
Timothy M Walker- Oxford University Clinical Research Unit
Timothy M Walker
- Oxford University Clinical Research Unit
About
152
Publications
34,043
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,410
Citations
Current institution
Publications
Publications (152)
Rapid genotype-based drug susceptibility testing for the Mycobacterium tuberculosis complex (MTBC) relies on a comprehensive knowledgebase of the genetic determinants of resistance. Here we present a catalogue of resistance-associated mutations using a regression-based approach and benchmark it against the 2nd edition of the World Health Organisati...
Background Collecting and storing large number of sputum samples with a view to culturing these in the future requires an efficient initial handling method. We devised a modified sputum digestion and decontamination method that maximised storage capacity and Mycobacterium tuberculosis (M.tb) recovery from culture while minimising laboratory workloa...
Tuberculosis (TB) kills more people annually than any other pathogen. Resistance is an ever-increasing global problem, not least because diagnostics remain challenging and access limited. 96-well broth microdilution plates offer one approach to high-throughput phenotypic testing, but they can be challenging to read. Automated Mycobacterial Growth D...
Background
WHO issued the first edition catalogue of Mycobacterium tuberculosis complex (MTBC) mutations associated with drug resistance in 2021. However, country-specific issues might lead to arising complex and additional drug-resistant mutations. We aimed to fully reflect the characteristics of drug resistance mutations in China.
Methods
We ana...
Rapid genotype-based drug susceptibility testing for the Mycobacterium tuberculosis complex (MTBC) relies on a comprehensive knowledgebase of the genetic determinants of resistance. We built a catalog of resistance-associated mutations in MTBC using a novel regression-based approach and benchmarked it against the 2nd edition of the World Health Org...
Contact between humans and wildlife presents a risk for both zoonotic and anthropozoonotic disease transmission. In this study we report the detection of human strains of Mycobacterium tuberculosis in sun bears and an Asiatic black bear in a wildlife rescue centre in Cambodia, confirming for the first time the susceptibility of these bear species t...
Background
Pyrazinamide is one of four first-line antibiotics used to treat tuberculosis; however, antibiotic susceptibility testing for pyrazinamide is challenging. Resistance to pyrazinamide is primarily driven by genetic variation in pncA, encoding an enzyme that converts pyrazinamide into its active form.
Methods
We curated a dataset of 664 no...
Mortality from tuberculous meningitis (TBM) remains around 30%, with most deaths occurring within 2 months of starting treatment. Mortality from drug-resistant strains is higher still, making early detection of drug resistance (DR) essential. Targeted next-generation sequencing (tNGS) produces high read depths, allowing the detection of DR-associat...
Objective
We conducted a descriptive analysis of multi-drug resistant tuberculosis (MDR-TB) in Vietnam’s two largest cities, Hanoi and Ho Chi Minh city.
Methods
All patients with rifampicin resistant tuberculosis were recruited from Hanoi and surrounding provinces between 2020 and 2022. Additional patients were recruited from Ho Chi Minh city over...
We characterized the spatial distribution of drug-susceptible (DS) and multidrug-resistant (MDR) tuberculosis (TB) cases in Ho Chi Minh City, Vietnam, a major metropolis in southeastern Asia, and explored demographic and socioeconomic factors associated with local TB burden. Hot spots of DS and MDR TB incidence were observed in the central parts of...
Background
Collecting and storing large number of sputum samples with a view to culturing these in the future requires an efficient initial handling method. We devised a modified sputum digestion and decontamination method that maximised storage capacity and Mycobacterium tuberculosis (M.tb) recovery from culture while minimising laboratory workloa...
The World Health Organization has a goal of universal drug susceptibility testing for patients with tuberculosis. However, molecular diagnostics to date have focused largely on first-line drugs and predicting susceptibilities in a binary manner (classifying strains as either susceptible or resistant). Here, we used a multivariable linear mixed mode...
Six lineages of Mycobacterium tuberculosis sensu stricto (which excludes M. africanum) are described. Single-country or small observational data suggest differences in clinical phenotype between lineages. We present strain lineage and clinical phenotype data from 12,246 patients from 3 low-incidence and 5 high-incidence countries. We used multivari...
Background: The war in Ukraine has led to significant migration to neighboring countries, raising public health concerns. Notable tuberculosis (TB) incidence rates in Ukraine emphasize the immediate requirement to prioritize approaches that interrupt the spread and prevent new infections.
Methods: We conducted a prospective genomic surveillance st...
