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Abstract
Surface proteins are critical in determining the identifying char-
acteristics of individual bacteria and their interaction with the en-
vironment. Because the structure of the cell surface is the major
characteristic that distinguishes gram-positive from gram-negative
bacteria, the processes used to transport and attach these proteins
show significant differences between these bacterial classes. This re-
view is intended to highlight these differences and to focus attention
on areas that are ripe for further investigation.
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INTRODUCTION

The first impressions life forms give are very
important. For a bacterium, the “face” it
presents to the world is determined in part
by the proteins on its surface. Because pro-
teins show greater variability among different
types of bacteria than other surface compo-
nents, surface proteins help to define both the
unique aspects by which each strain is recog-
nized and the ability of each strain to colonize
and interact with its own special environmen-
tal niche. Thus, surface proteins are critically
important in determining the success of a bac-
terial strain in its competition for survival in
the world.

The functions of bacterial surface proteins
are varied. Some protect bacteria from envi-
ronmental challenges, including toxic condi-
tions or host immune defense system proteins
[e.g., surface (S)-layer proteins and antiphago-
cytic molecules, respectively]; some allow bac-
teria to use nutrients from their environment
(see Cellulosomes, below); some allow bacte-
ria to attach to specific environmental com-
ponents (e.g., adhesins, including pili); some
allow bacteria to interact with each other (e.g.,
biofilm formation in Staphylococcus epidermidis;
reviewed in Reference 53); some facilitate
competition with other bacteria for specific
niches (lytic enzymes such as staphylolysin,
see below); and some, which are essential pro-
teins, are required for bacterial growth, cell
wall (cw) maintenance, and cell division (the
autolysins, see below).

The two major classes of bacteria, gram-
positive and gram-negative, are differenti-
ated primarily because of differences in their
surfaces. Gram-positive bacteria have much
thicker peptidoglycan cw layers and no outer
membrane external to this structure. Thus,
gram-positive bacteria also lack a morpholog-
ically distinct periplasmic space, which is usu-
ally defined as the region between the cyto-
plasmic membrane (cm) and outer membrane.
Because of these major differences in sur-
face structure from the better-studied gram-
negative bacteria, secretion, folding, and
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attachment of proteins to the envelope must
differ in fundamental ways between the two
bacterial groups.

This review does not attempt to summa-
rize or list surface proteins in different gram-
positive bacteria because the increased use of
proteomic analyses would cause any such list
to be outdated by the time it is published. We
hope that a mechanistically focused analysis
of surface localization of gram-positive bac-
terial proteins is more interesting and more
valuable. Thus, this review tries to summa-
rize the ways in which proteins reach the sur-
face of gram-positive bacteria and the mech-
anisms by which such proteins are attached
to the bacterial cell envelope. We focus on
the newer aspects not previously reviewed and
refer to previous reviews for other cases. We
have found reviewing this literature to be ex-
citing and hope we can convey that to the
reader. We hope that this review helps to iden-
tify the areas in which further research is badly
needed. Although we have tried to cite appro-
priate references and/or reviews that include
primary citations, we apologize for inadver-
tent omissions that occur herein.

CELL WALL STRUCTURE

For gram-positive bacteria, a single cm sur-
rounded by a thick layer of peptidoglycan pro-
vides both a physical barrier for protection
from the environment and a scaffold for the
attachment of secondary cw polymers (includ-
ing teichoic and teichuronic acids) and sur-
face proteins (Figure 1 shows the structure
of a typical gram-positive cw). Cross-linking
of the linear glycan strands by short peptides
results in a single huge molecule 15 to 30 nm
thick that completely surrounds the cell. Te-
ichoic acids may be attached either to a gly-
colipid associated with the cm (lipoteichoic
acids, LTAs) or to the cw (wall teichoic acids,
WTAs) (2) (Figure 1). Together with pepti-
doglycan, teichoic acids form a polyanionic
matrix that has a variety of functions, includ-
ing cation homeostasis, trafficking of various
ions and nutrients, and the display of surface

Cellulosome: large
structure composed
of an ordered array
of enzymes involved
in cellulose
breakdown attached
noncovalently to the
cw by SLH domains

cw: cell wall

cm: cytoplasmic
membrane

LTA: lipoteichoic
acid

WTA: wall teichoic
acid

proteins. Excellent reviews provide more in-
formation on the structure and function of the
cw (13, 117) and on secondary cw polymers
(96).

TRANSPORT THROUGH THE
CYTOPLASMIC MEMBRANE

The first step in the localization of proteins
to the cell surface is transport through the
cm. The cm must maintain integrity of the
cytoplasmic contents while allowing passage
of molecules, some of which are finally found
attached to the membrane itself. Most bacte-
rial proteins are transported unfolded, which
allows them to proceed through a small gated
translocation channel. The most common
mechanism for this is a process called the gen-
eral secretory (Sec) pathway, which is depen-
dent on the Sec system. Some folded proteins
can be exported by the twin arginine or TAT
pathway (reviewed in Reference 50a). In addi-
tion, there are several specialized paths for se-
cretion of specific proteins. The following is a
brief discussion of the Sec pathway that high-
lights its main differences in gram-positive
versus gram-negative bacteria. For further in-
formation and original references, the reader
is referred to several excellent recent reviews
(36, 38, 91, 134, 136). This is followed by a
discussion of a newly recognized specific se-
cretion system encoded in genomes of several
gram-positive bacteria. The wide array of dif-
ferent ABC transporter proteins dedicated to
secretion of limited substrates through the cm
is not discussed in this review.

The Sec Pathway

Most of our knowledge of this pathway comes
from studies of Escherichia coli and Bacillus sub-
tilis. In Sec-dependent secretion, the mem-
brane channel is formed by the highly con-
served proteins SecY and SecE interacting
with the cm protein SecG. Recent work sug-
gests that SecY forms the plug to gate the
channel (126). In addition, the channel may
also include SecD, SecF, and YajC, although
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Figure 1
Structure of the Streptococcus pyogenes cw peptidoglycan with teichoic acid. Peptidoglycan is a repeating
disaccharide of N-acetylmuramic acid (MurNAc; green) linked to N-acetylglucosamine (GlcNAc; dark
blue) by a β 1–4 glycosidic bond. These strands are cross-linked by a cw peptide (purple) and a peptide
crossbridge (light blue). The composition of both the cw peptide and peptide crossbridge varies with the
organism (117). The wall teichoic acid is a polymer of glycerol phosphate (orange) that is attached to
peptidoglycan via a linkage unit (red) (2, 120). In Bacillus subtilis, teichoic acids, which are phosphate-free
polymers of glucuronic acid and GlcNAc, may replace wall teichoic acid under phosphate-limiting
conditions.

Translocon:
channel composed of
specific proteins
located in the cm
through which
secreted proteins
with Sec signals at
their N terminus are
transported

homologs of SecD and SecF are absent from
gram-positive genomes. SecA, often called the
motor, is the ATPase that enables ATP to
be used as an energy source for this process
when it associates with the other Sec proteins
that constitute the translocon. In B. subtilis,
SecA appears also to act as an export-specific
chaperone to help prevent folding of proteins
prior to their translocation. It has been pro-
posed (109, 110) that in gram-positive bacteria

translocons are clustered at restricted (bacilli)
or unique (cocci) sites of the cm termed the
ExPortal (see below).

