

1 INTRODUCTION

The advancements in information and communica-
tion technologies currently reshape our work. Al-
though new electronic Work (eWork) technologies
penetrate different professional activities, it is in en-
gineering, where they have a potential for the high-
est added value. We claim that engineering collabo-
ration is especially sensitive to the new technologies
though it is not sufficiently recognised by current
practice yet. The shifting from the traditional manu-
facturing paradigm to a new, virtual and agile model
is globally observed. Whereas the traditional model
is characterised by the very limited information shar-
ing, static organisational structure, and almost no co-
operation, the virtual and agile model exhibits in-
formation sharing, collaboration, and dynamic or-
ganisation. Collaborative engineering is an innova-
tive paradigm for product development, which
integrates widely, distributed engineers for virtual
collaboration [6].

Within general globalisation efforts, not only or-
ganizations and management but also engineering
teams become distributed over large distances. The
worldwide market of Integrated Collaborative Envi-
ronments (ICE) is highly increasing [5]. The reve-

nues for ICE markets are predicted to exceed 1 billion
dollars very soon. Intranet, document management,
workflow solutions, as well and group calendaring and
scheduling are currently the main drivers of this mar-
ket.

Collaborative engineering constitutes a new para-
digm of engineering work that is central to the vision
of the engineering working environment in the In-
formation Society. Internet as a backbone of the col-
laborative infrastructure is per se trans-national in
nature. From the technical point, existing collabora-
tive engineering frameworks do presently not sup-
port very well the integration of very complex engi-
neering environments when interconnecting multiple
design groups and do not consider distance-spanning
related issues like firewalls, security, remote admini-
stration, and distributed design flow automation.
Distributed engineering development needs however
new infrastructures, net-aware tools, and new design
methodologies based on re-use in combination with
advanced security and network and tool manage-
ment [16]. If supported by appropriate advanced col-
laborative infrastructures and tools, it radically
speeds up collaboration over wide distances by con-
necting Intranets via the Internet. New collaborative
technologies allow for fast and flexible building of
virtual distributed teams and efficiently makes use of
distributed engineering resources.

An Advanced Infrastructure for Collaborative Engineering in Electronic
Design Automation

T. Kostienko1, W. Mueller2, A. Pawlak1, T. Schattkowsky2

1ITE/SUT, Collaborative Engineering Lab, Poland
2C-LAB/Paderborn University, Germany

ABSTRACT: Engineering collaboration gets its new global dimension with the omnipotent access to Internet.
Engineers have severe requirements concerning: security of design data, quality of net connections, easiness
of collaboration, etc. This article presents visions and middleware architecture to establish pan-European col-
laborative engineering infrastructure and its application in the field of Electronic Design Automation (EDA).
We present a transparent infrastructure to engineers to enable their Internet-based collaboration during the de-
sign of complex electronic systems. In this context, we introduce an advanced collaborative infrastructure
(ACI) for distance spanning, tool integration, and administration as well as open interfaces for XML-based
data exchange. ACI constitutes a backbone for our collaborative research and engineering studies by fostering
a combination of most recent plug-and-play technologies and secure, peer-to-peer data transfer with XML-
based tool integration. ACI and its deployments have been developed with the EU project E-Colleg (IST-
1999-11746).

Keywords: Collaborative Engineering, Distributed Workgroups, Tool Integration, Electronic Design

This article presents the E-COLLEG [7] Ad-
vanced Collaborative Infrastructure (ACI) with inte-
grated dynamic Tool Registration and Management
Services (ACI), open XML-based data exchange,
and collaborative tool extensions. ACI is tailored to
distance spanning engineering collaboration and se-
curity enabled data exchange. The infrastructure is
validated through two industrial Intranet-crossing
case studies between Polish and French, as well as,
between Polish and German industries applying real-
world development scenarios [1]. In both application
scenarios, common engineering practices have been
identified and built into engineering workflows. Fur-
ther, both truly pan-European collaborative indus-
trial scenarios will provide credible evidence of the
innovation of E-Colleg collaborative technology that
will contribute to the new emerging paradigm of
eWork with outsourcing involving SMEs.

