
 
1 INTRODUCTION  

The advancements in information and communica-
tion technologies currently reshape our work. Al-
though new electronic Work (eWork) technologies 
penetrate different professional activities, it is in en-
gineering, where they have a potential for the high-
est added value. We claim that engineering collabo-
ration is especially sensitive to the new technologies 
though it is not sufficiently recognised by current 
practice yet. The shifting from the traditional manu-
facturing paradigm to a new, virtual and agile model 
is globally observed. Whereas the traditional model 
is characterised by the very limited information shar-
ing, static organisational structure, and almost no co-
operation, the virtual and agile model exhibits in-
formation sharing, collaboration, and dynamic or-
ganisation. Collaborative engineering is an innova-
tive paradigm for product development, which 
integrates widely, distributed engineers for virtual 
collaboration [6]. 

Within general globalisation efforts, not only or-
ganizations and management but also engineering 
teams become distributed over large distances. The 
worldwide market of Integrated Collaborative Envi-
ronments (ICE) is highly increasing [5]. The reve-

nues for ICE markets are predicted to exceed 1 billion 
dollars very soon. Intranet, document management, 
workflow solutions, as well and group calendaring and 
scheduling are currently the main drivers of this mar-
ket. 

Collaborative engineering constitutes a new para-
digm of engineering work that is central to the vision 
of the engineering working environment in the In-
formation Society. Internet as a backbone of the col-
laborative infrastructure is per se trans-national in 
nature. From the technical point, existing collabora-
tive engineering frameworks do presently not sup-
port very well the integration of very complex engi-
neering environments when interconnecting multiple 
design groups and do not consider distance-spanning 
related issues like firewalls, security, remote admini-
stration, and distributed design flow automation. 
Distributed engineering development needs however 
new infrastructures, net-aware tools, and new design 
methodologies based on re-use in combination with 
advanced security and network and tool manage-
ment [16]. If supported by appropriate advanced col-
laborative infrastructures and tools, it radically 
speeds up collaboration over wide distances by con-
necting Intranets via the Internet. New collaborative 
technologies allow for fast and flexible building of 
virtual distributed teams and efficiently makes use of 
distributed engineering resources.  
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This article presents the E-COLLEG [7] Ad-
vanced Collaborative Infrastructure (ACI) with inte-
grated dynamic Tool Registration and Management 
Services (ACI), open XML-based data exchange, 
and collaborative tool extensions. ACI is tailored to 
distance spanning engineering collaboration and se-
curity enabled data exchange. The infrastructure is 
validated through two industrial Intranet-crossing 
case studies between Polish and French, as well as, 
between Polish and German industries applying real-
world development scenarios [1]. In both application 
scenarios, common engineering practices have been 
identified and built into engineering workflows. Fur-
ther, both truly pan-European collaborative indus-
trial scenarios will provide credible evidence of the 
innovation of E-Colleg collaborative technology that 
will contribute to the new emerging paradigm of 
eWork with outsourcing involving SMEs. 

The remainder of this article is structured as fol-
lows. Section 2 presents existing approaches, 
whereas Section 3 introduces the architecture and 
the functionality of the advanced collaborative infra-
structure. Finally, Section 4 discusses shortly the 
undertaken applications.  

2 EXISTING APPROACHES 

In complex engineering projects, engineering skills 
are typically dispersed among various departments 
located in different cities and countries. Multiple 
CSCW (Computer Supported Collaborative Work) 
tools are frequently applied to manage existing parts 
of problems: Intranet solutions (Netscape, MS IE etc.), 
document management solutions (Open Text, Inter-
leaf, Documentum etc.), workflow solutions 
(StaffWare, Keyflow Filenet, Banyan etc.) and group 
calendaring, scheduling, and shared workspaces (Lo-
tus/IBM Notes, Microsoft Exchange/Outlook, BSCW 
etc.). 