In Streptococcus gordonii, Streptococcus pneu-
moniae, and Staphylococcus aureus, there are two
pairs of SecA and SecY proteins, one of which
is essential and the other of which is required
for export of a single, large cw-anchored pro-
tein. In S. gordonii, this protein is an adhesin
encoded in an operon with the SecA and SecY
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that transport it (10). In Mycobacterium tuber-
culosis (21, 22) and Listeria monocytogenes (76,
77), one of the two secA genes is also not essen-
tial. SecA2 seems to aid in export of a subset of
proteins, some of which lack recognizable Sec
sequences and are not expected to be secreted
(including proteins needed for transcription
and translation). In L. monocytogenes, SecA2
increases the amount of several autolysins on
the exterior of the cw, which raises the concern
that the presence of stable abundant cytoplas-
mic proteins in the “secretome” may result
from autolysis.

In gram-negative bacteria, targeting of
proteins to the translocon channel may occur
by one of two mechanisms: the SecB path-
way or the signal recognition particle (SRP)
pathway. SecB binds to proteins that have
an N-terminal signal sequence of at least 20
residues and targets these proteins to the Sec
apparatus. This process is largely posttrans-
lational. SecB also acts as a secretion-specific
chaperone to prevent folding prior to export.
However, genomes of gram-positive bacteria
whose sequence is available do not encode or-
thologs of SecB. Thus, it is not clear how
proteins are chaperoned to the translocon
in gram-positive bacteria. Several secretion-
specific chaperones that may play a role sim-
ilar to that of SecB have been identified or
suggested in some gram-positive bacteria, in-
cluding CsaA in B. subtilis (79, 92, 93), which
has orthologs in some (66) but not all gram-
positive bacteria.

Signal Recognition Particle

The other pathway known to target proteins
to the translocon channel uses the SRP, which
is composed of a small cytoplasmic RNA
(scRNA) (4.5S in E. coli) and a GTPase, en-
coded by ffh (54 homolog) (61, 108), which
binds the signal sequence of the preprotein.
This pathway is found in the genomes of all
organisms whose complete sequence is avail-
able, including bacteria, archaea, and eukary-
otes (29). In addition to ffh and the scRNA,
in B. subtilis, HBSu, a histone-like protein,

ExPortal: cell
surface site at which
Sec translocons are
found

SRP: signal
recognition particle

scRNA: small
cyptoplasmic RNA
constituting part of
the SRP

also binds the SRP. In gram-negative bacte-
ria, the SRP pathway appears to be used for
most proteins whose final localization is the
inner membrane as well as for some secreted
proteins. In gram-positive bacteria, because of
the absence of a SecB homolog, the SRP path-
way is the only mechanism known for target-
ing proteins to the cm and to the translocon
channel. However, the SRP pathway is dis-
pensable for growth under nonstress condi-
tions in streptococci (34), although eliminat-
ing both YidC2 and the Srp pathway severely
inhibits growth (57). This suggests the exis-
tence of an alternative to the SRP pathway
that requires YidC2.

During protein synthesis, Ffh of the SRP
competes with trigger factor, a ribosome-
associated chaperone, for binding to nascent
protein chains. Thus, the nascent protein be-
comes associated with the SRP. The SRP is
targeted to the membrane by association with
FtsY, another GTPase, which is an ortholog
of the SRP receptor in eukaryotes. The SRP
has been shown by cross-linking analysis (in
vitro in B. subtilis) (24) to interact with SecA
and thus target the newly synthesized protein
to the translocon.

Recently, elegant structural analyses
showed that the active site for GTP hydroly-
sis in the translocon channel is formed by the
Ffh-FtsY heterodimer when it associates with
the membrane (43). This heterodimer, which
has been called a molecular latch, dissociates
when the GTP is hydrolyzed, releasing the
SRP constituents to recycle.

Signal Peptidases

Secreted proteins that use the Sec pathway are
recognized by the presence of an N-terminal
signal sequence, which is cleaved by a type 1
signal peptidase during the process of secre-
tion through the cm (for a review see Ref-
erence 135). This signal sequence is much
longer in gram-positive bacteria than in gram-
negative bacteria.

Many gram-positive bacteria encode more
than one type 1 signal peptidase. In these
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Snm: secretion in
Mycobacteria (specific
non-Sec-dependent
system)

cases, their functions may be completely or
partially redundant or they may have unique
specificities. In B. subtilis, there are five sig-
nal peptidases, three of which are essential.
In Streptomyces lividans, type 1 signal pepti-
dases also show different specificities (99). In
most other gram-positive bacteria, functional
analyses of signal peptidases have not yet been
performed.

Type 2 signal peptidases recognize
diacylglyceryl-modified preproteins at the
“lipobox” (LXXC motif, gram-positive
lipobox motif) (125) and covalently attach
them by an N-terminal cysteine residue to
a lipid component of the cm. The resulting
lipoprotein is thus retained at the cw-cm
interface. These peptidases always have four
transmembrane domains and include Asp at
their active site, which is located outside the
cm.

Specific Secretion Systems: Snm

Among the secretion systems responsible for
export of specific proteins that lack an N-
terminal Sec signal and that are not processed
during secretion is the recently described
Snm pathway (secretion in Mycobacteria). The
nomenclature for the components of this
pathway has not been standardized and the
mechanism of transport is not yet completely
understood. We hope the description below
encourages additional investigators to study
this system.

The Snm pathway was first identified in
M. tuberculosis by bioinformatic analyses (32,
127) and as a virulence factor by signature-
tagged mutagenesis (123). This region of the
M. tuberculosis genome, known as RD1 (for
region of difference 1 between the BCG vac-
cine strain and virulent strains), is present in
all virulent strains and absent from all aviru-
lent strains of M. tuberculosis (9, 52). The genes
snm1, snm2, and snm4 (RV3870, RV3871,
and RV3877, respectively) encode proteins re-
quired for secretion of ESAT-6 (early secreted
antigen target-6) and a related protein, CFP-
10, whose genes (RV3875 and RV3874, re-

spectively) they flank. ESAT-6 and CFP-10
are small proteins that serve as major T cell
antigens (54, 123) and they are required for
virulence.

Snm1 and Snm2 have homology with AAA
ATPases, each has several transmembrane do-
mains, and they belong to the Fsd (FtsK/
SpoIIIE domain) class of proteins involved in
chromosome partitioning and translocation.
Snm4 is predicted to have 12 transmembrane
domains. In a yeast two-hybrid system, Snm1
and Snm2 interact with each other and with
their substrate proteins (107, 123). Although
additional proteins may be involved in trans-
port through this pathway, it seems likely that
the energy for transport is derived from ATP
using Snm1 and Snm2 and that Snm4 is lo-
cated in the membrane and participates in
formation of a channel (123). Very recently,
Snm9 and Snm10, encoded outside the RD1
locus of M. tuberculosis, were identified to be
required for CFP-10 and ESAT-6 secretion as
well (83).