The remainder of this article is structured as fol-
lows. Section 2 presents existing approaches,
whereas Section 3 introduces the architecture and
the functionality of the advanced collaborative infra-
structure. Finally, Section 4 discusses shortly the
undertaken applications.

2 EXISTING APPROACHES

In complex engineering projects, engineering skills
are typically dispersed among various departments
located in different cities and countries. Multiple
CSCW (Computer Supported Collaborative Work)
tools are frequently applied to manage existing parts
of problems: Intranet solutions (Netscape, MS IE etc.),
document management solutions (Open Text, Inter-
leaf, Documentum etc.), workflow solutions
(StaffWare, Keyflow Filenet, Banyan etc.) and group
calendaring, scheduling, and shared workspaces (Lo-
tus/IBM Notes, Microsoft Exchange/Outlook, BSCW
etc.).

In Electronic Design Automation (EDA), current
industrial practice is that, modelling and synthesis
tools, as well as specialised libraries of components
reside on different servers. Thus, engineers are en-
forced to move design data between tools using
email, ftp, or ssh. In current practice, engineers and
administrators are often enforced to download new
tools and to configure them in their design environ-
ments. Due to limited licenses, remote access and
remote management is almost impossible and ex-
tremely hard to manage over large distances. All
these current and traditional approaches are error
prone since installing new tools, and/or moving
manually data among tools is usually not straight-
forward, and definitely not scalable for large, multi-
site, collaborative engineering tasks. However, those
tools mainly offer partial solution and do not combine
very well.

Some support and standards come from the do-
main of workflow automation and tool integration:
the Tool Encapsulation Specification (TES) and the
Web Services Description Language (WSDL).

2.1 Tool Encapsulation Specification (TES)

CFI (CAD Framework Initiative) started work on
tool integration in the context of the Inter-tool
Communication (ITC) subcommittee in 1989. In
ITC, the Tool Encapsulation Specification (TES)
language was developed [3]. TES provides an inte-
gration language, which defines input/output behav-
iours of integrated tools.

A TES definition includes a tool identifier and a
short textual tool description, a list of platforms able
to run the tool, a list of names and types of tool pa-
rameters, the classification of tool parameters as op-
tional and mandatory, and preprocessor instructions
for formatting parameters, for instance, for the con-
catenation of parameters for invocation of a batch
tool.

TES was defined as a LISP-based language in or-
der to ease implementation, since LISP supports
platform portability and dynamic binding. The focus
of TES is on parameter processing and invocation.
Integration of complete tool suites, e.g., combining
MS Project with CAD tools with integrated UI is not
explicitly supported. Hence, additional commodity
tools like Windows Scripting Host have to be inte-
grated. Additional services can be included similarly
like databases or web servers. TES does not support
semantic tool description and lacks compatibility
with current web standards. Only very few systems
are known which have implemented ITC concepts
and TES. One example is the tool management sys-
tem ASTAI(R) [4][18] that integrates TES and
partly WSDL.

2.2 Web Services Description Language (WSDL)

We currently face a wide acceptance of approaches
based on the eXtensible Markup Language (XML).
The W3C defines a set of XML-based languages
that are the foundation for the current notion of web
services. The Web Service Description Language
(WSDL) is used to describe interfaces of a web ser-
vice. These interfaces can be accessed using the
Simple Object Access Protocol (SOAP).

Consider the example of a web-based simulation
service, which can be easily defined for an applica-
tion server using WSDL for tool encapsulation. If
required, the simulation service may be easily en-
hanced by a complex workflow, which integrates
various additional resources, e.g., a web server.
Similar to TES, the WSDL description can be used
to define name, input, output, and data types via
which a client communicates with that service.
WSDL descriptions can be made available via a cen-

tral UDDI registration (Universal Description, Dis-
covery, and Integration), e.g., in order to implement
resource discovery.