In Electronic Design Automation (EDA), current 
industrial practice is that, modelling and synthesis 
tools, as well as specialised libraries of components 
reside on different servers. Thus, engineers are en-
forced to move design data between tools using 
email, ftp, or ssh. In current practice, engineers and 
administrators are often enforced to download new 
tools and to configure them in their design environ-
ments. Due to limited licenses, remote access and 
remote management is almost impossible and ex-
tremely hard to manage over large distances. All 
these current and traditional approaches are error 
prone since installing new tools, and/or moving 
manually data among tools is usually not straight-
forward, and definitely not scalable for large, multi-
site, collaborative engineering tasks. However, those 
tools mainly offer partial solution and do not combine 
very well. 

Some support and standards come from the do-
main of workflow automation and tool integration: 
the Tool Encapsulation Specification (TES) and the 
Web Services Description Language (WSDL). 

2.1 Tool Encapsulation Specification (TES)  

CFI (CAD Framework Initiative) started work on 
tool integration in the context of the Inter-tool 
Communication (ITC) subcommittee in 1989. In 
ITC, the Tool Encapsulation Specification (TES) 
language was developed [3]. TES provides an inte-
gration language, which defines input/output behav-
iours of integrated tools. 

A TES definition includes a tool identifier and a 
short textual tool description, a list of platforms able 
to run the tool, a list of names and types of tool pa-
rameters, the classification of tool parameters as op-
tional and mandatory, and preprocessor instructions 
for formatting parameters, for instance, for the con-
catenation of parameters for invocation of a batch 
tool.  

TES was defined as a LISP-based language in or-
der to ease implementation, since LISP supports 
platform portability and dynamic binding. The focus 
of TES is on parameter processing and invocation. 
Integration of complete tool suites, e.g., combining 
MS Project with CAD tools with integrated UI is not 
explicitly supported. Hence, additional commodity 
tools like Windows Scripting Host have to be inte-
grated. Additional services can be included similarly 
like databases or web servers. TES does not support 
semantic tool description and lacks compatibility 
with current web standards. Only very few systems 
are known which have implemented ITC concepts 
and TES. One example is the tool management sys-
tem ASTAI(R) [4][18] that integrates TES and 
partly WSDL. 

2.2 Web Services Description Language (WSDL) 

We currently face a wide acceptance of approaches 
based on the eXtensible Markup Language (XML). 
The W3C defines a set of XML-based languages 
that are the foundation for the current notion of web 
services. The Web Service Description Language 
(WSDL) is used to describe interfaces of a web ser-
vice. These interfaces can be accessed using the 
Simple Object Access Protocol (SOAP).  

Consider the example of a web-based simulation 
service, which can be easily defined for an applica-
tion server using WSDL for tool encapsulation. If 
required, the simulation service may be easily en-
hanced by a complex workflow, which integrates 
various additional resources, e.g., a web server. 
Similar to TES, the WSDL description can be used 
to define name, input, output, and data types via 
which a client communicates with that service. 
WSDL descriptions can be made available via a cen-



tral UDDI registration (Universal Description, Dis-
covery, and Integration), e.g., in order to implement 
resource discovery.  

3 ADVANCED COLLABORATIVE 
INFRASTRUCTURE (ACI) 

To provide an efficient and adequate infrastructure 
for collaborative engineering, we have defined ACI 
in the context of the E-COLLEG project [7]. Though 
it is currently applied for the distributed design of 
electronic systems, it is not limited to those. ACI 
implements basic engineering, tool management, 
and data transfer support. Thus, it could be applied 
in several other scenarios as well. 
 

 
 
Figure 1: ACI System Architecture 
 

ACI is based on three core services and a com-
plimentary transport service, which enables secure 
firewall crossing communication between the com-
ponents (see Figure 1). The Tool Invocation Service 
(TIS) is the interface used by clients to activate re-
mote tools. TIS invokes the Global Tool Lookup 
Service (GTLS) to discover the appropriate tool for 
the requested task. The activation of the remote tool 
is done by the Local Tool Control Service (LTCS) 
via the Tool Server (TS). Together with the Ad-
vanced Network Transport Services (ANTS), the in-
stances of these services form the ACI infrastruc-
ture.  