The Snm pathway is required for replica-
tion of Mycobacteria in macrophages and is an
important virulence factor for M. tuberculosis.
Homologs of the snm genes have been iden-
tified in Mycobacterium smegmatis, Mycobac-
terium leprae (which has a minimal genome),
and many other G+C gram-positive bacteria,
including both pathogens and nonpathogens
(100). The conservation of this secretion sys-
tem among organisms with such divergent
lifestyles might indicate that substrates in
addition to ESAT-6 and CFP-10 orthologs
are exported by this system or that the snm
homologs in other bacteria are sufficiently dif-
ferent to serve other functions (25). In M.
smegmatis, whose RD1 region was shown by
complementation to be functionally equiva-
lent to that of M. tuberculosis, the Snm pathway
also regulates conjugative transfer of DNA
(42). Thus, even in M. tuberculosis, the Snm
system serves several functions.

In S. aureus, two ESAT-6-like proteins,
EsxA and EsxB, are also secreted with intact
N termini, and this requires the FSD (sim-
ilar to Snm1 and Snm2, see above) protein
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EssC and two other membrane proteins (EssA
and EssB) (25). Although the precise function
of this system has not yet been determined,
it makes a significant contribution to abscess
formation in mice. Thus, like the Snm system
in M. tuberculosis, it is important for virulence.
It appears at this time that the Snm system
may be important in many different gram-
positive bacteria, and further studies leading
to a greater understanding of its mechanism
of protein transport, substrate specificity, and
role in the lifestyle of different organisms are
eagerly awaited.

COVALENT ATTACHMENT TO
CELL WALL PEPTIDOGLYCAN:
SORTASES

Mechanism of Attachment by SrtA
and its Substrates

In gram-positive bacteria, surface proteins
that are covalently attached to peptidoglycan
are anchored through their carboxy terminus
by transpeptidases called sortases (Srt). The
majority of these covalently attached surface
proteins are anchored by a single enzyme, the
“housekeeping” sortase, usually designated
SrtA. Originally identified in S. aureus (87),
SrtA homologs have now been characterized
experimentally from a wide variety of gram-
positive bacteria (see Reference 128 and 84a
for reviews), including L. monocytogenes (15,
46), Bacillus anthracis (50), and several strepto-
coccal species (6, 19, 67, 73, 75, 98). The num-
ber and types of proteins anchored by SrtA are
predicted, on the basis of genome sequence
analyses, to vary among organisms, from 1 or
2 in Tropheryma whipplei and B. subtilis, respec-
tively, to up to 43 in L. monocytogenes (17). Be-
cause most bacteria require SrtA for attach-
ment of more than one protein to the cell
surface, srtA mutants often have pleiotropic
effects, including alterations in bacterial viru-
lence and in attachment to various surfaces. In
pathogenic bacteria, SrtA is also considered a
possible target for development of therapeutic
agents.

Sortase (Srt):
transpeptidase that
cleaves a specific
motif in a protein
substrate and links it
covalently to the cw
peptide crossbridge

Sortase-attached surface proteins can be
recognized by the presence of a conserved
C-terminal cw-anchoring domain that con-
sists of a sortase-recognition sequence (usu-
ally LPXTG) followed by a hydrophobic
stretch of amino acids and a positively charged
tail (41). Current evidence supports a four-
step anchoring mechanism that results in co-
valent attachment via a peptide bond between
the threonine residue of the LPXTG mo-
tif and the peptide crossbridge of the cw
(Figure 2) (for recent reviews see References
84a, 128, and 103).

Some heterologous proteins can be an-
chored by SrtA if they are fused to the C-
terminal cw-anchoring domain of a naturally
SrtA-dependent surface protein such as S. au-
reus protein A. However, it appears that in-
formation from the N terminus of a protein
may also be required because there are excep-
tions that cannot be anchored when fused to
an anchoring motif (5, 118).

Multiple Sortases Encoded in the
Genomes of Gram-Positive Bacteria

Sortase genes have been identified in silico
by database homology searches (17, 33, 101)
and on the basis of several criteria including
the presence of a conserved signature mo-
tif (TLXTC) that contains the catalytic cys-
teine residue (130). Sortase genes are present
in the genomes of all gram-positive bacteria
that have been examined to date, as well as in
at least two Archaea (Methanobacterium ther-
moautotrophicum and Methanopyrus kandleri)
and a few gram-negative Proteobacteria (Col-
wellia psychrerythraea, Microbulbifer degradans,
Bradyrhizobium japonicum, Shewanella putrefa-
ciens, and Shewanella oneidensis) (33).

A surprising result of the database searches
was the finding that most gram-positive bac-
teria encode one or more sortases in addi-
tion to SrtA. Most protein substrates for the
“accessory” sortases that have been character-
ized experimentally are encoded near or ad-
jacent to the sortase that anchors them. Such
substrate proteins include those required for
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Figure 2
Covalent attachment of proteins to the peptidoglycan by S. aureus SrtA. (Step 1) Surface proteins are first
secreted through the membrane via the Sec pathway and the N-terminal signal sequence (Sig) is
removed. The C-terminal hydrophobic domain and positively charged tail (blue) retain the protein in the
membrane and allow the LPXTG motif to be recognized by the membrane-bound sortase enzyme
(orange) (86, 119). (Step 2) Sortase then cleaves the LPXTG motif between the threonine and glycine
residues (95) by a reverse-protonation catalytic mechanism (44), which releases the C-terminal
hydrophobic region and charged tail. The N-terminal portion of the cleaved protein forms an
acyl-enzyme intermediate with sortase. (Step 3) This is resolved following a nucleophilic attack
(red arrow) by an amine group on the cw precursor, lipid II (104, 112). (Step 4) The protein-linked lipid II
molecule is then incorporated into the mature cw by the transglycosylation and transpeptidation
reactions of bacterial peptidoglycan synthesis.

iron acquisition in S. aureus (88, 89) and ho-
mologous proteins in L. monocytogenes (14), a
trypsin-resistant protein (T6) in Streptococcus
pyogenes (6) recently shown to be incorporated
into pili (90), and other proteins required for
the production of pili in several organisms (see
below).

The mechanism of action of the accessory
sortases is believed to be similar to that of
SrtA; however, their protein substrates may
have distinct recognition sequences, such as
NPQTN (S. aureus SrtB) (89) and QVPTGV
(S. pyogenes SrtC2) (5). Other accessory sor-
tases, including some required for the forma-

tion of pili (see below), recognize an LPXTG
motif as does SrtA but act on a different subset
of proteins to form pilin polymers (see below).
The mechanism by which substrate proteins
are identified by a sortase has not yet been
investigated.