3 ADVANCED COLLABORATIVE
INFRASTRUCTURE (ACI)

To provide an efficient and adequate infrastructure
for collaborative engineering, we have defined ACI
in the context of the E-COLLEG project [7]. Though
it is currently applied for the distributed design of
electronic systems, it is not limited to those. ACI
implements basic engineering, tool management,
and data transfer support. Thus, it could be applied
in several other scenarios as well.

Figure 1: ACI System Architecture

ACI is based on three core services and a com-
plimentary transport service, which enables secure
firewall crossing communication between the com-
ponents (see Figure 1). The Tool Invocation Service
(TIS) is the interface used by clients to activate re-
mote tools. TIS invokes the Global Tool Lookup
Service (GTLS) to discover the appropriate tool for
the requested task. The activation of the remote tool
is done by the Local Tool Control Service (LTCS)
via the Tool Server (TS). Together with the Ad-
vanced Network Transport Services (ANTS), the in-
stances of these services form the ACI infrastruc-
ture.

The ACI core components GTLS, LTCS and TIS
as well as ANTS are implemented as Web Services
that are interconnected using the Simple Object Ac-
cess Protocol (SOAP). The SOAP messages between
the components are transported using ANTS.

In a general case, all ACI components are on
separate machines connected to the Internet. Thus,
they need to communicate through an insecure me-

dia and all data are encrypted (ciphered) and digi-
tally signed by a sender.

In the reminder of this section, we first introduce
the individual ACI components. Thereafter, we out-
line their interaction.

3.1 Advanced Network Transport Services (ANTS)

ANTS provides an abstract data transport mecha-
nism through reliable Request/Response functional-
ity that are mapped to actual transport mechanisms,
i.e., SOAP/HTPP or just TCP. It introduces an ab-
stract addressing schema that allows having unique
addresses for each network node. The inbuilt routing
mechanism supports routing messages though multi-
ple physical networks including offline and relay
networks as given in Figure 2. The possibility to
map to almost any ISO/OSI layer 4+-transport
mechanism overcomes several firewall problems.
Using SOAP/ANTS transport gives full transparent
location independent connectivity between all ACI
components.

 C lient

Relay
Server

TS

http

SOAP

http

SOAP

firewall firewall

Figure 2: Firewall-crossing interaction of ACI components us-
ing ANTS

ANTS is based on a generic transport mechanism,

which includes a simple Web Service that serves as
a replacement for FTP denoted as the Simple Struc-
tured Storage Service (S3S). It is used within ACI to
store the input and output data sets used during tool
invocation. The main design goal for this service
was indeed to provide a replacement fro FTP, which
can be easier controlled and monitored.

S3S has been developed as an extremely easy to
implement data storage service that offers several
benefits over using FTP. These benefits include at
first hand the accessibility over SOAP, which im-
plies the possibility of crossing firewalls using
ANTS or just using any other transport to access the
service. Furthermore, ambiguities and limitations
that occur when dealing with real world variants of
the FTP protocol disappear. The S3S WSDL inter-
face allows easy direct integration of S3S into ob-
ject-oriented software and a uniform modelling of
such systems.

The S3S data model is kept very simple (see
Figure 3) to allow easy implementation. However,
the support for attributes with multiple values allows
introducing additional semantics that do not need to
be explicitly implemented. Such semantics may be
user defined, i.e., ACI stores input/output data sets

along with their identifiers. Some semantics can be
predefined to extend service capabilities. The possi-
bility to define of multidimensional hierarchies and
containment scenarios using attribute semantics is
obvious. This also eliminates the need for explicit
folder hierarchies as in FTP and thus simplifies the
implementation of the service.

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

EA 3.10 - Unregistered Trial Version

DataObject

Data Attribute Value

1

1

1

1

0..n1

Figure 3: S3S Data Model

Data search and retrieval from the service takes
place by queries that may contain conjunctions and
disjunctions over data object attributes. The process-
ing of such queries is very simple to implement and
allows, as already outlined, the elimination of sev-
eral FTP operations.