Patients with severe COVID-19 disease require monitoring with pulse oximetry as a minimal requirement. In many low- and middle- income countries, this has been challenging due to lack of staff and equipment. Wearable pulse oximeters potentially offer an attractive means to address this need, due to their low cost, battery operability and capacity f...
Background: Collecting and storing large number of sputum samples with a view to culturing these in the future requires an efficient initial handling method. We devised a modified sputum digestion and decontamination method that maximised storage capacity and Mycobacterium tuberculosis (M.tb) recovery from culture while minimising laboratory worklo...
Offering patients with tuberculosis (TB) an optimal and timely treatment regimen depends on the rapid detection of Mycobacterium tuberculosis (Mtb) drug resistance from clinical samples. Finding Low Abundance Sequences by Hybridization (FLASH) is a technique that harnesses the efficiency, specificity, and flexibility of the Cas9 enzyme to enrich ta...
There were approximately 10 million tuberculosis (TB) cases in 2020, of which 500,000 were drug-resistant. Only one third of drug-resistant TB cases were diagnosed and enrolled on appropriate treatment, an issue partly driven by a lack of rapid, accurate drug-susceptibility testing (DST) tools deployable in peripheral settings. In 2014, World Healt...
Eight lineages of Mycobacterium tuberculosis sensu stricto are described. Single-country or small observational data suggest differences in clinical phenotype between lineages. We present strain lineage and clinical phenotype data from 12,246 patients from 3 low-incidence and 5 high-incidence countries. We used multivariable logistic regression to...
Background:
Bedaquiline is a core drug for the treatment of multidrug-resistant tuberculosis; however, the understanding of resistance mechanisms is poor, which is hampering rapid molecular diagnostics. Some bedaquiline-resistant mutants are also cross-resistant to clofazimine. To decipher bedaquiline and clofazimine resistance determinants, we co...
Universal access to drug susceptibility testing for newly diagnosed tuberculosis patients is recommended. Access to culture-based diagnostics remains limited, and targeted molecular assays are vulnerable to emerging resistance mutations. Improved protocols for direct-from-sputum Mycobacterium tuberculosis sequencing would accelerate access to compr...
Molecular and genomic studies have revealed that Mycobacterium tuberculosis Lineage 4 (L4, Euro-American lineage) emerged in Europe before becoming distributed around the globe by trade routes, colonial migration and other historical connections. Although L4 accounts for tens or hundreds of thousands of tuberculosis (TB) cases in multiple Southeast...
Background
Mycobacterium tuberculosis whole-genome sequencing (WGS) has been widely used for genotypic drug susceptibility testing (DST) and outbreak investigation. For both applications, Illumina technology is used by most public health laboratories; however, Nanopore technology developed by Oxford Nanopore Technologies has not been thoroughly eva...
Background
Universal access to drug susceptibility testing for newly diagnosed tuberculosis patients is recommended. Access to culture-based diagnostics remains limited and targeted molecular assays are vulnerable to emerging resistance conferring mutations. Improved sample preparation protocols for direct-from-sputum sequencing of Mycobacterium tu...
Universal drug susceptibility testing (DST) for tuberculosis is a major goal of the END TB strategy. PCR-based molecular diagnostic tests have been instrumental in increasing DST globally and several assays have now been endorsed by the World Health Organization (WHO) for use in the diagnosis of drug resistance. These endorsed assays, however, each...
Patients with severe COVID-19 disease require monitoring with pulse oximetry as a minimal requirement. In many low- and middle- income countries, this has been challenging due to lack of staff and equipment. Wearable pulse oximeters potentially offer an attractive means to address this need, due to their low cost, battery operability and capacity f...
Microbes unculturable in vitro remain diagnostically challenging, dependent historically on clinical findings, histology, or targeted molecular detection. We applied whole-genome sequencing directly from tissue to diagnose infections with mycobacteria (leprosy) and parasites (coenurosis). Direct pathogen DNA sequencing provides flexible solutions t...
Background:
Multidrug-resistant (MDR) Mycobacterium tuberculosis complex (MTBC) strains are a serious health problem in India, also contributing to one-fourth of the global MDR tuberculosis (TB) burden. About 36% of the MDR MTBC strains are reported fluoroquinolone (FQ) resistant leading to high pre-extensively drug-resistant (pre-XDR) and XDR-TB...
The Comprehensive Resistance Prediction for Tuberculosis: an International Consortium (CRyPTIC) presents here a data compendium of 12,289 Mycobacterium tuberculosis global clinical isolates, all of which have undergone whole-genome sequencing and have had their minimum inhibitory concentrations to 13 antitubercular drugs measured in a single assay....