Accessory sortases may anchor their sub-
strates to different components of the pep-
tidoglycan than does SrtA. This appears to
be true for SrtB of S. aureus, whose substrate
is IsdC. Unlike SrtA-anchored proteins, cw-
anchored IsdC is not accessible to digestion
with trypsin. In addition, the cw fragments
to which IsdC is attached display significantly
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less cross-linking than the fragment to which
SrtA-anchored proteins are linked (85). No
other proteins that require accessory sortases
have been studied in enough detail to de-
termine whether most accessory sortases at-
tach their substrates to unique peptidoglycan
locations.

Another Sortase Function:
Polymerization into Pili

Perhaps the most unexpected role for a sor-
tase homolog is in the formation of pili in
gram-positive bacteria such as Actinomycetes
naeslundii (147) and Corynebacterium diphthe-
riae (84a, 131, 132, 142). Gram-positive pili
appear to be composed of a string of covalently
attached protein subunits that are not disso-
ciated by boiling in sodium dodecyl sulfate
(SDS) or other harsh chemical treatments.
Yeung et al. (147) proposed that the sub-
units of A. naeslundii pili may be covalently
attached to each other by a sortase-like mech-
anism. This proposal was based on the find-
ing that the subunits in assembled pili lack the
C-terminal hydrophobic region and charged
tail that follows the LPXTG motif, although
these regions are present when the protein is
synthesized in E. coli. In further support of
this idea, the gene immediately downstream
of that encoding A. naeslundii pilin that is re-
quired for pilus assembly (147) was later iden-
tified as being homologous to SrtA in S. aureus
(131).

Pili in C. diphtheriae also require a sor-
tase for assembly and attachment to the cw
(131). Ton-That & Schneewind (131) sug-
gested that the pilin subunits would be cleaved
at the LPXTG motif and linked to a free
amine group of a lysine residue in successive
monomers. Further N-terminal in the pilin
protein, they identified a conserved “pilin mo-
tif” by aligning the sequence of pilin proteins
from SpaA, SpaD, and SpaH pili of C. diphthe-
riae and FimA and FimP pili of A. naeslundii.
Changing the conserved lysine in this motif
(WxxxVxVYPK) to arginine or alanine pre-
vented or reduced C. diphtheriae pilus assem-

bly (131). Thus, the pilin motif is thought to
anchor the N-terminal end of the pilin pro-
tein to the next subunit. In some cases, a minor
pilin may have a different motif.

The same pilin motif was also identified
in genes of Clostridium perfringens, Entero-
coccus faecalis, Streptococcus agalactiae, and S.
pneumoniae (131), suggesting the possibility
of a similar mechanism for pilus assembly in
these bacteria, although pili have not yet been
demonstrated in all these organisms. The sim-
ilarity of the mechanism for pilus assembly in
several gram-positive bacteria (for a review see
References 84a, 119a, 132) was demonstrated
by the ability of C. diphtheriae to assemble the
major pilin subunit from A. naeslundii (FimA)
into short pili (129). Surprisingly, however,
this heterologous assembly of FimA requires
a different sortase homolog than that used to
polymerize SpaA pili, although both require
an LPXTG anchor domain for pilus assembly.

Recently, thin pili were identified on the
surface of S. agalactiae (Group B Strepto-
coccus) following genome screening for pre-
dicted surface proteins (with LPXTG mo-
tives) that might serve as vaccine candidates
(74). These pili are composed of a protein
that includes the pilin motif of Ton-That
and Schneewind (see above), which is en-
coded in an operon containing two sortase-
related genes. This finding suggests that a
similar sortase-dependent mechanism may be
involved in their formation.

Some strains of S. pyogenes have chromo-
somal regions that encode one or two sor-
tase homologs in addition to proteins with
C-terminal anchoring domains that include
sequences related to LPXTG (e.g., the “FCT”
region) (5, 12). In cw extracts from a strain
of S. pyogenes, a protein substrate (orf100)
for one of these sortases (SrtC2) produces a
“laddering” pattern of successive multimers
on SDS-PAGE (5). Recently, electron micro-
scopic analyses demonstrated that these FCT-
encoded proteins are subunits of pili (90), al-
though they do not include the pilin motif
defined for C. diphtheriae and A. naeslundii.
Thus, it appears that pili may be much
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more common in gram-positive bacteria
than previously believed and that their sub-
units may be covalently linked by sortase
homologs.

The sortase homolog encoded in the pilin
gene cluster is not sufficient to anchor the
pili to the cw in the only cases in which this
has been investigated, SpaA pili of C. diph-
theriae (131) and T6 pili of S. pyogenes (D.
Zähner & J. R. Scott, manuscript submitted).
Instead cw attachment requires the house-
keeping sortase. Therefore, the transpepti-
dase encoded in the pilin gene cluster does not
have a sorting function, so it should be con-
sidered a transpeptidase (or pilin polymerase)
rather than a sortase (119a).

The specific sortase required for pilus
polymerization has been defined by mutage-
nesis in the case of A. naeslundii (147), C. diph-
theriae SpaA pili (131), and the S. pyogenes
FCT region proteins T6 (6) and Orf100 (5).
In other pili, some of which are encoded in
loci containing more than one sortase, it is
not clear which sortase(s) is needed for pilin
polymerization or attachment of the pili to the
bacterial cw. Furthermore, the mechanisms
by which the minor pilin subunits are added,
when they are present, have not yet been clar-
ified. Thus, although a great deal has been
learned about gram-positive pili in a short
time, much more remains to be discovered.

Nomenclature

While the rapid identification and charac-
terization of sortases from different gram-
positive bacteria has provided a wealth of
information about the substrates of these en-
zymes in diverse organisms, the result has
been a nomenclature that is somewhat con-
fusing. Recently, schemes have been proposed
to classify sortases into four (39) or five (33)
groups on the basis of phylogenetic (clus-
ter) analysis. Dramsi et al. (39) suggest that
sortases that share extensive sequence simi-
larity have similar functions and should be
named accordingly. However, the data cur-
rently available already indicate this may not

always be true. For example, while the protein
anchored by SrtB of S. aureus is required for
iron acquisition (89), the sortase from S. pyo-
genes that belongs to this class (called SrtC2)
covalently links pilin subunits to form the
pilus structure (6, 90). In addition, some bac-
teria encode several sortases of a single class
with potentially different roles. In the scheme
suggested, these sortases would all receive the
same name, which might lead to additional
confusion. At this time, therefore, it seems
appropriate to name sortases with successive
letters in a given organism in order of discov-
ery or, if they are identified in silico, in or-
der around a genome. Further experimental
characterization is needed to determine which
members of a phylogenetic cluster are func-
tionally similar. When functions are defined,
it may be useful to rename some transpepti-
dases that polymerize pilin subunits to distin-
guish them from sorting transpeptidases and
to group the others into classes given new
designations.

NONCOVALENT ATTACHMENT
TO THE GRAM-POSITIVE
SURFACE

Teichoic Acid Binding Surface
Proteins

Overview. In several gram-positive bacteria,
proteins exposed on the cell surface are asso-
ciated with the TA present in the cm, cw, or
both. This association usually occurs through
repeats present in the C-terminal domain of
the surface protein. In the few bacterial species
containing choline in their LTA (S. pneumo-
niae and some Clostridia), these repeats bind
choline (see below). This can be demonstrated
by the release of such proteins from the bacte-
rial cell surface upon the addition of choline
to whole bacteria. Choline binding proteins
can be purified on choline-affinity columns,
which has been important historically for their
identification.

