fundamental to pharmacological mechanism. Although a number of acellular techniques have been developed to measure kinase binding or enzymatic inhibition, such approaches can fail to accurately predict engagement in cells. Here we report the application of an energy transfer technique that...
Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic fu...
PKIS2 Kd determinations.
(PDF)
List of additional kinases (beyond those covered by PKIS and PKIS2 compounds) that can be covered by literature compounds (pending further kinome wide cross screening).
(PDF)
List of PKIS1 compounds that meet criteria for KCGS inclusion.
(PDF)
List of gap kinases–kinases that we currently do not cover with a compound that has sufficient selectivity and/or potency.
(PDF)
Kinase assays by vendor.
(PDF)
Full PKIS2 dataset from KINOMEscan panel.
(XLSX)
List of PKIS2 compounds that meet criteria for KCGS inclusion.
(PDF)
List of literature compounds that meet kinase potency and selectivity criteria but will require additional screening to ensure suitability for KCGS.
(PDF)
An efficient and scalable synthesis of 6-formylindolo[3,2-b]carbazole (FICZ) has been developed to provide large quantities of this physiologically important ligand of the aryl hydrocarbon receptor. Photo-decomposition of FICZ revealed a new non-enzymatic light-assisted mechanism for its conversion to a biologically less active quinone. The light-d...
4-Anilinoquinolines were identified as potent and narrow spectrum inhibitors of the cyclin G associated kinase (GAK), an important regulator of viral and bacterial entry into host cells. Optimization of the 4-anilino group and the 6,7-quinoline substituents produced GAK inhibitors with nanomolar activity and over 50,000-fold selectivity relative to...
Understanding the structural determinants of inhibitor selectivity would facilitate the design and preparation of kinase probes. We describe a pair of matched compounds differing only by one degree of saturation but showing dramatic differential activities at select kinases. We utilized x-ray crystallography and computational analysis to rationaliz...
Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic fu...
Despite the success of protein kinase inhibitors as approved therapeutics, drug discovery has focused on a small subset of kinase targets. Here we provide a thorough characterization of the Published Kinase Inhibitor Set (PKIS), a set of 367 small-molecule ATP-competitive kinase inhibitors that was recently made freely available with the aim of exp...
Chemical probes are powerful reagents with increasing impacts on biomedical research. However, probes of poor quality or that are used incorrectly generate misleading results. To help address these shortcomings, we will create a community-driven wiki resource to improve quality and convey current best practice.
To catalyze research on historically untargeted protein kinases, we created the PKIS, an annotated set of 367
small molecule kinase inhibitors. The set has been widely distributed to academic collaborators as an open access tool. It
has been used to identify chemical starting points for development of chemical probes for orphan kinases and to inves...
Drug discovery scientists, faced with the myriad challenges involved in developing novel therapeutics as medicines, have tended to overlook the question of the most beneficial time to administer the drug. Recent developments in our understanding of circadian biology and the availability of tools to characterise the molecular clock indicate that tim...
Small heterodimer partner (SHP) plays important roles in diverse biological processes by directly interacting with transcription factors and inhibiting their activities. SHP has been designated an orphan nuclear receptor, but whether its activity can be modulated by ligands has been a long-standing question. Recently, retinoid-related molecules, in...
We investigated how GW800644, the first pharmacologically selective murine peroxisome proliferator-activated receptor δ (PPARδ) agonist, affects energy balance, glucose homeostasis and fuel utilization by muscle in obese mice.
Potencies were determined in transactivation assays. Oral glucose tolerance was determined after 14 and 22 days' administra...
The crystal structure of LRH-1 ligand binding domain bound to our previously reported agonist 3-(E-oct-4-en-4-yl)-1-phenylamino-2-phenyl-cis-bicyclo[3.3.0]oct-2-ene 5 is described. Two new classes of agonists in which the bridgehead anilino group from our first series was replaced with an alkoxy or 1-ethenyl group were designed, synthesized, and te...
Most protein research focuses on those known before the human genome was
mapped. Work on the slew discovered since, urge Aled M. Edwards and his
colleagues.
The identification of nonporphyrin ligands for the orphan nuclear receptor Rev-erbα will enable studies of its role as a heme sensor and regulator of metabolic and circadian signaling. We describe the development of a biochemical assay measuring the interaction between Rev-erbα and a peptide from the nuclear receptor corepressor-1 (NCoR). The assay...
Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary su...