The ACI core components GTLS, LTCS and TIS 
as well as ANTS are implemented as Web Services 
that are interconnected using the Simple Object Ac-
cess Protocol (SOAP). The SOAP messages between 
the components are transported using ANTS.  

In a general case, all ACI components are on 
separate machines connected to the Internet. Thus, 
they need to communicate through an insecure me-

dia and all data are encrypted (ciphered) and digi-
tally signed by a sender.  

In the reminder of this section, we first introduce 
the individual ACI components. Thereafter, we out-
line their interaction. 

3.1 Advanced Network Transport Services (ANTS) 

ANTS provides an abstract data transport mecha-
nism through reliable Request/Response functional-
ity that are mapped to actual transport mechanisms, 
i.e., SOAP/HTPP or just TCP. It introduces an ab-
stract addressing schema that allows having unique 
addresses for each network node. The inbuilt routing 
mechanism supports routing messages though multi-
ple physical networks including offline and relay 
networks as given in Figure 2. The possibility to 
map to almost any ISO/OSI layer 4+-transport 
mechanism overcomes several firewall problems. 
Using SOAP/ANTS transport gives full transparent 
location independent connectivity between all ACI 
components. 
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Figure 2: Firewall-crossing interaction of ACI components us-
ing ANTS 

 
ANTS is based on a generic transport mechanism, 

which includes a simple Web Service that serves as 
a replacement for FTP denoted as the Simple Struc-
tured Storage Service (S3S). It is used within ACI to 
store the input and output data sets used during tool 
invocation. The main design goal for this service 
was indeed to provide a replacement fro FTP, which 
can be easier controlled and monitored. 

S3S has been developed as an extremely easy to 
implement data storage service that offers several 
benefits over using FTP. These benefits include at 
first hand the accessibility over SOAP, which im-
plies the possibility of crossing firewalls using 
ANTS or just using any other transport to access the 
service. Furthermore, ambiguities and limitations 
that occur when dealing with real world variants of 
the FTP protocol disappear. The S3S WSDL inter-
face allows easy direct integration of S3S into ob-
ject-oriented software and a uniform modelling of 
such systems. 

The S3S data model is kept very simple (see 
Figure 3) to allow easy implementation. However, 
the support for attributes with multiple values allows 
introducing additional semantics that do not need to 
be explicitly implemented. Such semantics may be 
user defined, i.e., ACI stores input/output data sets 



along with their identifiers. Some semantics can be 
predefined to extend service capabilities. The possi-
bility to define of multidimensional hierarchies and 
containment scenarios using attribute semantics is 
obvious. This also eliminates the need for explicit 
folder hierarchies as in FTP and thus simplifies the 
implementation of the service.  
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Figure 3: S3S Data Model  
 

Data search and retrieval from the service takes 
place by queries that may contain conjunctions and 
disjunctions over data object attributes. The process-
ing of such queries is very simple to implement and 
allows, as already outlined, the elimination of sev-
eral FTP operations. 

 

3.2 GTLS (Global Tool Lookup Service) 

GTLS is a key component of the ACI environment. 
It manages two repositories with tools and users. 
Each tool has to be registered in GTLS that includes 

the information on machines that make it available. 
Remote clients can search for registered tools. GTLS 
is responsible for registration and modification of 
data on tools, users, and their privileges. GTLS is re-
sponsible for the security policy of the whole system 
by: registration of users and their activities; assign-
ment of multilevel, complex access rights; registra-
tion of access to tools, maintaining statistics, identi-
fication of an intruder attack. Further, GTLS is 
responsible for generation of keys used for encryp-
tion of messages and generation of digital signatures 
and management of a repository of public keys of 
registered users that are used for authentication of 
messages (digital signature). 