For bacteria lacking choline in their TA,
the ligand associated with the cell surface
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protein has not been identified. For the best
studied of these LTA binding proteins, the
C-terminal repeats required for attachment
(GW repeat modules) are longer than choline
binding repeats and the two types of repeats
show no homology, except that both begin
with the residues GW (glycine tryptophan).

Most proteins attached to LTA contain
N-terminal Sec secretion signals and can as-
sociate with the cell surface from either within
or outside the cell. Many of these proteins
are amidases, which hydrolyze the cw of the
bacterium that synthesizes them and/or of an-
other related species. Such cw hydrolases or
autolytic enzymes are necessary for insertion
of new peptidoglycan material as cells grow,
and they are often localized to specific sites of
the cell surface, such as the septum and poles
(see below). These amidases are often essen-
tial proteins, e.g., the choline-binding protein
LytA of S. pneumoniae, presumably because
they are required for cell growth and division.

Choline binding proteins of S. pneumo-

niae and other bacteria. The best-studied
example of a bacterial choline binding pro-
tein is probably PspA, an important viru-
lence factor and vaccine target found on the
surface of S. pneumoniae (23). Washing the
cells with Na2CO3, pH 11.2, releases pe-
ripheral membrane proteins but does not re-
lease PspA. The C-terminal region of PspA
contains a large proline-rich domain that in-
cludes 10 highly conserved 20-amino-acid re-
peat units and a short C terminus that is
only weakly hydrophobic and poorly charged
(148). These repeats begin with the amino
acids GW. Whether produced from within
the S. pneumoniae cell or added externally to
cells lacking pspA, the PspA protein associates
with the cell surface in a process that requires
at least five of the C-terminal repeat units
(149). Yother & White (149) elegantly showed
that the surface attachment of PspA is due to
its interaction with the choline present in the
LTA of S. pneumoniae and that the addition of
a high concentration of choline (2%) releases
the protein from the cell.

Other S. pneumoniae proteins also associate
with the cell surface by binding choline. These
include LytA (60), an essential autolytic ami-
dase. Unlike most LTA binding proteins, LytA
does not have an N-terminal signal sequence.
Several additional amidases have been iden-
tified in S. pneumoniae by the use of choline-
affinity columns and some of these are phage-
encoded lytic enzymes (47–49, 81).

Other bacteria that contain choline in their
cell envelope are members of the hetero-
geneous genus Clostridium (105). CspA of
Clostridium acetobutylicum, which is probably
the best-studied protein of this group, is found
both on the cell surface and, as expected
from the presence of an N-terminal signal se-
quence, in the culture medium, where it is the
predominant protein (113). At its C termi-
nus, CspA has choline binding repeats begin-
ning with GW that resemble the consensus
for choline binding repeats of pneumococcal
cw hydrolases (49). The function of CspA has
not yet been investigated.

GW repeat modules for noncovalent at-
tachment to LTA. In studying surface pro-
teins of L. monocytogenes that lack LPXTG-
type surface anchoring domains (26), Cossart
and colleagues (45) identified InlB, which is
required for invasion of host cells by this hu-
man pathogen. The C-terminal region of InlB
is necessary and sufficient for surface anchor-
ing. This region contains modules termed
GW repeats, because each of these 80- to 90-
residue tandem repeats begins with glycine-
tryptophan (20). The GW repeats are longer
than choline binding repeats and share no fur-
ther homology with them.

Like PspA of S. pneumoniae, the InlB pro-
tein of L. monocytogenes, which contains an
N-terminal secretion signal recognized by the
Sec system, associates with the bacterial sur-
face whether it is produced from within the
cell or added externally (20). It cannot be re-
leased efficiently from the surface of L. mono-
cytogenes by a muramidase (65, 94) because it
is attached to the LTA in the cell membrane
(65). Although the importance of the GW
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Surface (S) layer:
composed of
semicrystalline-
ordered array of a
noncovalently
associated protein

SLH: S-layer
homology

residues at the beginning of each repeat mod-
ule for attachment was not addressed, other
proteins with homologous tandem GW re-
peat modules are also surface associated. Such
proteins in L. monocytogenes include Ami, an
amidase that can lyse both Listeria and other
gram-positive species (20), and Auto, an au-
tolysin (27). Additional proteins with GW re-
peat modules in different positions are also
encoded in the L. monocytogenes genome se-
quence, and most of these contain an amidase
domain similar to Ami (26).

Similar GW repeat modules are required
for surface targeting of several staphylococ-
cal surface autolysins (4) including AtlC from
Staphylococcus caprae (1), AtlE from Staphylococ-
cus epidermidis (58), and Aas from Staphylococ-
cus saprophyticus (59). An unusual case is that of
the Staphylococcus simulans protein lysostaphin,
in which the GW modules at the C terminus
are also responsible for noncovalent associa-
tion of this secreted bacteriolytic enzyme with
the cell surface. However, the S. simulans en-
zyme does not lyse S. simulans but rather rec-
ognizes peptidoglycan crossbridges of S. au-
reus (3). Thus, lysostaphin enables S. simulans
to lyse S. aureus and can be viewed as an ex-
ample of chemical warfare used by bacteria
to gain predominance in colonizing a specific
niche.

S-Layer Proteins

Most genera of eubacteria and archaea in-
clude strains that produce surface (S) layers
that appear crystalline. S layers are com-
posed of many copies of a protein linked non-
covalently to produce planar arrays. When
present, S-layer proteins usually constitute
the most abundant protein of the cell. In spite
of their abundance and striking appearance
as obvious cell surface structures, there seem
to be few general rules about their function
or how they reach or are anchored to the
cell envelope. Furthermore, when bacteria are
grown under optimal laboratory conditions
they often lack the S layers that may be present
in more natural growth situations.

S layers may serve several functions in the
same cell. These include acting as molecu-
lar sieves, protective coats, structures involved
in specific adhesion and surface recognition,
attachment sites for exoenzymes, ion traps,
and templates for fine-grain mineralization.
In pathogens, S layers are often virulence fac-
tors, presumably because they protect the bac-
teria from the immune system. In addition, al-
ternative alleles for S layers are generated by
recombination, which causes antigenic varia-
tion that leads to immune evasion.

Most, but not all, S-layer proteins have
N-terminal signal sequences. They are usu-
ally acidic (pI 4–6) and are often glycosy-
lated. These proteins usually, but not always,
contain S-layer homologous (SLH) motifs of
50 to 60 amino acids at their N terminus
that are apparently involved in their nonco-
valent attachment to the cell surface. S-layer
proteins that have been investigated in detail
(e.g., Bacillus anthracis, B. stearothermophilus,
Clostridium thermocellum, and B. sphaericus) do
not appear to be attached directly to the pri-
mary wall polymer. Instead, most are attached
to secondary polymers, like teichoic or te-
ichuronic acid, or to polymers that are further
modified, e.g., by the addition of pyruvic acid
units. For excellent recent reviews, the reader
is referred to References 114, 115, and 121.