3.2 GTLS (Global Tool Lookup Service)

GTLS is a key component of the ACI environment.
It manages two repositories with tools and users.
Each tool has to be registered in GTLS that includes

the information on machines that make it available.
Remote clients can search for registered tools. GTLS
is responsible for registration and modification of
data on tools, users, and their privileges. GTLS is re-
sponsible for the security policy of the whole system
by: registration of users and their activities; assign-
ment of multilevel, complex access rights; registra-
tion of access to tools, maintaining statistics, identi-
fication of an intruder attack. Further, GTLS is
responsible for generation of keys used for encryp-
tion of messages and generation of digital signatures
and management of a repository of public keys of
registered users that are used for authentication of
messages (digital signature).

3.3 Local Tool Control Service (LTCS)

The LTCS constitutes a local call to the tool. The
LTCS is a simple component which task is to re-
ceive SOAP request messages and their conversion
into appropriate command lines that launches the
tool. The conversion is executed with respect to the
received tool request, design data, and to a locally
available tool encapsulation specification which de-
fined tool specific details like command line pa-
rameters, input/output formats, tool host etc. For tool
encapsulation, we have defined an E-COLLEG spe-
cific XML schema.
The LTCS is placed in a local network and can only
be invoked through the Tool Server (TS). This is
mainly because LTCS is not equipped with a
mechanism for verification of authorisation and
there is neither user authorisation, nor encryp-
tion/decryption in LTCS.

S3SGTLS LTCS

Client

T IS

1.3.2: invoke(tooldesc, taskdesc,datasets) :vo id

1.3.1:* [for a l l input datasets] dataset := retr ieve(GUID) :void

1.3.3:* [for a l l output datasets] store(dataset) :void

1.4:* [for a l l resul t datasets] dataset := retr ieve(GUID) :void

1.3: invoke(tool , taskdesc,GUID[]) :void

1.2:* [for a l l input datasets] GUID:=store(dataset) :vo id

1.1: tool := d iscover (taskdesc) :void

1: datasets := invoke(taskdesc,datasets) :DataSet []

Figure 4: TIS Behavior

Thus, TS decouples the client and the LTCS. The
client encrypts a message before sending it. The TS
decrypts the received message, checks the signature
and the user privileges, and if correct, it invokes the
appropriate LTCS. Its additional task constitutes
brokerage in request/user authentication and queries
the GTLS whether a request has sufficient privileges
(basic authorisation).

The TS also provides mechanisms for optional,
additional authorisation that is conducted using data
in the local DB of the TS. This database is optional
and may comprise additional restrictions on granting
access to particularly sensitive tools. An organisa-
tion being the owner of those sensitive tools, and
that manages the particular TS, may not “fully trust”
GTLS. It may thus impose its own more restrictive
verification of access rights.

3.4 Tool Invocation Service (TIS)

The TIS is used by clients to transparently invoke
remote tools that will be discovered using GTLS and
invoked by accessing the corresponding LTCS
through the responsible TS that ensures the security
policy (see Figure 4).

Furthermore, the Client may have access to every
component of the ACI environment through a GUI
that gives access to all possible ACI operations
(search for tools, tools registration, users registra-
tion). A particular operation may be realised from a
GUI level depending on the user privileges that are
stored in the central DB in GTLS.

3.5 ACI Component Interaction

We finally outline an ACI session, which gives an
example how the different components may interact.
Figure 5 depicts operation steps (1-4) that a user has
to follow in order to invoke a selected tool.

1. A user needs to initiate his/her own ACI ses-
sion. He/she proceeds with a login at GTLS. The
user gives his parameters, i.e., login and a password
that are sent by the user client to the GTLS in a form
of an XML (SOAP) message. Parameters being sent
are encrypted by a combination of a public key and a
temporary symmetric key. The message is signed by
the user’s private key in order to assure an additional
authentication.

GTLS upon receipt of the message deciphers it
with a use of its own, secret private key. The deci-
phered message contains login parameters. If these
data are correct, the user’s public key is fetched
from the user database (DB) and the digital signature
is verified. If correct, a session is created for the
user.