3.3 Local Tool Control Service (LTCS)  

The LTCS constitutes a local call to the tool. The 
LTCS is a simple component which task is to re-
ceive SOAP request messages and their conversion 
into appropriate command lines that launches the 
tool. The conversion is executed with respect to the 
received tool request, design data, and to a locally 
available tool encapsulation specification which de-
fined tool specific details like command line pa-
rameters, input/output formats, tool host etc. For tool 
encapsulation, we have defined an E-COLLEG spe-
cific XML schema. 
The LTCS is placed in a local network and can only 
be invoked through  the  Tool Server (TS). This is 
mainly because LTCS is not equipped with a 
mechanism for verification of authorisation and 
there is neither user authorisation, nor encryp-
tion/decryption in LTCS.  

 

S3SGTLS LTCS

Client

T IS

1.3.2:  invoke( tooldesc, taskdesc,datasets ) :vo id

1.3.1:* [ for  a l l  input  datasets]  dataset := retr ieve(GUID) :void

1.3.3:* [ for  a l l  output  datasets]  store(dataset ) :void

1.4:* [ for  a l l  resul t  datasets]  dataset := retr ieve(GUID) :void

1.3:  invoke(tool , taskdesc,GUID[ ] ) :void

1.2:* [ for  a l l  input  datasets ]  GUID:=store(dataset ) :vo id

1.1:  tool := d iscover ( taskdesc) :void

1:  datasets := invoke( taskdesc,datasets ) :DataSet [ ]

 
 

Figure 4: TIS Behavior 



Thus, TS decouples the client and the LTCS. The 
client encrypts a message before sending it. The TS 
decrypts the received message, checks the signature 
and the user privileges, and if correct, it invokes the 
appropriate LTCS. Its additional task constitutes 
brokerage in request/user authentication and queries 
the GTLS whether a request has sufficient privileges 
(basic authorisation). 

The TS also provides mechanisms for optional, 
additional authorisation that is conducted using data 
in the local DB of the TS. This database is optional 
and may comprise additional restrictions on granting 
access to particularly sensitive tools. An organisa-
tion being the owner of those sensitive tools, and 
that manages the particular TS, may not “fully trust” 
GTLS. It may thus impose its own more restrictive 
verification of access rights. 

3.4 Tool Invocation Service (TIS) 

The TIS is used by clients to transparently invoke 
remote tools that will be discovered using GTLS and 
invoked by accessing the corresponding LTCS 
through the responsible TS that ensures the security 
policy (see Figure 4). 

Furthermore, the Client may have access to every 
component of the ACI environment through a GUI 
that gives access to all possible ACI operations 
(search for tools, tools registration, users registra-
tion). A particular operation may be realised from a 
GUI level depending on the user privileges that are 
stored in the central DB in GTLS. 

3.5 ACI Component Interaction  

We finally outline an ACI session, which gives an 
example how the different components may interact.  
Figure 5 depicts operation steps (1-4) that a user has 
to follow in order to invoke a selected tool. 

1. A user needs to initiate his/her own ACI ses-
sion. He/she proceeds with a login at GTLS. The 
user gives his parameters, i.e., login and a password 
that are sent by the user client to the GTLS in a form 
of an XML (SOAP) message. Parameters being sent 
are encrypted by a combination of a public key and a 
temporary symmetric key. The message is signed by 
the user’s private key in order to assure an additional 
authentication. 

GTLS upon receipt of the message deciphers it 
with a use of its own, secret private key. The deci-
phered message contains login parameters. If these 
data are correct, the user’s public key is fetched 
from the user database (DB) and the digital signature 
is verified. If correct, a session is created for the 
user.  