Cellulosome

Another surface structure attached to the bac-
terial cw by SLH domains of component
proteins is the cellulosome. These structures
are present on anaerobic bacteria that break
down and utilize cellulose including several
species of Clostridia and Ruminococcus as well
as some gram-negative species. Cellulosomes
are large (about 18 nm in diameter) complexes
of enzymes and structural proteins (scaffold-
ing proteins, dockerins, and cohesins) orga-
nized in a chain-like array that facilitates
attachment to and utilization of cellulose.
They are found outside the cell surface where
they can be visualized as polycellulosome
structures. Surface localization of discretely
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organized enzymes in cellulosomes is likely
to significantly improve the efficiency of cel-
lulose digestion, especially in the challenging
anaerobic environment, by bacteria respon-
sible for breaking down decaying plant mat-
ter (in compost and sewage) and by bacteria
that assist higher animals (ruminants) with the
conversion of plant material into energy. Thus
these structures are likely to play an important
role in the global carbon cycle. For a more
detailed understanding of these structures the
reader is referred to References 8 and 37.

The LysM Domain

Cell wall attachment of many bacterial pro-
teins in gram-positive and gram-negative
organisms occurs through the lysin motif
(LysM) domain, often repeated several times
in the protein sequence. The name results
from the original identification of this motif in
bacterial lysins (16). Many LysM proteins are
cw hydrolases (see Asymmetric Surface Local-
ization, below), although other proteins, in-
cluding spore-specific proteins in B. subtilis,
also use this domain for surface attachment.
This approximately 40-residue domain in the
membrane-bound lytic murein transglycosy-
lase D (MltD) protein of E. coli was found
to assume a β−α−α−β structure (7). Within
the LysM domain a carbohydrate binding YG
motif (YXXXXGXX-Hyd) was recently iden-
tified, although its function has not been de-
termined (133). LysM domains are found in
glucosyl transferases and glucan binding pro-
teins, as well as in other types of proteins.

Proteins with LysM domains attach to the
gram-positive cell surface not only when they
are synthesized by the bacterium to which
they attach, but also when they are added to
the culture. Using AcmA (major autolysin)
of Lactococcus lactis, Steen et al. (124) showed
that the C-terminal region, which contains six
LysM domains, is necessary for attachment to
the L. lactis surface. When added externally
to the bacteria, this domain is also sufficient to
anchor a heterologous protein fragment to the
surface of L. lactis as well as to the surface of

Lysin motif (LysM)
domain: domain
found in some
surface proteins that
serves to link them
noncovalently to the
cw

many other gram-positive bacteria (124). The
LysM-containing fragment binds to lactococ-
cal and B. subtilis cell walls even when they
have been treated with SDS to remove cw-
associated proteins or with TCA, which is be-
lieved to remove carbohydrates and (lipo) tei-
choic acids (124). This suggests that the LysM
domain mediates binding to the peptidogly-
can. Furthermore, purified peptidoglycan (see
Cell Wall Structure, above) (Figure 1) binds
the LysM domain fragment. The immunoflu-
orescence pattern of the bound LysM frag-
ment on several gram-positive bacterial cells
indicates nonrandom localization in many or-
ganisms. Because treatment with TCA, which
should remove LTA, resulted in more uni-
form distribution, it was suggested that sur-
face components attached to the cw can inter-
fere with either LysM protein binding or its
detection with antibodies (124).

ASYMMETRIC SURFACE
LOCALIZATION

Autolysins Localized to Poles
and Septum

In gram-positive bacteria, some surface pro-
teins are distributed around the entire cell pe-
riphery and others appear to be localized to
specific regions, usually the cell poles, septa,
or both. The mechanisms of their localiza-
tion are just beginning to be investigated. A
large class of proteins in gram-positive bac-
teria localized to the cell division plane com-
prises a subset of autolysins. These autolysins
are thought to be required for the separa-
tion of dividing cells, so their localization is
critical for bacterial multiplication (51). The
cw hydrolases LytE and LytF of B. subtilis
are probably the best-studied examples. These
proteins have N-terminal LysM motifs that
are presumably important for attachment to
the peptidoglycan (see above). Because lytF
mutants grow in long chains (97), and lytE
mutants are longer than wild-type cells (63),
these enzymes seem to be involved in sep-
arating daughter cells after division. Using
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tagged proteins and immunofluorescence mi-
croscopy, Yamamoto et al. (146) showed that
LytE and LytF are localized to the cell division
site, even in minicells. In vegetatively grow-
ing cells they are also found at one pole, and in
the absence of the cell surface protease WprA
and the extracellular protease Epr, they can
be detected at both poles. This finding was
interpreted to mean that the proteases are re-
sponsible for removing the remaining LytE
and LytF hydrolases from division sites (new
poles) after the cells divide. In contrast, LytC,
another major autolysin whose cw binding do-
main does not include LysM motifs and which
is not required for cell separation (72, 84), was
uniformly distributed around the entire pe-
riphery of B. subtilis cells (146).

Another case in which an autolysin is local-
ized to sites of cell division was first described
for S. aureus by Yamada et al. (145). The bi-
functional Atl enzyme contains an acetylglu-
cosaminidase and an acetylmuramyl-alanine
amidase domain, which are separated by pro-
teolytic processing. Using immunogold la-
beling and protein A, Yamada et al. showed
by scanning, backscattering, and transmission
electron microscopy that each constituent en-
zyme is located in equatorial rings that sepa-
rate as the cell divides. The amazing pictures
(Figure 3) look as though the Staphylococcus

Figure 3
Scanning electron micrograph showing localization of Atl on the surface
of S. aureus during the division cycle (reproduced, with permission, from
Reference 145). The cells were reacted with anti-Atl IgG and then with
colloidal gold-labeled protein A.

is being “cut on the dotted line” during bi-
nary fission! Although Baba & Schneewind (4)
have since shown that three repeat domains at
the center of pro-Atl are necessary and suffi-
cient for localization and that this occurs prior
to processing into two separate enzymes, the
cw constituent to which Atl is attached has
not yet been identified. From their micro-
graphs, Yamada et al. (145) suggest that the
attachment is not to peptidoglycan, but to a
fibrous material extending 20 to 50 nm from
the cell surface, which they suggest might
be LTA.

Other Surface-Localized Proteins

Localization to specific sites on the gram-
positive bacterial surface has been observed
also for some proteins that are not involved
in cell division. ActA of the intracellular
pathogen L. monocytogenes (68) is one pro-
tein in which asymmetric surface localization
is critical for function. ActA is associated to
the cm by its hydrophobic C terminus (118).
It is absent from one pole (the pole formed
during the previous division) and present in
increasing concentration toward the other.
The recently proposed mechanism for this
localization suggests that polarized distribu-
tion is a direct consequence of differential cw
growth along the bacterium (105a). Because
ActA serves as the receptor on which actin fil-
aments polymerize in the host cell, the unidi-
rectional movement of L. monocytogenes from
one host cell to the next, which is required for
its spread in the human host, depends on this
localization (122).