Complete user data (public key, privileges) are
placed in cache of GTLS, which also holds session
data (login time, operations done, etc). With the use

of this key the digital signature of a SOAP message
is verified in order to check authenticity of the user.

2. As the user is logged in, he/she may search for
a required tool. He may provide search criteria using
a convenient GUI. These search criteria are inte-
grated into the XML message that incorporates the
user session number in the SOAP message. The
message is ciphered using the public GTLS key and
the generated symmetric key, signed (digital signa-
ture is generated based on a secret private key of the
user), and finally sent to GTLS.

Figure 5: ACI operation.

GTLS upon receipt of the message deciphers it
with the use of its own private key. Further, a ses-
sion is fetched from cache that contains user data
(public key, privileges, etc). A digital signature is
verified using the user public key. If the user has ap-
propriate privileges, the tool searching service is in-
voked with the searching parameters that were sent
in the message. Information on tools being found is
sent back to the user who has initiated this search.

 The return message is ciphered (using the public
key of the client), as well as signed (with the use of
the GTLS private key) and sent back from the GTLS
to the Client. Once the tool is discovered, the client
with the use of data received from GTLS prepares
parameters for locating the tool. These parameters
are placed in the XML file that is ciphered with the
use of the public key of the appropriate TS and with

the use of generated symmetric key, as well as using
the private key of the client.

3. Tool data also comprise a reference to the TS
that gives access to the tool. Using these references
the Client makes connection to the given TS and in-
vokes the tool. The TS upon receipt of the XML
message deciphers it with the use of its own secret
private key. Further on, based on the user session
number, the TS searches its own local cache with
sessions being stored. If a session with indicated ID
is not discovered, it connects to GTLS to continue
the search. Messages are of course ciphered and a
digital signature is sent.

4. GTLS searches its cache. Once the session is
found it sends the complete data on the user (public
key, privileges,..) and session back to the TS. Upon
receipt of the data on the session and on the user, the
TS places them in its local cache. Due to that, TS
must not continuously connect to the GTLS, but in-
stead it fetches session/user data from its own local
cache.

As soon as, the session and user data are found,
the digital signature of the user is verified. Using a
definition of the privileges that are received from
GTLS, it is verified whether the user has rights to
invoke a particular tool. After this verification, an
additional check of privileges is effectuated on the
TS, which verifies, if additional, local restrictions
are defined for this particular tool.

This is done using the local DB that is located on
the machine of the TS. This is an optional DB,
where one can define additional restrictions inde-
pendently from the privileges DB, e.g., on the rights
to invoke specific well-protected tools, which are
limited to a small number of users. If additional re-
strictions are identified, it is checked, whether the
user has sufficient rights. If the user passes both
verifications he/she receives access the tool. In such
a case, TS verifies, if the invoked tool is placed on
the same local host as the TS. If this is the case, the
tool is invoked and launched. If not, TS manages the
reference to the LTCS, where the tool is located. The
result of the tool operation is converted into an en-
crypted XML file, signed and sent back to the client.

4 APPLICATIONS

The ACI services were implemented, and evalu-
ated in several considerably complex industrial ap-
plication scenarios in the currently running ECOL-
LEG project [7] covering:

1. Printed Circuit Board Design
2. IP-Based Circuit Design

4.1 Printed Circuit Board Design

In a first scenario, we investigated a distributed
environment for Printed Circuit Boards (PCB) de-
sign in cooperation with Zuken GmbH, Germany.

The experiment was restricted to Intranet network
communication and applied SNMP (Simple Network
Management Protocol) for communication and con-
trol [12].

In that context, we have implemented a typical
workflow for a PCB design process utilizing tools
from the Zuken Hot-Stage tool suite: CADSTAR-SI,
EMC-Engineer, and the integrated simulators
FREACS, Sigma, and ComoRan. The presented
workflow depicts the processing steps from sche-
matic entry over layout generation to final verifica-
tion and simulation of analog properties

The complexity in that application did not lie in
the number of different tools and their distribution
over different servers rather than in the large number
of versions and versions of their supported input and
output formats considering the complete tool life cy-
cle. Thus, the focus of the work was on the discov-
ery of tools over the life cycle rather than the work-
flow definition and organization.