Complete user data (public key, privileges) are 
placed in cache of GTLS, which also holds session 
data (login time, operations done, etc). With the use 

of this key the digital signature of a SOAP message 
is verified in order to check authenticity of the user. 

2. As the user is logged in, he/she may search for 
a required tool. He may provide search criteria using 
a convenient GUI. These search criteria are inte-
grated into the XML message that incorporates the 
user session number in the SOAP message. The 
message is ciphered using the public GTLS key and 
the generated symmetric key, signed (digital signa-
ture is generated based on a secret private key of the 
user), and finally sent to GTLS.  

 
 

 
 
Figure 5: ACI operation. 
 

GTLS upon receipt of the message deciphers it 
with the use of its own private key. Further, a ses-
sion is fetched from cache that contains user data 
(public key, privileges, etc).  A digital signature is 
verified using the user public key. If the user has ap-
propriate privileges, the tool searching service is in-
voked with the searching parameters that were sent 
in the message. Information on tools being found is 
sent back to the user who has initiated this search.  

 The return message is ciphered (using the public 
key of the client), as well as signed (with the use of 
the GTLS private key) and sent back from the GTLS 
to the Client. Once the tool is discovered, the client 
with the use of data received from GTLS prepares 
parameters for locating the tool. These parameters 
are placed in the XML file that is ciphered with the 
use of the public key of the appropriate TS and with 



the use of generated symmetric key, as well as using 
the private key of the client.  

3. Tool data also comprise a reference to the TS 
that gives access to the tool. Using these references 
the Client makes connection to the given TS and in-
vokes the tool. The TS upon receipt of the XML 
message deciphers it with the use of its own secret 
private key. Further on, based on the user session 
number, the TS searches its own local cache with 
sessions being stored. If a session with indicated ID 
is not discovered, it connects to GTLS to continue 
the search. Messages are of course ciphered and a 
digital signature is sent.  

4. GTLS searches its cache. Once the session is 
found it sends the complete data on the user (public 
key, privileges,..) and session back to the TS. Upon 
receipt of the data on the session and on the user, the 
TS places them in its local cache. Due to that, TS 
must not continuously connect to the GTLS, but in-
stead it fetches session/user data from its own local 
cache. 

As soon as, the session and user data are found, 
the digital signature of the user is verified. Using a 
definition of the privileges that are received from 
GTLS, it is verified whether the user has rights to 
invoke a particular tool. After this verification, an 
additional check of privileges is effectuated on the 
TS, which verifies, if additional, local restrictions 
are defined for this particular tool. 

This is done using the local DB that is located on 
the machine of the TS. This is an optional DB, 
where one can define additional restrictions inde-
pendently from the privileges DB, e.g., on the rights 
to invoke specific well-protected tools, which are 
limited to a small number of users. If additional re-
strictions are identified, it is checked, whether the 
user has sufficient rights. If the user passes both 
verifications he/she receives access the tool. In such 
a case, TS verifies, if the invoked tool is placed on 
the same local host as the TS. If this is the case, the 
tool is invoked and launched. If not, TS manages the 
reference to the LTCS, where the tool is located. The 
result of the tool operation is converted into an en-
crypted XML file, signed and sent back to the client. 

4 APPLICATIONS 

The ACI services were implemented, and evalu-
ated in several considerably complex industrial ap-
plication scenarios in the currently running ECOL-
LEG project [7] covering: 

1. Printed Circuit Board Design 
2. IP-Based Circuit Design 

4.1  Printed Circuit Board Design 

In a first scenario, we investigated a distributed 
environment for Printed Circuit Boards (PCB) de-
sign in cooperation with Zuken GmbH, Germany. 

The experiment was restricted to Intranet network 
communication and applied SNMP (Simple Network 
Management Protocol) for communication and con-
trol [12].  