Localization of the Sec Translocon:
The ExPortal

Recently, there have been several reports of
localization of the Sec translocon to dis-
crete sites on gram-positive bacterial surfaces,
which results in localization of proteins se-
creted through this channel. In the coccoid
gram-positive bacterium S. pyogenes, Rosch
& Caparon (109) showed by immunogold
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electron microscopy that SecA, the ATPase
that reacts with the SecYEG translocon in the
membrane, is found only at a single cell sur-
face site. They observed that SpeB, a cysteine
protease secreted by S. pyogenes, is transiently
localized to a single nonpolar site on the bac-
terial surface, and that SpeB and SecA colo-
calize. A similar single localization site was
observed for PhoZ, a foreign protein, when
it was overproduced artificially from a plas-
mid in the same streptococcus (109). Rosch &
Caparon believe that the single bacterial sur-
face location of these two secreted proteins
and SecA represents a specialized cm site to
which the sec translocons are restricted and
they named this the ExPortal.

Secreted proteins are only transiently as-
sociated with the ExPortal, and other factors
determine their final location. The M pro-
tein, a sortase-anchored cw protein, is cova-
lently linked at the newly growing area of
the cw (119) and then becomes uniformly
distributed over the entire cell surface (31).
In contrast, some membrane proteins such
as HtrA are retained at the ExPortal (110).
Rosch & Caparon also suggest that the tran-
sient colocalization at the ExPortal of HtrA,
which is required for maturation of the se-
creted protein SpeB, facilitates the process-
ing necessary for activation of this enzyme.
Thus, colocalization of secreted proteins to
the unique ExPortal of the cell may play a ma-
jor role in protein biogenesis, similar to that
of the periplasm of a gram-negative cell.

Recently, the localization of SecA and SecY
was also investigated on the surface of the
rod-shaped gram-positive bacterium B. sub-
tilis (28). The Errington group found foci
at poles, septa, and intermediate positions to
which GFP fusions to SecA and SecY local-
ized. Results from deconvoluting microscopy
could be interpreted to suggest that SecA-
GFP formed two spiral-like structures around
the cell, while SecY-GFP formed arcs, not
continuous helices. As a control, Campo et al.
(28) used SpoIVFB, a membrane protein,
which they found to be distributed randomly
around the cell surface, as expected. Freeze

fracture microscopy showed that SecY ap-
peared to be located on both sides of the cm,
unlike the control SpoIVFB protein. In ad-
dition, Campo et al. (28) showed colocaliza-
tion of SecY with SecA-GFP under conditions
in which translocation through the cm ap-
peared to be limiting. SecA localized to the
same sites in all phases of growth but, surpris-
ingly, in stationary phase SecY became delo-
calized and was found in the cytoplasm. Thus,
it appears that secretion of proteins through
the Sec translocon may be limited to discrete
sites, which differ in location in cocci and rod-
shaped gram-positive bacteria. The mecha-
nisms by which the translocon is localized are
just beginning to be investigated.

PROTEIN FOLDING

Proteins are transported through the translo-
con channel in the cell membrane in an un-
folded state, but most surface and secreted
proteins assume folded tertiary configurations
that protect them from active “quality con-
trol” surface proteases. In gram-negative bac-
teria, this occurs in the periplasm, which
provides an oxidizing atmosphere. However,
the lack of an outer membrane in gram-
positive bacteria means there is no compara-
ble structurally defined compartment. It has
been argued that in gram-positive bacteria the
region either between the cm and cw, or ex-
ternal to the cm but including at least part of
the cw, functions similarly to a gram-negative
periplasm. It has also been pointed out that
in gram-positive bacteria, homologs of gram-
negative bacterial periplasmic proteins are of-
ten lipid modified, which keeps them tethered
to the cm (116). Thus, the membrane-cw in-
terface may function as a periplasm for gram-
positive organisms where the polyanionic d-
alanylated teichoic acids (LTA and WTA) are
located. More recently, maturation of SpeB
was demonstrated to require the colocaliza-
tion of HtrA at the ExPortal in S. pyogenes
(110). Therefore, these authors suggested that
the ExPortal may play an important role in
protein biogenesis because it provides a site at
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which substrate proteins are colocalized with
proteins that process them.

Specific Foldases

Several proteins of gram-positive bacteria
function in posttranslocational folding of se-
creted proteins. Some of these have specific
substrates encoded by the adjacent gene. One
example of this is PrtM of Lactcoccus spp.,
which is a cm-associated lipoprotein (56) and
a member of the family of peptidyl-prolyl iso-
merases (PPIases) (106, 111). PrtM is a dedi-
cated foldase for PrtP. PrtP is a secreted serine
protease necessary for growth of these bacte-
ria in milk because it enables them to break
down casein and use it as a source of amino
acids (55, 56, 139). The genes encoding PrtM
and PrtP are always found adjacent to each
other and are transcribed in opposite direc-
tions. They are both plasmid located and of-
ten constitute the only conserved regions in
the plasmids on which they are found (55).
Although the N terminus of immature PrtP,
like many proteases, has a “pro” sequence that
is expected to act as a chaperone, PrtM is still
required for proper folding and export of PrtP.

PrsA

The best-studied cell surface “foldase” whose
substrate specificity is not limited to a single
protein is PrsA of B. subtilis (69–71, 116). PrsA
is important for extracytoplasmic folding of
model proteins both with and without pro se-
quences (64). At least one homolog of this pro-
tein is found in all gram-positive species, and
in strains with more than one PrsA-type gene
where function has been studied, the second
appears to interact specifically with the pro-
tein encoded immediately adjacent to its gene,
e.g., PrtM and PrtP of L. lactis (40).

PrsA is a lipoprotein. It appears to be an-
chored to the outer surface of the cm because
when protoplasts are produced, it becomes ac-
cessible to trypsin (78). Using the secretion
reporter α amylase (AmyQ) of Bacillus amy-
loliquefaciens, a linear relation between the rate

of secretion and the amount of PrsA protein
in the B. subtilis cells was established (138).
Furthermore, depleting the amount of PrsA
protein leads to a deficit of several exoproteins
in the culture medium (137). The converse is
also true: Overproduction of PrsA leads to a
dramatic increase in the secretion of reporter
proteins in Bacillus spp., indicating that PrsA
is a bottleneck for protein secretion (71, 143).
While this is important for the industrial pro-
duction of foreign proteins from Bacillus, it is
not clear whether PrsA is limiting for folding
and secretion of native proteins.

Although PrsA is required for secretion
and folding of AmyQ from intact B. subtilis
cells, it is not required for these functions
in protoplasts (140). Furthermore, purified
AmyQ refolds rapidly in vitro after denatu-
ration, indicating that the folding delay ob-
served in intact cells is related to the presence
of the cw (140).