4.2 IP-Based Circuit Design

The second category of application scenarios
considered two applications of distributed IP-Based
modeling and verification of VHDL models. Both
applications are designed and verified by a distrib-
uted team of engineers in the framework of a multi-
site infrastructure coupling the design flows of a de-
sign team from major industries in conjunction with
an SME. The first scenario is mainly focused on tool
aspects, i.e., integration of heterogeneous tools. The
second one mainly addresses design data exchange
aspects. Both are evaluated in the infrastructure of
two different major industries so that sufficient con-
clusions can be drawn for wider applications.
In the first application, the Institute of Electron
Technology (ITE) used an IP-based methodology for
electronic system design. ITE, Warsaw, played a
role of an IP provider to Thales Optronique, Paris.
Each IP component was modelled at VHDL Regis-
ter-Transfer Level. The model was developed as a
reusable IP - parameterised and thus configurable.
The component model was earlier verified by simu-
lation. Several VHDL-based tools could be applied
at that design stage. The verified model was synthe-
sised in a selected FPGA technology. As the result
of logic synthesis, a netlist of hardware components
was obtained. During the next step the implementa-
tion of this netlist into a selected type of FPGA de-
vice had taken place. Appropriate workflows have
been defined and verified [10].

The second application scenario integrates In-
fineon Technologies, Munich, and Silesian Univ. of
Technology, Gliwice. It constitutes an experiment in
collaborative testbench development. The experi-
ment that was undertaken [2] aimed at development

of a testbench for functional verification of a Serial
ATA hard disk controller VHDL model using the
distributed workflow functionality of ASTAI® [4].

The environment that has been developed, inte-
grates a set of distributed workflows that cross bor-
ders of involved organisations. Infineon Technolo-
gies has been motivated towards this work by the
extremely high effort for making functional tests.
Independently, Infineon was working on standard-
ized IP-based design flows and integrating SMEs
into Infineon's internal design flow. The application
of the collaborative technology based on the E-
Colleg collaborative infrastructure opens new possi-
bilities for Infineon’s testbench development tasks,
because, among others, the existing environment can
be used on each partner site, and be coupled using
collaborative workflows.

5 CONCLUSIONS

We have presented the architecture of an ad-
vanced collaborative infrastructure (ACI) for Elec-
tronic Design Automation application. ACI has been
developed for distance spanning, tool integration,
and administration as well as open interfaces for
XML-based data exchange. ACI provides a combi-
nation of most recent plug-and-play technologies
with peer-to-peer communication and XML-based
tool integration. We have applied ACI to tool inte-
gration and mainly addressed tool administration in
complex Intranet and Intranet crossing communica-
tion and data exchange. For such site-spanning tool
integration, one has to consider security as an issue
of highest priority in order to protect the exchanged
design data. Advanced mechanisms for security as-
surance, namely: encryption with the use of both
symmetric and asymmetric keys, digital signature,
user authentication and authorisation, have been
built into the ACI architecture. As one of the indus-
trial requirements, ACI provides bridging firewalls
via ANTS’ peer-to-peer based technologies.

Current case studies and trials in well-defined
testbeds together with EDA tool vendors, system
houses, and chip manufacturers show promising re-
sults and demonstrate the applicability of the pre-
sented ACI concepts.

ACKNOWLEDGEMENTS
The work described herein is funded by the IST project
E-Colleg (IST-1999-11746). We gratefully acknowledge
the fruitful discussions and valuable remarks of our E-
Colleg partners. Further on, we thank Manuel Carballeda
(Thales Optronique) and Mathias Bauer (Infineon Tech-
nologies) for their cooperation and the GTLS develop-
ment team members from SUT (Silesian Univ. of Tech-
nology), namely: Pawel Fras, Jaroslaw Magiera, and
Marek Szlezak for their contributions.