Molecular and genomic studies have revealed that Mycobacterium tuberculosis Lineage 4 (L4, Euro-American lineage) emerged in Europe before becoming distributed around the globe by trade routes, colonial migration, and other historical connections. Although L4 accounts for tens or hundreds of thousands of TB cases in multiple Southeast Asian countri...
Universal drug susceptibility testing (DST) for tuberculosis is a major goal of the END TB strategy. PCR-based molecular diagnostic tests have been instrumental in increasing DST globally and several assays have now been endorsed by the World Health Organization (WHO) for use in the diagnosis of drug resistance. These endorsed assays, however, each...
Background
Over 10-years of whole-genome sequencing (WGS) of Mycobacterium tuberculosis in Birmingham presents an opportunity to explore epidemiological trends and risk factors for transmission in new detail.
Methods
Between 1st January 2009 and 15th June 2019, we obtained the first WGS isolate from every patient resident in a postcode district co...
Tuberculosis is a respiratory disease that is treatable with antibiotics. An increasing prevalence of resistance means that to ensure a good treatment outcome it is desirable to test the susceptibility of each infection to different antibiotics. Conventionally this is done by culturing a clinical sample and then exposing aliquots to a panel of anti...
Background: Molecular diagnostics are considered the most promising route to achieving rapid, universal drug susceptibility testing for Mycobacterium tuberculosiscomplex (MTBC). We aimed to generate a WHO endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: A c...
Background
Mycobacterium tuberculosis whole-genome sequencing (WGS) using Illumina technology has been widely adopted for genotypic drug susceptibility testing (DST) and outbreak investigation. Oxford Nanopore Technologies is reported to have higher error rates but has not been thoroughly evaluated for these applications.
Methods
We analyse 151 is...
Background
Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction.
Method...
Antimicrobial resistance (AMR) poses a threat to global public health. To mitigate the impacts of AMR, it is important to identify the molecular mechanisms of AMR and thereby determine optimal therapy as early as possible. Conventional machine learning-based drug-resistance analyses assume genetic variations to be homogeneous, thus not distinguishi...
Background
Nosocomial spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been widely reported, but the transmission pathways among patients and healthcare workers (HCWs) are unclear. Identifying the risk factors and drivers for these nosocomial transmissions is critical for infection prevention and control interventions. The...
OBJECTIVES: We investigated determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) anti-spike IgG responses in healthcare workers (HCWs) following one or two doses of Pfizer–BioNTech or Oxford–AstraZeneca vaccines. METHODS: HCWs participating in regular SARS-CoV-2 PCR and antibody testing were invited for serological testing p...
Objectives
Phenotypic drug susceptibility testing for prediction of tuberculosis (TB) drug resistance is slow and unreliable, limiting individualized therapy and monitoring of national TB data. Our study evaluated whole genome sequencing (WGS) for its predictive accuracy, use in TB drug-resistance surveillance, and ability to quantify the effects o...
Tuberculosis is a respiratory disease that is treatable with antibiotics. An increasing prevalence of resistance means that to ensure a good treatment outcome it is desirable to test the susceptibility of each infection to different antibiotics. Conventionally this is done by culturing a clinical sample and then exposing aliquots to a panel of anti...
Background:
Natural and vaccine-induced immunity will play a key role in controlling the SARS-CoV-2 pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity.
Methods:
In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, UK, we investigated the protection from symptomatic and asymptomat...
Background
Despite robust efforts, patients and staff acquire SARS-CoV-2 infection in hospitals. In this retrospective cohort study, we investigated whether whole-genome sequencing (WGS) could enhance the epidemiological investigation of healthcare-associated SARS-CoV-2 acquisition.
Methods and findings
From 17-November-2020 to 5-January-2021, 803...
Background
Mycobacterium abscessus has emerged as a significant clinical concern following reports that it is readily transmissible in health-care settings between patients with cystic fibrosis. We linked routinely collected whole-genome sequencing and health-care usage data with the aim of investigating the extent to which such transmission explai...
Objectives: Despite robust efforts, patients and staff acquire SARS-CoV-2 infection in hospitals. We investigated whether whole-genome sequencing enhanced the epidemiological investigation of healthcare-associated SARS-CoV-2 acquisition.
Methods: From 17-November-2020 to 5-January-2021, 803 inpatients and 329 staff were diagnosed with SARS-CoV-2 in...
Objectives
We investigate determinants of SARS-CoV-2 anti-spike IgG responses in healthcare workers (HCWs) following one or two doses of Pfizer-BioNTech or Oxford-AstraZeneca vaccines.
Methods
HCWs participating in regular SARS-CoV-2 PCR and antibody testing were invited for serological testing prior to first and second vaccination, and 4 weeks po...