In B. subtilis, PrsA is an essential protein
(138), suggesting that it assists the folding of
at least one extracytoplasmic protein required
for cell survival and/or that accumulation of
misfolded protein is itself lethal. Because PrsA
depletion in B. subtilis results in morphological
changes that resemble those seen when syn-
thesis of cw polymers is deficient, PrsA may
be needed for folding of one or more cw syn-
thetic enzymes (138). In contrast, depletion
of the PrsA homolog of L. lactis, PspA, has no
obvious effect on growth (40).

The abundance of PrsA indicates that it
is in great excess over the number of translo-
con channels, which suggests a chaperone-like
rather than an enzymatic function (138). PrsA
appears to act as a chaperone or foldase to fa-
cilitate posttranslocational folding and/or to
retard misfolding. Either function would re-
duce the misfolding of the secreted protein,
which would target it for degradation by pro-
teases in the cw or membrane-cw interface
(35, 144).

Sequence analysis indicates that PrsA is
a member of the parvulin group of PPIases
(106). However, the PPIase motif is absent
from PmpA, the L. lactis homolog with a
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function similar to that of PrsA, and from
the PrsA homologs of streptococci (40). Fur-
thermore, AmyQ has no cis-prolines, so the
PPIase enzymatic activity should not be nec-
essary for processing this protein. Recently,
site-directed mutagenesis of residues in the
PPIase domain of PrsA showed that although
the domain is required, the residues essential
for enzymatic PPIase activity in vitro are not
required for the essential role of PrsA in fold-
ing of AmyQ in vivo (137). This again suggests
that the role of PrsA and its homologs in se-
cretion from gram-positive cells results from
its chaperone activity.

OTHER SURFACE PROTEINS

In several gram-positive pathogens, proteins
that lack both an N-terminal Sec signal for
transport through the cm and a known cell
surface–anchoring motif have been identified
on the external bacterial surface. The first
of these, glyceraldehyde-3-phosphate dehy-
drogenase (GAP-DH) of S. pyogenes, was si-
multaneously reported to be surface located
by Lottenberg et al. (82) and Pancholi &
Fischetti (102), who found it to be the major
protein detectable in SDS-PAGE analysis of a
surface extract. On intact bacteria, GAP-DH
was sensitive to trypsin and resistant to re-
moval with 2 M NACl or 2% SDS, suggesting
that it is tightly attached to the outer bacterial
surface. Since its discovery, surface localiza-
tion of GAP-DH has been demonstrated in
many other bacteria, both gram-positive and
gram-negative.

More recently, proteomic analyses and
biotinylation of intact bacteria followed by
two-dimensional gel analyses led to the iden-
tification of many other metabolic enzymes
as surface proteins in S. pyogenes, S. agalac-
tiae, and L. monocytogenes (30, 62, 76, 80).
Since S. pyogenes has only one gene for
GAP-DH, the process of surface localiza-
tion of GAP-DH and probably of the other
glycolytic enzymes found on the S. pyo-
genes surface must be sufficiently inefficient
to allow adequate protein to remain within

GAP-DH:
glyceraldehyde-3-
phosphate
dehydrogenase

the cytoplasm for metabolic purposes. It is
generally believed that when these enzymes
are surface localized, they have additional
nonenzymatic functions, such as adherence to
host molecules. For example, GAP-DH binds
plasminogen, and several anchorless surface
proteins in streptococci bind fibrinogen.

In the absence of an N-terminal signal se-
quence, it is possible that, instead of secretion
through the cm, these proteins are released by
autolysis into the medium and attached from
outside (but also see the discussion of SecA2
in The Sec Pathway, above). The enolase of
S. pneumoniae is capable of attachment when
added to bacterial cells, so the authors believe
it is released by autolysis and then associated
with the cell surface (11). In other organisms,
the mode of secretion through the cm and at-
tachment to the cw of these proteins have not
been investigated, most likely because they
are essential enzymes; therefore deletion mu-
tants are not expected to be viable. Recently, a
clue about surface attachment was provided by
Pancholi’s group (18), who reported that ad-
dition of a 12-residue hydrophobic tail to the
C terminus of S. pyogenes GAP-DH prevents
its surface localization. Little tagged protein
is found in the supernatant and, perhaps sur-
prisingly, most appears to be in the cytoplasm
and not in the cm fraction. Because of the
prevalence of such molecules on the surface
of important gram-positive pathogens, where
they represent vaccine and/or drug targets,
the mechanism of their surface localization is
a critically important area for further study.

CONCLUSIONS AND FUTURE
DIRECTIONS

From this overview, it should be clear that
there are major differences between gram-
positive and gram-negative bacteria in trans-
port and attachment of cell surface proteins.
With the wealth of genomic information for
gram-positive organisms and the new avail-
ability of the needed genetic tools, the pro-
cesses unique to this important group of bac-
teria have become attractive for further study.
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Key questions that require further inves-
tigation in gram-positive bacteria include the
following: What substitutes for SecB to chap-
erone secreted proteins to the translocon?
How do accessory sortases function in at-
taching their substrates to the cw? What
role do sortase homologs play in pilus mor-
phogenesis and what other enzymes may
be involved in this process? How are SLH
proteins associated with the bacterial cell sur-
face? How do LysM domains attach to the
cw and to which moiety do they attach? Fi-

nally, as in gram-negative bacteria, the ques-
tions of how proteins become localized to
restricted sites on the cell surface remains
open. We hope that this review stimulates
additional investigations of these and other
questions. A greater understanding of the
mechanisms of protein attachment to gram-
positive bacteria would be helpful in devel-
oping tools to combat human pathogens and
in improving the efficiency of bacteria in the
energy cycle and of bioremediation of toxic
waste.

SUMMARY POINTS

1. Gram-positive bacteria lack homologs of SecB, the chaperone that targets proteins to
the Sec translocon for passage through the cm.

2. Covalent attachment of a protein to the gram-positive cw usually requires a transpep-
tidase called a sortase. Most proteins are attached by the housekeeping SrtA, but
some are attached by a specific sortase, usually encoded in the vicinity of the gene
encoding the surface protein. Some sortase homologs covalently link subunits of pili
in gram-positive bacteria, and these transpeptidases may not be required for linkage
of proteins to the peptidoglycan.

3. Some proteins can associate noncovalently with the gram-positive surface either when
transported through the cm or when added from outside the bacterium. Motifs that de-
termine such association with teichoic acids include GW repeat modules and choline
binding motifs, both of which are usually at the C terminus of the protein. In contrast,
LysM domains, which also often occur as repeats, appear to mediate association with
peptidoglycan.

4. S-layer proteins and cellulosomes are large surface structures noncovalently attached
through SLH motifs to a component of the cw. They are important for the lifestyle
of the bacteria that synthesize them.

5. Asymmetric surface localization of proteins (including autolysins) is important for cell
division and other critical gram-positive cell functions. Mechanisms for this are not
yet understood.

6. Since proteins are transported through the cm in an unfolded state, gram-positive bac-
teria, which lack a structurally distinct periplasm, face the problem of correct folding
of surface proteins. PrsA appears to be essential for this, although its mechanism of
action has not yet been described. In addition, a unique ExPortal, composed of the Sec
translocons at a single cm site in streptococci, may also retain chaperones important
for folding of surface proteins.
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