REFERENCES
[1] M. Bauer, H.J. Eikerling, W. Mueller, A. Pawlak, K.

Siekierska, D. Soderberg, X. Warzee: Advanced Infrastruc-
ture for Pan-European Collaborative Engineering. E-work
and E-commerce, B. Stanford-Smith & E. Chiozza (Eds.),
IOS Press, 2001.

[2] M. Bauer, P. Penkala, A. Pawlak, D. Stachañczyk, P. Fras,:
Collaborative Environment for Testbench Development.
EUROMICRO DSD2002 (Digital System Design) Symp.,
Work in Progress Session, Dortmund, Sept. 2002.

[3] CFI: Tool Encapsulation Specification; Version 1.0.0. CAD
Framework Initiative Inc., Austin, USA, 1992.

[4] C-LAB: ASTAI® Manual v. 2.2, Paderborn, 2000, www.c-
lab.de

[5] Collaboration : Technology and Market Dynamics, IDC re-
port for DARPA, June 1997.

[6] Cutkosky, M., Tenenbaum J., Gliksman J.: Madefast: An
Exercise in Collaborative Engineering over the Internet,
ACM Communications, Sept. 1996, vol. 39, no. 9.

[7] E-COLLEG (2000-2003), EU project IST-1999-11746,
www.ecolleg.org.

[8] EXTERNAL (2000-2002), EU project IST-1999-10091.
www.external-ist.org.

[9] A. Kokoszka, K. Siekierska, A. Trung, P. Fras, A. Pawlak:
Are workflow management systems useful for collaborative
engineering? ECPPM2002, Portorož, Slovenia, Sept. 9-11,
2002, A.Balkema Publishers, pp. 245-252.

[10] A. Kokoszka., Q.T Nguyen., K. Siekierska, A. Pawlak, D.
Obrebski, N. Lugowski: Distributed Design of Semiconduc-
tor IP Based on the Workflow Concept, Proc. of the IEEE
Design and Diagnostics of Electronic Circuits and System
Workshop, Gyor, 18-20 April, 2001.

[11] H. Lavana et al.:. OpenDesign: An Open User-Configurable
Project Environment for Collaborative Design and Execution
on the Internet. ICCD 2000.

[12] W. Mueller, T. Schattkowsky, H.J. Eikerling J. Wegner,
Dynamic Tool Integration in Heterogeneous Computer Net-
works. Proceedings of DATE 03, Munich, Germany, 2003.

[13] Q.T. Nguyen, A. Kokoszka, K. Siekierska, A. Pawlak, D.
Obrêbski, N. Lugowski: Organization of a Microprocessor
Design Process Using Internet-based Interoperable Work-
flows. 3rd Int. IEEE Symp. on Quality Electronic Design,
18-21 March 2002, San Jose, CA.

[14] A. Pawlak A., W. Cellary, A. Smirnov, X. Warzee, J. Willis:
Collaborative Engineering based on Web - how far to go?,
Advances in Information Technologies: The Business Chal-
lenge. J.-Y. Roger et al. (Eds.) IOS Press, 1997.

[15] J. Postel, J. Reynolds: File Transfer Protocol (FTP). RFC
959. 19985.

[16] F.J. Rammig: Web-based System Design with Components
Off The Shelf (COTS). Forum on Design Languages, Tübin-
gen, Sept. 2000.

[17] D. Schefstroem, G. van den Broek.: Tool Integration. Wiley
Series in Software Based Systems. John Wiley & Sons,
1993.

[18] W. Thronicke, W. Fox, et al.: From Tool Integration to
Workflow Management - A Lean Integration Solution. In
Proc. 2nd World Conference on Integrated Design and Proc-
ess Technology, Austin, TX, Dec. 1996.

[19] W3C, http://www.w3.org, 2002.
[20] M. Witczynski, A. Pawlak: Virtual organisations enabling

net-based engineering. eBusiness and eWork. E-2002 Con-
ference Proceedings, October 2002, Prague.