In that context, we have implemented a typical 
workflow for a PCB design process utilizing tools 
from the Zuken Hot-Stage tool suite: CADSTAR-SI, 
EMC-Engineer, and the integrated simulators 
FREACS, Sigma, and ComoRan. The presented 
workflow depicts the processing steps from sche-
matic entry over layout generation to final verifica-
tion and simulation of analog properties  

The complexity in that application did not lie in 
the number of different tools and their distribution 
over different servers rather than in the large number 
of versions and versions of their supported input and 
output formats considering the complete tool life cy-
cle. Thus, the focus of the work was on the discov-
ery of tools over the life cycle rather than the work-
flow definition and organization.  

4.2 IP-Based Circuit Design 

The second category of application scenarios 
considered two applications of distributed IP-Based 
modeling and verification of VHDL models. Both 
applications are designed and verified by a distrib-
uted team of engineers in the framework of a multi-
site infrastructure coupling the design flows of a de-
sign team from major industries in conjunction with 
an SME. The first scenario is mainly focused on tool 
aspects, i.e., integration of heterogeneous tools. The 
second one mainly addresses design data exchange 
aspects. Both are evaluated in the infrastructure of 
two different major industries so that sufficient con-
clusions can be drawn for wider applications. 
In the first application, the Institute of Electron 
Technology (ITE) used an IP-based methodology for 
electronic system design. ITE, Warsaw, played a 
role of an IP provider to Thales Optronique, Paris. 
Each IP component was modelled at VHDL Regis-
ter-Transfer Level. The model was developed as a 
reusable IP - parameterised and thus configurable. 
The component model was earlier verified by simu-
lation. Several VHDL-based tools could be applied 
at that design stage. The verified model was synthe-
sised in a selected FPGA technology. As the result 
of logic synthesis, a netlist of hardware components 
was obtained. During the next step the implementa-
tion of this netlist into a selected type of FPGA de-
vice had taken place. Appropriate workflows have 
been defined and verified [10]. 

The second application scenario integrates In-
fineon Technologies, Munich, and Silesian Univ. of 
Technology, Gliwice. It constitutes an experiment in 
collaborative testbench development. The experi-
ment that was undertaken [2] aimed at development 



of a testbench for functional verification of a Serial 
ATA hard disk controller VHDL model using the 
distributed workflow functionality of ASTAI® [4]. 

The environment that has been developed, inte-
grates a set of distributed workflows that cross bor-
ders of involved organisations. Infineon Technolo-
gies has been motivated towards this work by the 
extremely high effort for making functional tests. 
Independently, Infineon was working on standard-
ized IP-based design flows and integrating SMEs 
into Infineon's internal design flow. The application 
of the collaborative technology based on the E-
Colleg collaborative infrastructure opens new possi-
bilities for Infineon’s testbench development tasks, 
because, among others, the existing environment can 
be used on each partner site, and be coupled using 
collaborative workflows. 

5 CONCLUSIONS 

We have presented the architecture of an ad-
vanced collaborative infrastructure (ACI) for Elec-
tronic Design Automation application. ACI has been 
developed for distance spanning, tool integration, 
and administration as well as open interfaces for 
XML-based data exchange. ACI provides a combi-
nation of most recent plug-and-play technologies 
with peer-to-peer communication and XML-based 
tool integration. We have applied ACI to tool inte-
gration and mainly addressed tool administration in 
complex Intranet and Intranet crossing communica-
tion and data exchange. For such site-spanning tool 
integration, one has to consider security as an issue 
of highest priority in order to protect the exchanged 
design data. Advanced mechanisms for security as-
surance, namely: encryption with the use of both 
symmetric and asymmetric keys, digital signature, 
user authentication and authorisation, have been 
built into the ACI architecture. As one of the indus-
trial requirements, ACI provides bridging firewalls 
via ANTS’ peer-to-peer based technologies.  

Current case studies and trials in well-defined 
testbeds together with EDA tool vendors, system 
houses, and chip manufacturers show promising re-
sults and demonstrate the applicability of the pre-
sented ACI concepts. 
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