Background
SARS-CoV-2 can spread efficiently in hospitals, but the transmission pathways amongst patients and healthcare workers are unclear.
Methods
We analysed data from four teaching hospitals in Oxfordshire, UK, from January to October 2020. Associations between infectious SARS-CoV-2 individuals and infection risk were quantified using logisti...
Objectives
We investigate determinants of SARS-CoV-2 anti-spike IgG responses in healthcare workers (HCWs) following one or two doses of Pfizer-BioNTech or Oxford-AstraZeneca vaccines.
Methods
HCWs participating in regular SARS-CoV-2 PCR and antibody testing were invited for serological testing prior to first and second vaccination, and 4 weeks pos...
Background
Natural and vaccine-induced immunity will play a key role in controlling the SARS-CoV-2 pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity.
Methods
In a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, UK, we investigated the protection from symptomatic and asymptomatic PC...
The World Health Organization (WHO) estimates that around 10 million people develop tuberculosis (TB) every year, with 1.5 million deaths attributed to TB in 2019 (World Health Organization, 2020). The majority of the disease burden occurs in low-income countries, where access to diagnostics and tailored treatment remains problematic. The current C...
Background
Thresholds for SARS-CoV-2 antibody assays have typically been determined using samples from symptomatic, often hospitalised, patients. In this setting the sensitivity and specificity of the best performing assays can both exceed 98%. However, antibody assay performance following mild infection is less clear.
Methods
We assessed quantita...
Background
SARS-CoV-2 IgG antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary.
Methods
We present 6 months of data from a longitudinal seroprevalence study of 3276 UK healthcare worke...
Background
The relationship between the presence of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the risk of subsequent reinfection remains unclear.
Methods
We investigated the incidence of SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) in seropositive and seronegative health care workers attend...
Background
It is critical to understand whether infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) protects from subsequent reinfection.
Methods
We investigated the incidence of SARS-CoV-2 PCR-positive results in seropositive and seronegative healthcare workers (HCWs) attending asymptomatic and symptomatic staff testing at...
Background
SARS-CoV-2 IgG antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary.
Methods
We present 6 months of data from a longitudinal seroprevalence study of 3217 UK healthcare worke...
Background: Bacillus Calmette–Guérin (BCG) is a live-attenuated vaccine used world-wide for prevention of tuberculosis disease. In some immunocompromised hosts it has the potential to cause disease. As with other members of the M. tuberculosis complex it has the potential for acquiring drug resistance.
Methods: We reviewed 10 years of paediatric cl...
Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic in 2020. Testing is crucial for mitigating public health and economic effects. Serology is considered key to population-level surveillance and potentially individual-level risk assessment. However, immunoassay performance has not been compared on la...
We conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a UK teaching hospital using naso-/oro-pharyngeal PCR testing and immunoassays for IgG antibodies. 1128/10,034(11.2%) staff had evidence of Covid-19 at some time. Using questionnaire data provided on potential risk-factors, staff with a confirmed household...
We conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a UK teaching hospital using naso-/oro-pharyngeal PCR testing and immunoassays for IgG antibodies. 1128/10,034 (11.2%) staff had evidence of Covid-19 at some time. Using questionnaire data provided on potential risk-factors, staff with a confirmed household...
We conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a UK teaching hospital using naso-/oro-pharyngeal PCR testing and immunoassays for IgG antibodies. 1128/10,034 (11.2%) staff had evidence of Covid-19 at some time. Using questionnaire data provided on potential risk-factors, staff with a confirmed household...
Thresholds for SARS-CoV-2 antibody assays have typically been determined using samples from symptomatic, often hospitalised, patients. Assay performance following mild/asymptomatic infection is unclear. We assessed IgG responses in asymptomatic healthcare workers with a high pre-test probability of Covid-19, e.g. 807/9292(8.9%) reported loss of sme...
Background
Personal protective equipment (PPE) and social distancing are key measures designed to mitigate the risk of occupational SARS-CoV-2 infection in hospitals. Why healthcare workers nevertheless remain at increased risk is uncertain.
Methods
We conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a large...
Resistance prediction and mutation ranking are important tasks in the analysis of Tuberculosis sequence data. Due to standard regimens for the use of first-line antibiotics, resistance co-occurrence, in which samples are resistant to multiple drugs, is common. Analysing all drugs simultaneously should therefore enable patterns reflecting resistance...
We investigated the sources of MDR-TB in patients with isoniazid-resistant tuberculosis treated with 1st line anti-tuberculosis therapy and show that re-infection with a new MDR-TB strain was just as common as the emergence of rifampicin resistance among these patients. ABSTRACT Background. Meta-analysis of patients with isoniazid-resistant tubercu...
Background:
Meta-analysis of patients with isoniazid-resistant tuberculosis given standard first-line anti-tuberculosis treatment indicated an increased risk of multi-drug resistant tuberculosis (MDR-TB) emerging (8%), compared to drug-sensitive tuberculosis (0.3%). Here we use whole genome sequencing (WGS) to investigate whether treatment of pati...
Background:
A comprehensive understanding of the pre-existing genetic variation in genes associated with antibiotic resistance in the Mycobacterium tuberculosis complex (MTBC) is needed to accurately interpret whole-genome sequencing data for genotypic drug susceptibility testing (DST).
Methods:
We investigated mutations in 92 genes implicated i...
Two billion people are infected with Mycobacterium tuberculosis , leading to 10 million new cases of active tuberculosis and 1.5 million deaths annually. Universal access to drug susceptibility testing (DST) has become a World Health Organization priority. We previously developed a software tool, Mykrobe predictor , which provided offline species i...
Two billion people are infected with Mycobacterium tuberculosis, leading to 10 million new cases of active tuberculosis and 1.5 million deaths annually. Universal access to drug susceptibility testing (DST) has become a World Health Organization priority. We previously developed a software tool, Mykrobe predictor, which provided offline species ide...
Background
Whole genome sequencing (WGS) is a reliable tool for studying tuberculosis (TB) transmission. WGS data are usually processed by custom-built analysis pipelines with little standardisation between them.AimTo compare the impact of variability of several WGS analysis pipelines used internationally to detect epidemiologically linked TB cases...
Motivation:
Resistance co-occurrence within first-line anti-tuberculosis (TB) drugs is a common phenomenon. Existing methods based on genetic data analysis of Mycobacterium tuberculosis (MTB) have been able to predict resistance of MTB to individual drugs, but have not considered the resistance co-occurrence and cannot capture latent structure of...
In our recent study of 203 sequential isolates evaluating the ability of whole genome sequencing (WGS) to predict clarithromycin resistance in Mycobacterium abscessus ( M. abscessus ) (1), we demonstrated high sensitivity but poor specificity of mutations identified in a literature search. …
Hospital performance is often measured using self-reported statistics, such as the incidence of hospital-transmitted micro-organisms or those exhibiting antimicrobial resistance (AMR), encouraging hospitals with high levels to improve their performance. However, hospitals that increase screening efforts will appear to have a higher incidence and pe...
Whole genome sequencing (WGS) of Mycobacterium tuberculosis has rapidly progressed from a research tool to a clinical application for the diagnosis and management of tuberculosis and in public health surveillance. This development has been facilitated by drastic drops in cost, advances in technology and concerted efforts to translate sequencing dat...
Tuberculosis is the primary infectious disease killer worldwide, with a growing threat from multidrug- resistant cases. Unfortunately, classic growth-based phenotypic drug susceptibility testing (DST) remains difficult, costly and time-consuming, while current rapid molecular testing options are limited by the diversity of antimicrobial resistant g...
The clinical phenotype of zoonotic tuberculosis and its contribution to the global burden of disease are poorly understood and probably underestimated. This shortcoming is partly because of the inability of currently available laboratory and in silico tools to accurately identify all subspecies of the Mycobacterium tuberculosis complex (MTBC). We p...
Hospital performance is often measured using self-reported statistics, such as the incidence of hospital-transmitted micro-organisms or those exhibiting antimicrobial resistance (AMR), encouraging hospitals with high levels to improve their performance. However, hospitals that increase screening efforts will appear to have a higher incidence and pe...
Synopsis
Background
Pyrazinamide is one of four first-line antibiotics used to treat tuberculosis, however antibiotic susceptibility testing for pyrazinamide is challenging. Resistance to pyrazinamide is primarily driven by genetic variation in pncA, an enzyme that converts pyrazinamide into its active form.
Methods
We curated a dataset of 664 no...
Mycobacterium abscessus is emerging as an important pathogen in chronic lung diseases, with concern regarding patient-to-patient transmission. The recent introduction of routine whole-genome sequencing (WGS) as a replacement for existing reference techniques in England provides an opportunity to characterize the genetic determinants of resistance....
Motivation:
Timely identification of Mycobacterium tuberculosis (MTB) resistance to existing drugs is vital to decrease mortality and prevent the amplification of existing antibiotic resistance. Machine learning methods have been widely applied for timely predicting resistance of MTB given a specific drug and identifying resistance markers. Howeve...